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Abstract

We study the low-energy properties of the spinful Bose-Fermi Hubbard model on a simple cu-
bic lattice for attractive fermion-fermion and repulsive boson-boson interactions at half-filling
for the fermions and unit-filling for the bosons. Recent DMFT results predict a variety of
phases, including superfluids, charge density waves, mixed states and supersolids. We develop
a self-consistent mean-field scheme which allows for all orders to appear and determine the
ground state of the system by comparing the corresponding energies. In the double superfluid
phase, we consider possibilities for exotic extended s-, p- and d-wave boson-assisted superflu-
idity.

This thesis is organized as follows:

• In Chapter 1 we give a short motivation and briefly summarize recent experimental and
theoretical studies of the model.

• Chapter 2 discusses the Bose-Hubbard model. After reviewing the celebrated ground
state phase diagram within mean-field, we study the behaviour of the bosonic system
in the presence of a staggered potential.

• In Chapter 3 we revisit the Fermi-Hubbard model. We discuss the relation between
a charge density wave and a superfluid state both from a group theoretical point of
view taking into account the symmetries of the system, and within mean-field. Further,
we generalize the discussion to the case of the Fermi-Hubbard model in a staggered
potential.

• Chapter 4 deals with the Bose-Fermi mixture within mean-field theory. We develop
a decoupling scheme taking into account the back action of one species on the other,
and study the resulting phase diagram by solving the self-consistency equations. We
compare our result to recent DMFT simulations.

• In Chapter 5, we address the possibility of realizing unconventional pairing mechanisms
due to boson-mediated attraction between the fermions in the deep superfluid limit.

• In Chapter 6, we briefly study the supersymmetric Bose-Fermi mixture above the quan-
tum degenerate regime. We derive an effective field theory for the system and show
that SUSY is restrictive enough to induce tremendous simplifications in the model.
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Chapter 1

Introduction

1.1 Motivation

Typical models of condensed matter systems describe interacting fermions in ion lattices.
The physical picture behind them is given by electrons interacting via the electromagnetic
Coulomb force in the presence of the much heavier ions. The latter are often assumed to
be static due to the huge mass they have compared to the electrons and are thought of as
a periodic background potential in which the electrons move. Most of the well established
theories of solid state physics consider the kinetic energy of the electrons to be much larger
than their potential energy, so that part of them essentially becomes free to move about.
Indeed, this description is very successful to explain the physics behind (semi-)conductors
and insulators.

Unfortunately, it breaks down once the kinetic and potential energies become compara-
ble to each other. This is the case of strongly-interacting electrons and the physics behind
materials displaying such behaviour is significantly less understood. The main reason for
this is that one needs models to describe very complicated many-body systems which are
simple enough and mathematically tractable. On top of this, experiments usually deal with
samples of materials which contain impurities and this severely aggregates the verification of
theoretical descriptions.

As a bridge in between comes cold atom physics with its remarkable controllability over
model parameters and impurity doping. Using red-detuned laser beams one is able to cool
down fermionic and bosonic alkali atoms beyond the limit of quantum degeneracy. Moreover,
it is also possible to create artificial optical lattices which mimic their ion counterparts and
allow one to study purely quantum many-body effects in the laboratory. In some cases, it
is possible to experimentally realize exact condensed matter models of strongly correlated
systems and study their behaviour. This gives an unprecedented opportunity to compare
theoretical and experimental studies, which lies at the heart of physics.

In this thesis, we provide a mean-field study of the ground state properties of the 3D Bose-
Fermi Hubbard model, also known as the Bose-Fermi mixture (BFM). It describes strongly
correlated bosons and fermions in an optical (ion) lattice. Studying the interaction between
bosons and fermions is required for many purposes. Mainly, one is interested in the modifica-
tion of pronounced features of one species, such as superconductivity and superfluidity, by the
other. For instance, a central idea in the theory of superconductivity is the phonon-mediated
attraction between the fermions. Therefore, the studies of boson-assisted superfluidity at-
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Figure 1.1: Analogy between ion (crystal) lattices in solid materials and artificial optical
lattices (image by the Quantum Optics Group of LMU, [41])

tract a lot of attention as a prospective quantum simulator of superconductivity. Another
possibility that opens up with the investigation of the BFM is revealing the physics of Fermi
polarons [59] which can be thought of as fermions dressed in a bosonic field, or even more ex-
otic examples, such as quarks exchanging gluons via the Strong Force. Bose-Fermi mixtures
can further be used to experimentally test unconventional pairing mechanisms, important
for p- and d-wave superconductivity. It has also been proposed to look for special collective
excitation modes as remainders of a broken supersymmetry in this non-relativistic setup.

In the following, we are interested in the phase diagram of the spinful Bose-Fermi Hubbard
model. Recent single-site dynamical mean-field theory (DMFT) results [2] suggest a variety
of phases that might occur at low temperatures, including superfluid phases, charge density
waves, and even exotic supersolids. The theoretical description of these mixed phases poses a
significant challenge due to the complexity of the physical system. It is, therefore, worthwhile
to seek effective and simple minimal descriptions that model the essentials of the relevant
physics in each phase correctly.

1.2 A Brief Survey of Recent Experiments

After the series of successful experiments on the Bose-Hubbard model in 2002 [22], the ground
state properties and the phase diagram have been experimentally measured in excellent agree-
ment with theoretical predictions and numerical simulations. These experiments pioneered
the study of condensed matter systems using cold atoms. Several years later, fermionic su-
perfluids have been realized in the laboratory with 6Li atoms, using Feshbach resonances to
tune the strength of the interaction to the attractive side. This also allowed to experimentally
examine the physics of the BEC-BCS crossover [62]. Since the usual cooling protocol includes
evaporative cooling which relies entirely on interaction-induced thermalization, it is much
harder to cool down a fermionic system, as the s-wave channel is effectively being closed at
low-temperatures by the Pauli Principle. Therefore, sympathetic cooling [19], which makes

http://www.quantum-munich.de/research/ultracold-fermions-in-optical-lattices/
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use of bosons interacting with the fermions is employed.

Spin-polarized Bose-Fermi mixtures have been realized experimentally using cold bosonic
87Rb and fermionic 40K atoms in 3D optical lattices. The first experiments of the mixture in
the presence of a fixed attractive background scattering length found a decrease in the bosonic
visibility, which points towards a shift in the Mott insulator to superfluid transition. Although
different proposals such as self-trapping [42, 35, 51, 59], adiabatic heating [23, 11, 45], or
corrections due to higher bands [51, 37] have been proposed, none of them has been clearly
identified.

Another experiment on the spin-polarized BFM found an asymmetry between the strong
repulsive and attractive interspecies interactions, analyzing the 87Rb momentum distribution
function [6]. The shift of the transition line on the attractive side has been confirmed and
attributed to self-trapping. Multiband spectroscopy has been employed to measure the band
structure with high accuracy [24]. The experiment reported a reduction of the fermion tun-
neling energy, depending on the relative atom numbers. The effect has been interpreted as
an interaction-induced increase of the lattice depth due to self-trapping.

A comprehensive description of the relevant experimental methods and results can also
be found in [58].

1.3 Theoretical Proposals

Theoretical investigations of Bose-Fermi mixtures have been initiated in the late 90’s after
the celebrated realization of Bose-Einstein condensation in 1995 [32, 44], which triggered
theoretical research in the field. First, bosonic mixtures were intensively investigated but
soon the theoretical community turned to the exciting possibilities for realization of exotic
phases of matter given by the BFM.

The spinful Bose-Fermi Hubbard Hamiltonian is given by

H =− tb
∑
〈ij〉

(b†ibj + h.c.)− µb
∑
i

ni +
Ubb
2

∑
i

ni(ni − 1)

− tf
∑
〈ij〉,σ

(c†iσcjσ + h.c.)− µf
∑
i

mi + Uff
∑
i

mi↑mi↓

+ Ubf
∑
i

nimi. (1.1)

Here, the b’s and the c’s represent bosonic and fermionic operators, respectively. The cor-
responding particle number operators are given by ni and mi = mi↑ + mi↓. The bosons
(fermions) are allowed to hop to nearest-neighbouring sites of the lattice, denoted by 〈ij〉,
thereby gaining energy tb (tf ). Finally, the chemical potentials of the species µb (µf ) deter-
mine the lattice filling. A schematic and intuitive picture of the system is given in 1.2.

