Mathematisches Institut der LMU Prof. Dr. P. Müller Dr. S. Morozov Mathematical Quantum Mechanics II SoSe 2016 25.05.2016

Homework 5

For Thursday, 1 June 2016

Throughout "operator" means a linear operator.

5.1. Let $\gamma \in [1, \infty]$. Prove that for any pair of self-adjoint operators H_0 , H the property

$$(H_0 - z)^{-1} - (H - z)^{-1} \in \mathcal{T}^{\gamma}$$

does not depend on the choice of z from the intersection of the resolvent sets of H_0 and H.

5.2. Prove the following continuity property of generalized wave operators: Suppose that $W(H, H_0)$ exists. If $(A_n)_{n \in \mathbb{N}}$ is a sequence of self-adjoint trace class operators with $||A_n||_1 \xrightarrow[n \to \infty]{} 0$, then $W_+(H + A_n, H_0)$ exists and converges to $W_+(H, H_0)$ strongly.

5.3. Let T be compact and R bounded operators in a separable Hilbert space \mathcal{H} . Prove that if TR and RT are trace class operators, then

$$\operatorname{tr} TR = \operatorname{tr} RT$$

holds.

5.4. The class of Hilbert-Schmidt operators consists of bounded operators T for which there exists an orthonormal basis $(g_l)_{l \in \mathbb{N}}$ such that

$$||T||_2^2 := \sum_{l \in \mathbb{N}} ||Tg_l||^2 < \infty.$$

Prove that $||T||_2$ does not depend on the choice of the basis and that

$$||T||_2^2 := \sum_{k \in \mathbb{N}} s_k(T)^2$$

holds. In particular, the Hilbert-Schmidt class coincides with the class \mathcal{T}^2 of compact operators.