Mathematisches Institut der LMU Prof. Dr. P. Müller Dr. S. Morozov Mathematical Quantum Mechanics II SoSe 2016 14.04.2016

Homework 1

For Thursday, 21. April 2016

1.1. Let *H* be a self-adjoint operator in a separable Hilbert space \mathcal{H} . Prove Lemma 1.6: For every $\psi \in \mathcal{H}_{\varkappa}$ and $\varphi \in \mathcal{H}$ the complex spectral measure $\mu_{\varphi,\psi} := \langle \varphi, 1_{(\cdot)}(H)\psi \rangle$ is

- (a) purely atomic, if $\varkappa = pp$;
- (b) absolutely continuous with respect to the Lebesgue measure on \mathbb{R} , if $\varkappa = ac$;
- (c) free of atoms, if $\varkappa = c$;
- (d) supported on a Labesgue null set, if $\varkappa = s$;
- (e) singular continuous, if $\varkappa = sc.$

1.2. For every self-adjoint operator H and relatively compact operator C prove

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T e^{itH} C e^{-itH} \psi \, dt = \sum_{\lambda \in \sigma_p(H)} P_{\{\lambda\}}(H) C P_{\{\lambda\}}(H) \psi, \quad \text{for any } \psi \in \mathfrak{D}(H).$$

Prove that the result holds for any $\psi \in \mathcal{H}$ provided C is bounded.