Initially, the attention of many authors was targeted towards the boson-induced pairing
of the fermions. Indeed, it has been shown [54] that to first order the fermionic interaction is
renormalized as

Uind(k, ω) = U2
bfχ(k, ω), (1.2)

where χ(k, ω) is the bosonic response function. Deep into the superfluid regime the Bogoliubov
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Figure 1.2: The spinful Bose-Fermi Hubbard model: bosons (blue) and fermions of spin up
(green) and spin down (red) are subject to on-site interactions Ubb and Uff , while the

boson-fermion on-site interaction strength is set by Ubf . Bosons and fermions of either spin
gain energy by hopping to nearest neighbouring sites with amplitudes tb and tf , respectively.

approximation can be employed, and it takes the form

Uind(k, ω) =
U2
bf2n

(
ztb + ε

(b)
k

)
ω2 −

(
ztb + ε

(b)
k

)((
ztb + ε

(b)
k

)
+ 2nUbb

) , (1.3)

where n is the average boson occupation, z is the coordination number and ε
(b)
k is the bosonic

dispersion relation.

An effective interaction potential can be obtained using the T -matrix formalism, and the
corresponding s-wave scattering length has been calculated with the help of field-theoretical
methods [7]. The frequency dependence of the induced interaction is responsible for retar-
dation effects. However, when the bosonic sound velocity is (much) smaller than the Fermi
velocity, the ω-dependence can be safely neglected, and the resulting interaction is always
attractive. Therefore, a weak repulsive fermionic interaction can be overcome in favour of an
attractive effective one, leading to a Cooper instability in the s-wave channel [53]. For at-
tractive fermionic interactions, the BCS transition temperature is proposed to have increased
due to the induced interaction, [25].

Properties of the dilute Bose-Fermi mixture have been investigated perturbatively, includ-
ing the ground state energy, the bosonic momentum distribution function, and the superflu-
id/normal fractions. It was proposed that varying the mass ratios and the scattering lengths,
it is possible to suppress the bosonic momentum distribution function at small momenta,
while the bosonic superfluid density was found smaller than the total condensate fraction
[52].

Concerning the ground state phase diagram, an exotic supersolid phase has been proposed
for a BFM on a square lattice [9], characterized by simultaneous superfluid and crystalline
orders. However, this phase relies heavily on the existence of the van Hove singularity in the
2D density of states, and is therefore suppressed exponentially in 3D.

The above papers all deal with the spin-polarized Bose-Fermi mixture. The supercon-
ducting transition temperature has been investigated in the strong coupling limit for the
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spinful mixture in three dimensions in free space [56], where an analytical solution for the
pairing transition temperature has been derived in the limit where retardation effects can be
neglected. The critical s-wave pairing temperature was found to be several per cents of the
Fermi energy.

One of the goals of this thesis is to develop a mean-field theory of the spinful Bose-Fermi
mixture on a cubic lattice and determine the mean-field phase diagram from a numerical
solution of the corresponding self-consistency equations.
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Chapter 2

Lattice Bosons in a Staggered
Potential

The Bose-Hubbard model and, in particular, its extensions including long-range interactions
have been the focus of intense research in the last two decades. With the development of
cold-atom experiments, it might soon be possible to observe supersolid and charge density
wave phases characterized by an inhomogeneous density profile. Proposals for a mechanism
for supersolidity in bosonic systems in the literature can be found from the early 70’s up
to present date [40, 33, 29]. Such phases are of interest to this work, since recent DMFT
results [2] suggest that the BFM exhibits a supersolid phase for a certain range of the model
parameters.

In this chapter, we review the Bose-Hubbard model and its properties. First, the phase
boundary for the superfluid (SF) and Mott insulator (MI) transition is derived within the
mean-field approximation, and extended to the presence of an alternating potential. We in-
vestigate the exactly solvable model of free bosons in a staggered potential, and demonstrate
that condensation occurs not only for the ~k = 0 mode, but also at ~k = ~π = (π, π, π). This
result is anticipated since both modes are equivalent in the reduced Brillouin zone, corre-
sponding to a double unit cell which takes into account the reduced translational symmetry
of the problem. We calculate the modifications to the MI-SF phase boundary. Further, the
effect of the staggered potential in the SF phase is analyzed within a natural generalization
of the Bogoliubov approximation, taking into account weak interactions between the bosons
(compared to the hopping parameter).

2.1 The Bose-Hubbard Model

The Bose-Hubbard model was initially suggested to describe strongly correlated bosons in
crystal lattices. Due to the fact that most particles found in solid state materials have
fermionic nature, the experimental verification of theoretical predictions for bosonic systems
has been achieved only recently [22].

The Hamiltonian is given by

H = −tb
∑
〈ij〉

(
b†ibj + h.c.

)
− µ

∑
i

ni +
Ubb
2

∑
i

ni (ni − 1) . (2.1)
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The operators bi and b†i obey bosonic commutation relations. As usual, 〈ij〉 denotes nearest
neighbour pairs on the lattice. The hopping strength tb is the energy gained by a boson
when it ‘hops’ between nearest-neighbour sites due to quantum mechanical tunneling. The
parameter µ is the chemical potential that fixes the filling (total number of particles per lattice
site), and Ubb is the strength of the on-site interaction between the bosons, i.e. the energy one
has to pay in order to accommodate two bosons on the same site. In the following, we are
interested in unit filling (i.e. one boson per site on average), and µ will be chosen accordingly.

To gain physical insight into the behaviour of this system, consider first the case of no
interactions: Ubb = 0. In this limit, the particles are free to move along the lattice without any
restriction. Due to quantum statistics, the bosons will undergo Bose-Einstein condensation,
occupying the lowest energy mode k = 0, as the dispersion relation for free particles in a
simple cubic lattice reads εk = −2tb(cos kx + cos ky + cos kz). Each particle will maximally
delocalize over the entire lattice (keeping the average density per site equal to unity). The
phase-coherent system can then be described by a single wave function, corresponding to the

ground state |GS〉 = 1√
N !

(
b†k=0

)N
|0〉, where |0〉 is the state with no particles. Since it is

defined in momentum space, this state does not represent a state of a well-defined particle
number (Fock state). Weak interactions will not destroy phase coherence, and the ground
state in the limit Ubb/tb → 0 will be referred to as a superfluid (SF), according to the Landau
criterion [18]

In the opposite limit (also known as the ‘atomic limit’), we have Ubb/tb → ∞ and the
dominant energy scale is given by the interaction energy. Therefore, the hopping events are
kept to the minimum, and the kinetic energy can be safely neglected. To minimize the inter-
action energy, the bosons will tend to distribute themselves equally on every lattice site on
average. In the case of unit filling, this means that we have only one particle per site. More-
over, the particles are localized quantum mechanically. The ground state is approximately
(since tb 6= 0) given by |GS〉 ≈

∏
i b
†
i |0〉,1 which is a state of well-define particle number

(corresponding to QM localization). This state is known as a Mott insulator (MI).

In between the limits discussed above, the model cannot be solved exactly, and so the
ground state is not known. However, due to the bosonic nature of the particles, one might ex-
pect that at a certain critical value of Ubb/tb the system undergoes a phase transition between
the SF and the MI state. Since the model is exclusively dealt with at zero temperature, the
phase transition will be purely due to the quantum uncertainty in localizing and dephasing
the particles, and is therefore dubbed a quantum phase transition.

2.1.1 From a Mott Insulator to a Superfluid: A Quantum Phase Transition

The simplest way to find the approximate boundary between the SF and the MI phases is to
use mean-field (MF) theory. The usefulness of this method relies on the weakness of quantum
fluctuations around a stable minimum of the classical action, and is highly dependent on
dimensionality. In 1d systems quantum fluctuations destroy the order, and MF fails at any
finite temperature. The situation is somewhat better in 2d, but the true power of MF can
be appreciated in dimensions d ≥ 3.2 The reason for this lies deeply in the theory of the
Renormalization Group and Critical Phenomena [31], and is beyond the scope of this review.

