Mathematisches Institut der LMU Prof. Dr. P. Müller Dr. S. Morozov Mathematical Quantum Mechanics II SoSe 2016 21.04.2016

Homework 2

For Thursday, 28. April 2016

2.1. Prove the last two statements of Lemma 2.3(e): The wave operators Ω_{\pm} satisfy the intertwining relations

- (a) $\Omega_{\pm} 1_A(H_0) = 1_A(H) \Omega_{\pm}$ for any Borel set $A \subset \mathbb{R}$ and
- (b) $\Omega_{\pm}f(H_0) = f(H)\Omega_{\pm}$ for any bounded continuous function f on \mathbb{R} .

In the following \mathcal{H} is a separable Hilbert space.

2.2. Prove that every bounded linear operator $T \in \mathcal{L}(\mathcal{H})$ admits a polar decomposition T = W|T|, with $|T| := (T^*T)^{1/2}$ non-negative and W isometric in \mathcal{H} .

2.3. Prove that every compact linear operator $T \in \mathcal{T}^{\infty}(\mathcal{H})$ admits a canonical representation (Schmidt expansion)

$$T = \sum_{k} s_k \langle \varphi_k, \cdot \rangle \psi_k,$$

where $\{\varphi_k\}$, $\{\psi_k\}$ are orthonormal systems complete in $\overline{T^*\mathcal{H}}$ and $\overline{T\mathcal{H}}$, respectively, and $\{s_k\}$ is the sequence of eigenvalues of |T| in the nonincreasing order counted with multiplicities. Compute the Schmidt expansion of T^* .

Hint: Use the spectral theorem for |T|.