In the case of the BH model, in order to get a description for the MI phase, we treat the

1this is true up to O(tb/Ubb), as will be discussed in 2.2.2
2MF even becomes exact beyond d = 4
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hopping parameter tb as a small quantity. We seek a description in which the Hamiltonian
is diagonal in the Fock (or particle number) basis, since we expect to find localized bosons.
The key concept of MF theory is to keep the fluctuations small. We can make use of this to
decouple the hopping term as follows:

(b†i − 〈b
†
i 〉) (bj − 〈bj〉)

!
≈ 0. (2.2)

Rearranging, we have b†ibj ≈ b†i 〈bj〉 + 〈b†i 〉bj − 〈b
†
i 〉〈bj〉.3 Let us denote the SF density by n0,

and if we define the SF order parameter by
√
n0 = ψ = 〈b†i 〉 = 〈bi〉, the kinetic energy becomes

Hkin = ztbNsψ
2 − ztb

∑
i

(
b†i + bi

)
ψ. (2.3)

Here z = 2d is the coordination number for the simple cubic lattice, and Ns is the total number
of sites. The MF decoupling turned a second order off-diagonal (w.r.t. the Fock basis) term
in the Hamiltonian into a first order diagonal one, which can be safely treated perturbatively,
whenever the SF order parameter ψ is small. Since in the MI phase we expect that ψ = 0,
if we assume that ψ is continuous (corresponding to a second-order phase transition), this
method will provide us with the phase boundary, i.e. the curve where ψ starts to emerge. To
this end, we write down the new Hamiltonian of the system as

H̄MF =
∑
i

hi,

hi =
1

2
Ūni(ni − 1)− µ̄ni − ψ

(
b†i + bi

)
+ ψ2, (2.4)

where we conveniently rescaled the system parameters, the bar denoting ·̄ = ·/ztb. It is
noteworthy that h is now a local Hamiltonian. This fact simplifies the perturbative treatment
using Fock states significantly, and allows us to drop the summation over i. We can now
separate hi = H0 +ψV , and do perturbation theory in ψ. Here H0 = 1

2 Ūni(ni−1)− µ̄ni+ψ2,

and V = −
(
b†i + bi

)
. Due to the orthogonality of the Fock states with different number

of particles, we see immediately that the first order correction to the GS energy vanishes.
Therefore, we have

E(2)
n = ψ2

∑
m 6=n

|〈n|V |m〉|2

E
(0)
m − E(0)

n

= ψ2

(
n+ 1

µ̄− Ūn
− n

µ̄− Ū(n− 1)

)
(2.5)

for the second order correction to the ground state energy per site with n particles. Hence,
perturbation theory generates a series expansion of the GS energy in terms of the SF order
parameter, as follows

EGS = a0 + a2ψ
2 + a4ψ

4 + . . . (2.6)

3Notice that we neglect the overall phase of the order parameter and assume that it is given by a real
number.
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Figure 2.1: (color online): Schematic plot of the ground state energy as a function of the
order parameter ψ: the Mexican hat potential. For a > 0 (symmetry not broken), the only

minimum occurs at ψ0 = 0, while for a < 0 we find non-trivial minima at ±ψ0 6= 0.

Minimization of this expression w.r.t. ψ then fixes the SF order parameter and therefore

the SF density n0. The condition for the phase boundary is given by the equation a2
!

= 0,
since for a2 > 0, one always has ψ = 0, while for a2 < 0 we find two solutions ψ1,2 6= 0. In
the latter case, the system spontaneously chooses one of these ‘vacua’, and this phenomenon,
usually referred to as ‘Spontaneous Symmetry Breaking’, lies at the heart of the Anderson-
Higgs mechanism (see Fig. 2.1). In order for the theory to describe a stable minimum of the
classical action, we require that the coefficient a4 > 0.4

After making the procedure clear, the phase boundary is calculated to be

µ̄± =
1

2
(Ūbb(2n− 1)− 1)±

√
Ū2
bb − 2Ūbb(2n+ 1) + 1, (2.7)

which is plotted in Fig. 2.2. The different signs give the lower and upper boundary of the MI
plateau for a given filling n. One observes the presence of the Mott plateaus. They are regions
of constant particle number, and hence the whole phase is incompressible. The critical point
Ūc for a given filling n is given by the tip of the corresponding Mott lobe, and can be found
by equating µ− = µ+. The expression reads Ūc = 2n + 1 +

√
(2n+ 1)2 − 1. In our case of

unit filling n = 1, we find
(
Ubb
tb

)
c

= 5.83z.

4This is indeed the case, [50].
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(a) (b)

Figure 2.2: (color online): Phase diagram of the Bose-Hubbard model: (a) Decreasing the
value of tb/Ubb (here J/U) at fixed µ, one enters a Mott lobe if the average density has been
set precisely to an integer (red dashed line), while any deviation inevitably remains in the

SF phase (solid green line). (b) Phase portrait of the Bose-Hubbard model. The MI phase is
characterized by a constant average particle number leading to vanishing compressibility

(figures adopted from [21]).

2.1.2 MI - SF Transition: The Cumulant Expansion

As we have seen, the MF description is useful to provide the leading order terms of the phase
boundary. To improve the method, one needs to find a way to implement the effect of small
fluctuations. In general, this is a hard task, which can be accomplished using quantum field
theoretical methods. In fact, a further generalization including finite-T effects is possible
[8, 13], so that the on-site interaction term is an arbitrary local function of the number
operator fi(n̂i). It may even take different values at different lattice sites i. This can prove to
be very useful to analyze the physics in the presence of an alternating or a trapping potential at
extremely small but finite temperatures, the latter being the case in cold-atoms experiments.
The only important condition is the locality of the interaction term (i.e. no nearest neighbour
interactions or similar are allowed).

Since we want to apply this technique in a subsequent section, we revisit the main steps
behind what shall be referred to as the Cumulant Expansion Method for deriving an Effective
Action from BH-type Hamiltonians, [8]. For a trivial generalization of the method to several
species, the reader is encouraged to consult Appendix B.

The starting point is the Hamiltonian

H = H0 +H1

H0 =
∑
i

fi(n̂i)

H1 = −
∑
ij

tijb
†
ibj . (2.8)
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Here fi is an arbitrary site-dependent function, which includes the chemical potential, and the
interaction term. Hence, H0 models on-site interactions between the bosons, whose eigenen-
ergies are readily calculated in the Fock basis to give E =

∑
i fi(ni). The part H1 is a

generalized kinetic term, and will be treated perturbatively. The hopping constant tb from
the previous section is promoted to a hopping matrix tij , which is symmetric and has no
diagonal elements (as these can always be absorbed into fi).

Let us briefly outline the most important steps of this method:

1. Write down the generating functional, introducing current operators which break any
global symmetries explicitly, and make it possible to look for the symmetry-broken
phases.

2. Using imaginary-time formalism to incorporate finite-T effects, write down the total
partition function via the evolution operator in a perturbative series expansion.

3. Note that since H0 is not quadratic, one cannot apply Wick’s theorem. However, as it
is local, one employs the Linked Cluster Theorem, [13], to derive an on-site cumulant
expansion for the free energy; the second cumulant being the Green’s function of the
free system.

4. Introduce the complex order parameter field ψ as the functional derivative of the free en-
ergy (calculated to the desired order in the hopping matrix tij) w.r.t. the corresponding
current operator.

5. The Legendre transform of the free energy w.r.t. the order parameter ψ is the effective
potential Γ for the order parameter to fourth order in ψ. Putting the coefficient in front
of the term |ψ|2 to zero yields the phase boundary.

Assuming a real, time and position-independent order parameter leads to the familiar
expression for the effective potential which we identify with the ground state energy from the
previous section:

Γ = Ns
|ψ|2

a
(0)
2 (0)

− |ψ|2γ +O(ψ4), (2.9)

with γ =
∑

ij tij = Nsztb, and a
(0)
2 (j, ωm = 0) - the Matsubara transform of the Green’s

function to zeroth order in the hopping: G
(0)
j (τ) = 〈Tτ bj(0)b†j(τ)〉Z0 , with Z0 =

∑∞
n=0 e

−βfi(n)

the partition function corresponding to H0. Due to translational invariance, the Green’s

function is independent of the site index j, and hence a
(0)
2 (j, ωm = 0) = a

(0)
2 (0).

To calculate an expression for the phase boundary, we thus need the zeroth order propa-

gator G
(0)
i (ωm), given by

a
(0)
2 (i, ωm) =

1

Z0

∞∑
n=0

e−βfi(n)

[
n+ 1

fi(n+ 1)− fi(n)− iωm
− n

fi(n)− fi(n− 1)− iωm

]
. (2.10)

At zero temperature, this expression reduces to

a
(0)
2 (i, ω) =

n+ 1

fi(n+ 1)− fi(n)− ω
− n

fi(n)− fi(n− 1)− ω
. (2.11)
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For ω = 0 this turns out to be the same expression as in Eq. (2.5) when multiplied by ψ2 in
the formula for the effective action Eq. (2.9) above. The subsequent steps are the same as in
Chapter 2.1.1, so there is no need to re-do the analysis. Let us emphasize that this method
shall prove much easier to apply in the up-coming discussion when we introduce a staggered
potential.

One could, in principle, continue the analysis and calculate other physical quantities of
interest. However, we shall interrupt the discussion of the Mott phase at this point, and
continue to the Bogoliubov description of the superfliud phase. We shall revisit the MI phase
later on, but in the presence of a staggered potential.

2.1.3 The Superfluid Phase: Bogoliubov Approximation

After having analyzed the Bose-Hubbard model in the vicinity of the SF-MI phase transition,
we turn our attention to the deep superfluid regime, where the order parameter ψ no longer
can be assumed to be small. Therefore, the previous description in terms of perturbative series
breaks down. In fact, in the case of weak interactions we expect that the superfluid density
n0 ∼ 1, so that the system essentially resembles free bosons. In this case, the effect of interac-
tions would be do deplete the condensate (usually referred to as ‘quantum depletion’5). The
physical picture behind this comes from scattering of a condensate off a non-condensate atom,
in a way that the momentum of the non-condensate atom, which has initially been greater
than zero (by definition of the condensate), is transferred to the condensate atom, thereby
kicking it out of the condensate. As a result of momentum conservation, the non-condensate
boson then condenses. Since this processes occur exclusively due to interactions, on average
they maintain a constant fraction of the bosons out of the condensate (to be referred to as
the ‘excited fraction’). Therefore, even at zero temperature, the weakly interacting Bose gas
never has all its constituents superfluid.

To model such a superfluid behaviour, it is natural to use a description in Fourier space,
so that the kinetic energy operator is diagonal. Again, we are faced with the same problem
as in the previous section, however, this time it is the interaction energy that is not diagonal.
The BH Hamiltonian in momentum space reads

H =
∑
k

(εk − µ)b†kbk +
Ubb
2Ns

∑
k1,k2,k3,k4

b†k1b
†
k2
bk3bk4δk1+k2,k3+k4 , (2.12)

where the δ-function reflects momentum conservation. Keeping in mind that we want to
describe the system in the limit, where the condensate fraction constitutes almost all of the
bosons (n0 ∼ 1), and recalling that the condensate mode is at ~k = 0, we are faced with the

following problem. The ground state expectation value of the operators 〈bk=0〉 ≈ 〈b†k=0〉 ≈√
N0 is of order

√
N0 � 1, whereas 〈bk 6=0〉 ≈ 〈b†k 6=0〉 ≈ 1 are all of order unity. This suggests

the following approximation, known as the ‘Bogoliubov approximation’:

b0 −→ b0 +
√
N0, (2.13)

where for the new operators we have 〈b0〉 ≈ 〈b†0〉 ≈ 1. The physical motivation for this is to

5A similar effect due to finite temperature is known as ‘thermal depletion’ and will not be taken under
consideration in this chapter.
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consider the condensate and the excited atoms separately.6 Therefore, the new operators mix
the excitations of the system above the SF ground state. Keeping only terms to quadratic
order in the new operators, the Hamiltonian takes the form

H ≈ H0 +
√
N0(−ztb + Ubbn0 − µ)

(
b†0 + b0

)
+
∑
k

(εk − µ+ 2Ubbn0)b†kbk +
Ubbn0

2

∑
k

b†kb
†
−k + bkb−k,

H0 = (−ztb − µ)N0 +
Ubbn

2
0Ns

2
. (2.14)

For the approximation to describe the system around a stable equilibrium, we require that
the linear terms in b0 and b†0 vanish, [50]. This condition provides the relation between
the chemical potential and the condensate fraction as µ = −ztb + Ubbn0. The constant H0

shall soon become part of the ground state energy as a function of the condensate fraction,
and represents just a constant energy shift. Thus, the goal is to diagonalize the Bogoliubov
Hamiltonian

HBog =
∑
k

(ε̄k + Ubbn0)b†kbk +
Ubbn0

2

∑
k

b†kb
†
−k + bkb−k

=
1

2

∑
k

(
b†k, b−k

)( ε̄k + Ubbn0 Ubbn0

Ubbn0 ε̄k + Ubbn0

)(
bk
b†−k

)
− 1

2
(ε̄k + Ubbn0). (2.15)

Here we defined ε̄k = εk+ztb. This can be easily done with the methods of Appendix A, using
a pseudo-unitary7 transformation M defined by ~bk = Mk~ak such that M †HM is diagonal,

where (~bk)
t =

(
bk, b

†
−k

)
, and (~ak)

t =
(
ak, a

†
−k

)
. The matrix M represents a hyperbolic

rotation and is defined via

M =


√

1
2

(
ε̄k+Ubbn0

Ek
+ 1
) √

1
2

(
ε̄k+Ubbn0

Ek
− 1
)

√
1
2

(
ε̄k+Ubbn0

Ek
− 1
) √

1
2

(
ε̄k+Ubbn0

Ek
+ 1
)
 , (2.16)

where Ek =
√
ε̄2
k + 2Ubbn0ε̄k is the dispersion relation of the excitations (also known as the

Bogoliubov spectrum). The diagonal Hamiltonian takes the form

H = Egs +
∑
k

Eka
†
kak,

Egs = −Ubbn0Ns +
Ubbn

2
0Ns

2
+

1

2

∑
k

Ek − (ztb + Ubbn0), (2.17)

6Some authors use the approximation in the from b0 ≈
√
N0, replacing the operator by its macroscopically

occupied expectation value. We prefer the approximation (2.13), for it allows to fix the chemical potential by
setting the linear terms in b0 and b†0 to zero. Also, notice that in the TD limit the two variations coincide,
since the k = 0 mode does not contribute to the phase-space integrals, as it represents a set of measure zero.

7In doing the transformation, one must further require that the new operators also satisfy bosonic commu-
tation relations, which results in the pseudo-unitarity of M : MΣM = Σ, Σ = diag(1,−1).
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where we used that
∑

k εk = 0 by definition of the tight-binding dispersion. The operators

ak and a†k describe the excitations of the system, and the new ground state is defined by
ak|GS〉 = 0 for all independent modes k.

The only quantity left to determine, in order to completely solve the approximated su-
perfluid system, is the condensate fraction n0. We can do this from the number equation by
calculating the total particle density n = N/Ns within a unit cell:

n =
1

Ns
〈GS|N̂ |GS〉 =

1

Ns

∑
k

〈b†kbk〉 −→
N0

Ns
+

1

Ns

∑
k

〈b†kbk〉

= n0 +
1

2Ns

∑
k

〈~b†k1~bk − 1〉 = n0 +
1

2Ns

∑
k

〈~a†kM
†
k1Mk~ak − 1〉

= n0 +
1

2Ns

∑
k

(((
M †M

)(22)

k

)2

− 1

)
. (2.18)

Note that the matrix element M
(22)
k also depends on the condensate fraction n0. At unit

filling n = 1, and (2.18) provides a self-consistency relation to find n0. In the thermodynamic
limit, we have

1 = n0 +
1

2

∫
BZ

d3k

(2π)3

(
ε̄k + Ubbn0

Ek(n0)
− 1

)
. (2.19)

A numerical solution allows for a glimpse in the functional dependence of n0(tb, Ubb), as
shown in Fig. 2.3 . As expected, interactions do deplete the condensate.
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Figure 2.3: (color online): The SF fraction n0 as a function of the interaction strength Ubb.
A monotonic decrease in the condensate fraction n0 is observed with increasing interaction

strength.

Now that we have revised the most important features of the Bose-Hubbard model, we are
ready to embark on a study of their generalization in the presence of a staggered potential.
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2.2 The Bose-Hubbard Model with a Staggered Potential

In this section, we add a checker-board-type staggered potential to the Bose-Hubbard model.
We investigate the system for an induced CDW and the effects it has on the condensate.
Recently, Hen at. al [26] addressed a similar problem in the case of hardcore bosons. However,
due to the hardcore constraint, they were only able to observe a CDW at half-filling.

The main question of interest is how an alternating potential modifies the familiar physics,
derived in the previous sections. Since a staggered field will certainly reduce the particle
density on half of the lattice sites, while increasing it on the remaining half it is natural to
divide the entire lattice into two sublattices A and B, respectively. Hence, to be able to
make use of translational invariance, we have to double the unit cell or, equivalently, reduce
the Brillouin zone. As this procedure changes the band structure of the system, a possible
scenario is that the condensate fraction is shared between several momentum modes. Indeed,
as we will show shortly, this happens to be the case even for the free staggered Bose gas,
where the alternating potential makes it possible to occupy the modes ~k = 0 and ~k = ~π
simultaneously.

An interesting question in this context would be to quantify how much condensate is
contained in each mode, and how this ratio changes with the strength of the staggered field.
Intuitively, one would expect the ~π mode occupation to gradually increase when increasing
the alternating potential. Since all particles are condensed in the non-interacting model, this
results in a ‘depletion’ of the ~k = 0 mode. In the case of an infinite potential strength, on the
other hand, one expects all the particles to be forced to occupy one of the sublattices. We
shall soon show that in this case the two modes accommodate half of the total condensate
each.

After investigating the free case, we shall switch on weak interactions, and analyze the
modification of the physics caused by them. To this end, we calculate the induced change in
the MI-SF phase boundary. Further the Bogoliubov approximation is extended in a suitable
way to generalize the case without a staggered field. The corresponding number equation is
derived, and the shift of the particle density on each sublattice is determined.

2.2.1 Free Bosons in a Staggered Field

We start from the Hamiltonian for free bosons on a lattice at unit filling, and switch on an
additional staggered field:

H = −tb
∑
〈ij〉

(
b†ibj + h.c.

)
− µ

∑
i

ni + Ubf
∑
i

[
1− α (−1)i

]
ni. (2.20)

The alternating term has to be read as (−1)i = (−1)ix+iy+iz in d = 3. The staggering strength
is measured by a parameter α ∈ [0, 1], while the total sign of the potential is kept positive,
for reasons that will become clear in our subsequent discussion of the Bose-Fermi mixture.
At this moment, the picture one has to keep in mind is that in the BF mixture, treating
the density-density interspecies interaction within a self-consistent Hartree-Fock (or simply
MF) approximation induces to first order a background potential for the bosons, given by the
expectation value of the fermionic density. In the following, we solve this model exactly. This
is possible, as it describes free bosons.
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Again, to model a superfluid phase, it is advantageous to use a momentum-space descrip-
tion. The Hamiltonian (2.20) then takes the form

H =
∑
k∈BZ

(εk − µ+ Ubf ) b†kbk − αUbf
∑
k∈BZ

b†k+πbk. (2.21)

The kinetic energy is straightforward. The expression for the staggered term can be under-
stood by writing (−1)i = eiπ(ix+iy+iz). When performing the Fourier transform along each
coordinate direction separately, each momentum direction acquires a shift of π. Summing
over the lattice results in a δ-function of the momentum variables which, due to the shift
reads δk1,k2+π.8

To make progress, we need to reduce the Brillouin zone, defining new operators as follows

bk =

{
αk for k ∈ BZ′

βk±π for k /∈ BZ′
(2.22)

The ±-sign is used to flip one or several of the components of ~π simultaneously. The reduced
Brillouin zone is defined as the part of the BZ in which the tight-binding dispersion becomes
negative, formally given by BZ′ = {~k ∈ BZ : cos(kx) + cos(ky) + cos(kz) ≥ 0}. It is pictorially
shown in 3D in Fig.2.4.

The Hamiltonian in the new operators reads

H =
∑
k∈BZ′

(εk − µ+ Ubf )α†kαk + (−εk − µ+ Ubf )β†kβk − αUbf
∑
k∈BZ′

(
α†kβk + h.c.

)
=
∑
k∈BZ′

(
α†k, β

†
k

)( εk − µ+ Ubf −αUbf
−αUbf −εk − µ+ Ubf

)(
αk
βk

)
. (2.23)

Notice that in the reduced Brillouin zone BZ′ the dispersion εk ≤ 0 for all modes k. Diagonal-
izing the Hamiltonian is explained in detail in Appendix A. In this case, this should be done
with a unitary(!) transformation M free ∈ U(2), to preserve the bosonic commutator relations.
Using the short-hand notation (~αk)

t := (αk, βk), we define a matrix M free by ~αk = M free~dk,

such that
(
M free

)†
HM free = diagonal, given by

M free =

(
Afree Bfree

Bfree −Afree

)
, (2.24)

with

Afree
k =

√√√√√1

2

1− εk√
(αUbf )2 + ε2

k

, Bfree
k =

√√√√√1

2

1 +
εk√

(αUbf )2 + ε2
k

. (2.25)

The resulting Hamiltonian is diagonal in the operators ~d, and reads

H = (Ubf − µ)
Ns

2
+
∑
k∈BZ′

εk

(
d†1,kd1,k + d†2,kd2,k

)
, (2.26)

with εk = −
√

(αUbf )2 + ε2
k. The stability of the bosonic system requires the positivity of

the Hamiltonian for all modes k,9 which constrains the chemical potential to satisfy µ =

Ubf −
√

(αUbf )2 + (ztb)2.

8we shall drop the vector arrows from the momenta from now on, here π has to be read as ~π = (π, π, π).
9for an explanation of this statement, please consult Appendix A
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Figure 2.4: (color online): The reduced Brillouin zone of a simple cubic lattice has the shape
of a pipe junction. It is the integration domain of merely all the integrals in this thesis,

which are therefore calculated numerically (colours are used for aesthetic purposes only).

Having diagonalized the Hamiltonian, we can start discussing the physics of the system.
First, observe that there is a lowest energy state in the spectrum - c.f. Fig. 2.5. Since we are
dealing with free bosons, a BEC will form in the ~k = 0 state in the band of the d1,k operators.
Therefore, the ground state can be written as

|GS〉 =
1

N !

(
d†1,k=0

)N
|0〉. (2.27)

Notice that the energy of the condensate, −
√

(αUbf )2 + (ztb)2, is always higher than the cor-
responding value without the alternating potential, given by −ztb − αUbf . This is expected,
since the staggered potential induces a Charge Density Wave (CDW) which inevitably in-
creases the kinetic energy of the system, compared to the flat density profile at α = 0.

As a first check, let us calculate the expectation value of the particle number operator N̂
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Figure 2.5: (color online): Band structure in the presence of the staggered field: an energy
gap 2αUbf/ztb opens at the edge of the reduced Brillouin zone.

in the ground state, which gives the total number of particles in the condensate:

N0 = 〈GS|N̂ |GS〉 =
∑
k∈BZ

〈GS|b†kbk|GS〉 =
∑
k∈BZ′

〈GS|α†kαk + β†kβk|GS〉

=
∑
k∈BZ′

〈GS|~d†k
(
M free

)†
1M free~dk|GS〉 =

∑
k∈BZ′

〈GS|d†1,kd1,k + d†2,kd2,k|GS〉

=
∑
k∈BZ′

〈GS|d†1,kd1,k|GS〉 =
∑
k∈BZ′

Nδk,0 = N, (2.28)

where we used the unitarity of M free in the first equality on the second line. As expected,
all bosons are present in the ground state. The difference to the free case comes from the
fact that the dk operators are linear combinations of the operators bk and bk+π. Hence, a
condensate at ~k = 0 in the band of the d1 operators amounts to a linear superposition of states
with condensates at ~k = 0 and ~k = ~π, respectively. This proves the macroscopic population
of a second momentum mode, in contrast to the model without staggering.

A natural question to ask in this case is how much of the condensate can be found in the
~k = 0 and ~k = ~π states. This can be calculated straightforwardly from

nk=0 = 〈GS|n̂k=0|GS〉 = 〈GS|α†0α0|GS〉 = 〈GS|~α†0
(

1 0
0 0

)
~α0|GS〉

=
〈(
Afree

0 d†1,0 +Bfree
0 d†2,0

)(
Afree

0 d1,0 +Bfree
0 d2,0

)〉
=
(
Afree

0

)2
〈d†1,0d1,0〉 =

(
Afree

0

)2
N,

nk=π = 〈GS|n̂k=π|GS〉 = 〈GS|β†0β0|GS〉 = 〈GS|~β†0
(

0 0
0 1

)
~β0|GS〉

=
〈(
Bfree

0 d†1,0 −A
free
0 d†2,0

)(
Bfree

0 d1,0 −Afree
0 d2,0

)〉
=
(
Bfree

0

)2
〈d†1,0d1,0〉 =

(
Bfree

0

)2
N.

(2.29)
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From now, on we shall denote Afree
0 = Afree and Bfree

0 = Bfree. As expected, we have
(
Afree

)2
+(

Bfree
)2

= 1, which agrees with our previous calculation of the total particle number in the
ground state, and is equivalent to the unit filling condition. The parameters Afree and Bfree

represent the probability amplitude10 of finding a boson in the ~k = 0 and ~k = ~π condensates,
respectively. They depend on the two parameters of the model given by ztb and αUbf that
define the two relevant energy scales in the problem. The fractions are plotted in Figs. 2.6
and 2.7.
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Figure 2.6: (color online): The condensate
fractions at ~k = 0 (blue line) and ~k = ~π (red
line) as a function of the hopping parameter

ztb/αUbf .
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Figure 2.7: (color online): The condensate
fractions at ~k = 0 (blue line) and ~k = ~π (red
line) as a function of the staggering strength

αUbf/ztb.

Clearly, in the limit α→ 0, we find nk=0 −→ 1 and nk=π −→ 0, which reduces to the case
of free bosons in a lattice. The opposite limit of infinite potential strength αUbf →∞ yields
nk=0 ↘ 1

2 , and nk=π ↗ 1
2 , respectively. Therefore, for free bosons, the two condensates are

never equally occupied, and nk=0 > nk=π is always satisfied.
The last issue that we address in our analysis of the free model is how the bosonic on-site

density is modified due to the presence of the alternating potential. To this end, it is easiest
to calculate the total density at the site ~ri = 0:

n~ri=0 = 〈GS|n̂~ri=0|GS〉 =
1

Ns

∑
k,k′∈BZ

〈b†kbk′〉 =

=
1

Ns

∑
k,k′∈BZ′

〈~α†k

(
1 1
1 1

)
~αk′〉 =

1

Ns

∑
k,k′∈BZ′

〈~d†k
(
M free

)†( 1 1
1 1

)
M free~dk′〉

=
N

Ns

(
1 +

αUbf√
(αUbf )2 + (ztb)2

)
. (2.30)

The condition for unit filling is given by N = Ns, which gets rid of the prefactor in (2.30). As
we expected, the bosonic density at ~ri = 0 is enhanced, as the staggered potential lowers the
energy of the levels at this site. Furthermore, by translational invariance,11 this result holds

10we neglect the complex phase factor here
11with respect to the doubled unit cell
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for all the sites on sublattice A. It will be useful to analyze the deviation of the density from
the one at α = 0:

η0(Ubf , tb) =
αUbf√

(αUbf )2 + (ztb)2
. (2.31)

Clearly, we have η0 ∈ [0, 1] which must be the case at unit filling. If there is no alternating
potential imposed, we recover the familiar unit filling result η0 = 0. For infinite potential
strength, on the other hand, we find η0 = 1, and thus all the particles are in one of the
sublattices, while the other sublattice is completely empty. It is also interesting to note that
when the bosons are very fast, i.e. when ztb � αUbf , the effect of the staggered field is
diminished. The behaviour of η0(Ubf , tb) is shown in Figs. 2.8 and 2.9.
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Figure 2.8: (color online): The CDW
amplitude η0 as a function of the hopping

parameter ztb/αUbf .
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Figure 2.9: (color online): The CDW
amplitude η0 as a function of the hopping

parameter αUbf/ztb.

2.2.2 The Mott Insulator-Superfluid Transition in the Presence of a Stag-
gered Field

In this section, we are interested in finding the phase boundary of the MI-SF transition in
the presence of a staggered potential. Our results may be viewed as a generalization of the
discussion in Section 2.1.1. Of particular interest is the functional behaviour of Ubf on the
hopping parameter tb at unit filling. Before we apply the Effective Action Approach to first
order in the hopping element tb, we gain more insight into the physical state deep into the
MI phase with the alternating potential switched on.

Consider again the atomic limit Ubb/tb � 1. As mentioned earlier, if there were no hopping

at all, the ground state at unit filling would be given by the state |IN〉 =
∏
i b
†
i |0〉. We shall

refer to this state as the ideal insulator (IN) in the following. Turning on the nearest neighbour
hopping produces corrections to this, which can be understood within first order perturbation
theory. The ground state, on the other hand, acquires corrections of order t2b/Ubb due to a
particle occasionally hopping on top one of its neighbours, and back. As this can be done by
any particle with the same probability, quantum mechanics requires to sum the probability
amplitudes for all possible ways this might happen. Hence, a better approximation to the
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ground state is given by

|GS〉 = |IN〉+
tb
Ubb

∑
〈ij〉

bib
†
j |IN〉+O

((
tb
Ubb

)2
)

(2.32)

This state is given in terms of pictures in Fig. 2.10

Figure 2.10: The Mott insulator state: the highest weight in the superposition has the ideal
insulator (IN) state (on top). Below it, some of the first order corrections ∼ tb/Ubb are

shown.

Now, imagine we turn on the staggering αUbf . Clearly, this shifts the energy levels up
on every other site (which we shall refer to as sublattice B). Let us now split the first-order
correction to this state in two sums over the two sublattices A and B:∑

〈ij〉

bib
†
j |IN〉 =

∑
j∈A

bib
†
j |IN〉+

∑
j∈B

bib
†
j |IN〉 (2.33)

The states corresponding to the two sums on the r.h.s. are pictured in Fig. 2.11 for a 1d
system. Due to the alternating potential, the two contributions from the first order correction
in Eq. (2.33) will necessarily have different energy. According to our labelling, the states
corresponding to the summation over the B sublattice will be energetically less favourable.
An equivalent viewpoint would be to think of the chemical potential on the B sublattice to be
shifted as µB −→ µ − Ubf . Therefore, if any alternating potential is switched on, no matter
how weak, it would cause the dominant part of the corrections to the |IN〉 to be such that
the particles stack up on sublattice A. This process minimizes the total energy and leads
naturally to a charge density wave (CDW) in the insulating phase.

Let us now abandon the atomic limit and approach the phase transition line. We want to
apply the Cumulant Expansion method (cf. Appendix B) to the staggered system. To this
end, the Green’s function to zeroth order in the hopping amplitude tb needs to be calculated.
The crucial difference this time is that it will depend on the lattice site i, as the staggering
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(a) (b)

Figure 2.11: First order corrections to the ideal insulator in the presence of the staggered
potential: sublattice A (a), sublattice B (b). The staggered potential makes it less

favourable for a boson to hop to sublattice B. Therefore, the states from panel (a) are
energetically preferred to these in (b).
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order breaks translational symmetry.12 On the other hand, part of the symmetry is still

preserved, and so we only need to calculate G
(0)
A/B on the two sublattices A and B.

We choose α = 1 for simplicity, so that the external potential induces maximal staggering.
For the generalized interaction term we have fi(n) = [Ubf (1+(−1)i)−µ]n+ Ubb

2 n(n−1). The
Green’s function at zero frequency, and T = 0 is then given by

G
(0)
A (0) =

n+ 1

f0(n+ 1)− f0(n)
− n

f0(n)− f0(n− 1)
=

µ̃− Ubb
2

(µ̃+ Ubbn)2 −
(
Ubb
2

)2 ,

G
(0)
B (0) =

n+ 1

f1(n+ 1)− f1(n)
− n

f1(n)− f1(n− 1)
=

−µ− Ubb
(−µ+ Ubbn)(−µ− Ubb + Ubbn)

, (2.34)

with the shifted chemical potential µ̃ = 2Ubf − Ubb
2 − µ.

The effective potential takes the form

Γ[ψ] =
Nsψ

2

2

(
1

G
(0)
A (0)

+
1

G
(0)
B (0)

)
− ψ2ztbNs +O(ψ4). (2.35)

At this place we have done a further approximation: We assume that the effect of the staggered
density on the order parameter is negligible in the immediate vicinity of the transition line as
approached from within the SF phase. In principle, we would need to distinguish between the
values the order parameter takes on the sublattices A and B, as is discussed in Appendix B.
To argue that this does not play an important role, we start from the general case. There is
indeed a coupling of the form ψ2

Aψ
2
B, but it is of fourth order, and hence can be safely neglected

for ψ near the phase boundary. In the remaining terms, we write ψA = ψ+η and ψB = ψ−η,
where η is small compared to ψ. The leading contribution from this transformation results in

an additional term in the effective action which scales like
(

1
GA
− 1

GB

)
2ηψ ∼ Ubfηψ. Since

η � ψ, this term will not influence the nature of the phase transition in the immediate vicinity
of the critical line.

To find the phase boundary for a Landau second order transition, we need to set the
coefficient in front of the quadratic term to zero. This yields

2ztb
!

=
1

G
(0)
A (0)

+
1

G
(0)
B (0)

=
−2µ2 + 2µ(2n− 1)Ubb − (n− 3)nU2

bb

µ+ Ubb
−

n(n+ 1)U2
bb

µ+ Ubb − 2Ubf
+ 2Ubf . (2.36)

For Ubf = 0, this reduces to the result of Section 2.1.2. The condition for unit filling is

approximately satisfied with the choice of µ = Ubb
2 + Ubf , and n = 1. This yields

Ubf =
Ubb
2

√
6ztb − Ubb
2
3ztb − Ubb

. (2.37)

The phase boundary is shown in Fig. 2.12. Notice the non-analytic behaviour of the curve
at the intercepts with the two axes. For tb = 0, the value 1/2 is special, since increasing
the ratio Ubf/Ubb beyond it makes it energetically favourable for the bosons to form a CDW

12The procedure is explained to somewhat greater detail in Appendix B
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Figure 2.12: (color online): MI-SF phase boundary as a function of the hopping parameter

with a double occupancy on every other site. On the contrary, for Ubf/Ubb < 1/2, a uniform
density minimizes the energy of the system. For Ubf = 0, we recover the MI to SF transition
at Ubb/tb = 6z, which is closed to the previously calculated value of Ubb/tb = 5.83z. The
mismatch is due to the approximate value of the chemical potential used.

2.2.3 Induced Supersolidity and the Generalized Bogoliubov Approxima-
tion

Our next goal is to revisit and generalize the Bogoliubov approximation to the case of stag-
gered potential. We are interested in analyzing the quantum depletion of the two condensates
at ~k = 0 and ~k = ~π due to interactions. The latter also modify the amplitude of the induced
charge density wave. Hence, we believe that (at least) to first order, the physical properties
of a bosonic supersolid13 is correctly described by the subsequent analysis.

The starting point is the Bose-Hubbard Hamiltonian in a staggered external field:

H =
∑
k

(εk−µ+Ubf )b†kbk−αUbf
∑
k

b†k+πbk +
Ubb
2Ns

∑
k1,k2,k3,k4

b†k1b
†
k2
bk3bk4δk1+k2,k3+k4 . (2.38)

In the case of no staggered potential, the Bogoliubov prescription requires to separate the
~k = 0 mode, since its occupation is macroscopic in the weakly-interacting regime. The
motivation for this comes from the free model, which undergoes Bose-Einstein condensation
populating the corresponding state macroscopically.

The results of Chapter 2.2.1 suggest that we should look for the condensate at ~k = ~π as
well. As will be shown below, the correct way of doing this is the following:

bk −→ bk +

{
A
√
N0δk,0, k ∈ BZ′

B
√
N0δk±π,0, k ∈ BZ\BZ′.

(2.39)

13Since the state considered in this section does not display a spontaneously broken charge symmetry, we
shall avoid calling it a SS, and rather use the description ‘staggered superfluid’.
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To motivate this, recall that in the non-interacting case the condensate is in the ~k = 0
mode of the d1,k operators. Denoting by N0 the total condensate fraction, and applying the
Bogoliubov prescription yields

d1,k −→ d1,k +
√
N0δk,0. (2.40)

To understand what this means for the initial bosonic operators bk, we need to invert the
relation between the ~dk’s and the ~αk’s:

~αk =
(
M free
k

)−1
~dk −→

(
M free
k

)−1
(
~dk +

( √
N0

0

)
δk,0

)
= ~αk +

(
M free

0

)−1
( √

N0

0

)
δk,0

αk −→ αk +
(
M free

0

)−1

11

√
N0δk,0 = αk +Afree

√
N0δk,0

βk −→ βk +
(
M free

0

)−1

21

√
N0δk,0 = βk +Bfree

√
N0δk,0. (2.41)

Recalling again the relation between the operators αk, βk and bk given in (2.22), we arrive
at (2.39). As before, A denotes the probability amplitude of finding a bosons in the ~k = 0
condensate, while B - the probability of finding it in the ~k = ~π condensate. The superindex
‘free’ in these quantities refers to the free case, to distinguish them from the interacting
one, as the interactions are expected to cause modifications. Again, they fulfil the relation
A2+B2 = 1, as they measure fractions of the superfluid density. In the case of no interactions,
we shall find A = 1 and B = 0, so that we recover the original Bogoliubov approximation.

Applying this procedure results in the following Hamiltonian:

• To 0th order in the operators b0 and bπ we have14

H0 = N0

[
−ztb(A2 −B2)− µ+ Ubf − αUbf2AB +

Ubb
2
n2

0(A4 + 6A2B2 +B4)

]
.

(2.42)

• To 1st order in the operators b0 and bπ we find√
N0

[
(−ztb − µ+ Ubf )A− αUbfB + n0UbbA(1 + 2B2)

]
(b†0 + b0)

+
√
N0

[
(ztb − µ+ Ubf )B − αUbfA+ n0UbbB(1 + 2A2)

]
(b†π + bπ). (2.43)

• We stop with the 2nd order:∑
k∈BZ

ξkb
†
kbk + h

∑
k∈BZ

b†k+πbk +
U

2

∑
k∈BZ

(
b†kb
†
−k + h.c.

)
+
V

2

∑
k∈BZ

(
b†k+πb

†
−k + h.c.

)
.

(2.44)

where we used the abbreviations U = Ubbn0(A2 + B2) = Ubbn0, V = Ubbn02AB, ξk =
εk + Ubf − µ+ 2U , and h = 2V − αUbf .

For the approximate theory we require that the field fluctuations around the local extrema
of the action are minimized, which is equivalent to setting the coefficients in front of the linear
terms above to zero. Doing so, we obtain the following set of equations

(−ztb − µ+ Ubf )A− αUbfB + n0UbbA(1 + 2B2)
!

= 0,

(ztb − µ+ Ubf )B − αUbfA+ n0UbbB(1 + 2A2)
!

= 0, (2.45)

14In the decoupling of the interaction term momentum conservation has to be taken into account.
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with the nonlinear constraint A2 + B2 = 1.15 We choose to view these coupled equations as
equations for µ(n0) and A(n0). The total average condensate fraction per site n0 will then be
determined self-consistently from the filling condition n = 1. by evaluating the total density
n within the double unit cell (to take into account the staggering effects). Figs. 2.13 and 2.14
show the chemical potential µ as a function of Ubb and Ubf .
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Figure 2.13: (color online): Chemical
potential µ as a function of the interaction
Ubb/ztb for fixed values of αUbf = 0 (blue), 1

(green), 2 (red), 5 (cyan), 8 (purple), 10
(yellow) and 20 (black line).
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Figure 2.14: (color online): Chemical
potential µ as a function of the interaction
αUbf/ztb for fixed values of Ubb = 0 (blue), 1

(green), 5 (red), 8 (cyan), 10 (purple), 15
(yellow) and 20 (black line).

The exact modification of the two condensate fractions due to interactions is shown is
Figs. 2.15 and 2.16 as a function of Ubf and Ubb. Notice that increasing the repulsive inter-

actions effectively shifts part of the ~k = ~π condensate back to the ~k = 0 one. This acts as a
counter mechanism to an increase of the potential strength, which favours the opposite effect,
this increasing the ground state energy.

Before we continue, we do two quick checks: for Ubb = 0, we recover the well-known
expressions µ = Ubf −

√
(αUbf )2 + (ztb)2 and A = Afree, calculated in Section 2.2.1. On the

other hand, setting Ubf = 0 results in A = 1 and B = 0. Hence, the second equation is
trivially satisfied, while from the first one we find the chemical potential in the Bogoliubov
approximation µ = −ztb + n0Ubb from Section 2.1.3.

Solving Eqs. (2.45) in a closed form is possible in general, though the results are not
particularly illuminating. The reason for this lies in the nonlinear constraint given above. It
leads to a quadratic equation in the case of Ubb = 0 which is still nicely solvable. For finite
Ubb, a higher-order non-linearity in the condensate amplitudes A and B is introduced, and
solving the system amounts to finding the roots of a complicated polynomial. Therefore, we
restrict our analysis to two perturbative regimes:

If we consider the limit of small staggering, we expect from the previous analysis thatA ≈ 1
and B ≈ 0, i.e. very few of the condensed atoms will occupy the ~k = ~π-condensate. Then we
can make the replacement n0UbbA(1 + 2B2) −→ n0UbbA and n0UbbB(1 + 2A2) −→ 3n0UbbB.

15This constraint can be conveniently incorporated by writing A = cos θ, but we shall not need this here.
Nevertheless, the reader should keep in mind the A and B are not independent.
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Figure 2.15: (color online): ~k = 0 (solid) and
~k = ~π (dashed) condensate fractions as a

function of the interaction Ubb/ztb for fixed
values of αUbf = 0 (blue), 1 (green), 2 (red), 5
(cyan), 8 (purple), 10 (yellow) and 20 (black

line).
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Figure 2.16: (color online): ~k = 0 (solid) and
~k = ~π (dashed) condensate fractions as a

function of the interaction αUbf/ztb for fixed
values of Ubb = 0 (blue), 1 (green), 5 (red), 8
(cyan), 10 (purple), 15 (yellow) and 20 (black

line).

In this limit, we find

µ ≈ 2n0Ubb + Ubf −
√

(αUbf )2 + (n0Ubb + ztb)2,

A(Ubb, αUbf ) ≈

√√√√1

2

(
1 +

ztb + n0Ubb√
(αUbf )2 + (ztb + n0Ubb)2

)
. (2.46)

The leading order contribution to the ~k = 0-condensate density reads

A2(Ubb, αUbf )
Ubf/ztb→0
∼ 1−

(
αUbf

n0Ubb + ztb

)2

. (2.47)

It follows that switching on the interactions, besides reducing the total condensate density
n0, we also find that populating the ~k = ~π-mode becomes harder with increasing αUbf . The
relevant scale for the process is set by 1 + n0Ubb/ztb.

To understand the limit of large Ubf , it will be useful to look more carefully at the processes
described by the 2nd order terms, shown pictorially in Fig.2.17 as they enter the Bogoliubov
Hamiltonian. The first thing to note is that the amplitude of the staggered potential h is
modified by the interactions. In particular, it will be diminished when we turn on Ubb starting
from zero.16 Since this is a process that couples the two condensates resonantly, we see that

16The transformation α → −α leaves the physics invariant. Traced back to the description of the free

staggered model, this transformation results in a sign flip Afree/to − Afree in M free, and hence h
α→−α→ h

remains invariant.
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Figure 2.17: Pictorial representation of the relevant scattering processes within the
generalized Bogoliubov approximation: second order processes of Eq. (2.44).

for small Ubb or large Ubf , the amplitudes of the ~k = 0-condensate is modified according to

A(Ubb, αUbf ) ≈ Afree(0, αUbf − 2AfreeBfreeUbbn0)

=

√√√√√1

2

1 +
ztb√

(αUbf − η0Ubbn0)2 + (ztb)2

, (2.48)

where we used η0 = 2AfreeBfree. Hence, this part of the interaction is responsible for renormal-
izing the staggering amplitude only. It might be tempting to conclude that we can induce a
pure ~k = 0 condensate in this way at a finite value of Ubf . This is not the case, as the approx-
imation necessarily breaks down in the crossover regime αUbf ≈ η0Ubbn0. Nevertheless, we

clearly see again that turning on weak interactions favours populating the ~k = 0 condensate
at the cost of a simultaneous depletion of the ~k = ~π mode even for large staggering strengths.
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The chemical potential in this limit reads

µ ≈ −ztb + Ubf − αUbf
B

A
+ n0Ubb(1 + 2B2). (2.49)

It is also interesting to give the asymptotic behaviour of the ~k = 0 fraction in the limit
Ubf/ztb � 1:

A2(Ubb, αUbf )
Ubf/ztb→∞∼ 1

2

(
1 +

ztb
αUbf

+
ztbn0Ubb
(αUbf )2

)
(2.50)

We see that the interactions induce a sub-leading correction to the decay rate of the population
of the ~k = 0 condensate for large Ubf .

In the following, we briefly have a look at the depletion terms which result from the de-
coupling of the quartic interaction in the Bogoliubov approximation. The depletion processes
described by the b†kb

†
−k terms couple equally strongly to particles in both condensates, with

an interaction strength given by Ubb/2. Note that these processes tend to deplete them ac-
cording to their populations. This follows from the presence of the factors A2n0 and B2n0 in
the amplitude U , which arise from the Bogoliubov-type decoupling. Finally, events coming
from b†k+πb

†
−k describe scattering of atoms belonging to different condensates which leads to

further depletion. It is important to note that these processes are strongly suppressed in the
standard version of the approximation, as they are not resonant. On the contrary, they are
needed here. It is through the staggered potential that they become resonant, and thus have
to be taken into account. Furthermore, they are completely symmetric, and hence they also
couple equally strong.

Were it not for the b†k+πb
†
−k terms, the total average depleted fraction (and hence also the

total condensate fraction) in the presence of the alternating potential would be the same as
for αUbf = 0 in the weakly interacting limit. This comes as no surprise, as the staggering
potential merely shifts the density profile, inducing a CDW. Averaged over the unit cell, this
effect cancels. However, due to this additional depletion, we now have

n0(Ubb, Ubf ) 6= n0(Ubb, 0), ndep(Ubb, Ubf ) 6= ndep(Ubb, 0) (2.51)

in general, i.e. both the total average density fraction n0, and the total average depleted
fraction ndep are dependent on the staggering strength Ubf , as are the corresponding on-site
quantities n0(~ri) and ndep(~ri). The latter follows from a perturbative argument, starting from
the staggered non-interacting case and the expression (2.31) for η0.

The next step is to reduce the Brillouin zone. The above quadratic terms in 2nd-order
approximation transform according to∑

k∈BZ

εkb
†
kbk =

∑
k∈BZ′

εk

(
α†kαk − β

†
kβk

)
∑
k∈BZ

b†k+πbk =
∑
k∈BZ′

(
α†kβk + h.c.

)
∑
k∈BZ

b†kb
†
−k =

∑
k∈BZ′

(
α†kα

†
−k + β†kβ

†
−k

)
∑
k∈BZ

b†k+πb
†
−k = 2

∑
k∈BZ′

α†kβ
†
−k (2.52)
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We shall keep the chemical potential in the equations, since we only give approximate expres-

sions for it. At this point, it is advantageous to define ~αk =
(
αk, βkα

†
−k, β

†
−k

)t
, so we finally

arrive at the expression for the quadratic Hamiltonian within the generalized Bogoliubov
approximation

H = H0 −
1

2

∑
k∈BZ′

2µ̃+

+
1

2

∑
k∈BZ′

(
α†k, β

†
k, α−k, β−k

)
εk − µ̃ h U V
h −εk − µ̃ V U
U V εk − µ̃ h
V U h −εk − µ̃




αk
βk
α†−k
β†−k


(2.53)

with H0 the 0th-order contribution defined in Eq. (2.42), and µ̃ = µ− Ubf − 2U .

Diagonalizing the Hamiltonian is possible with the methods from Appendix A. First, we

define new operators via ~γk = M~αk, where ~γ =
(
γ1,k, γ2,k, γ

†
1,−k, γ

†
2,−k

)t
. Denoting the new

bands by E
(1/2)
k , we can write

H = Egs +
∑
k∈BZ′

E
(1)
k γ†1,kγ1,k + E

(2)
k γ†2,kγ2,k,

Egs = H0 −
1

2
Nsµ̃+

1

2

∑
k∈BZ′

(E
(1)
k + E

(2)
k ). (2.54)

The new bands are given by

E
(1/2)
k =

√
h2 − U2 − V 2 + ε2

k + µ̃2 ± 2

√
(hµ̃+ UV )2 + (µ̃2 − V 2) ε2

k . (2.55)

The requirement for the positivity of H translates to the following relation between µ and A:

µ = Ubf + Ubbn0 −
√

(Ubbn02AB − αUbf )2 + (ztb)2. (2.56)

This equation can substitute for one of the equations in the system (2.45). The other one
then determines the dependence of the amplitude A on the model parameters. It does not
have a nice closed form and shall not be given here.

The two bands are plotted is Figs. 2.18 and 2.19. As expected, the two limiting cases
Ubb → 0 and Ubf → 0 reproduce the already known band structure. The effect of the
staggered potential is most pronounced at the edge of the reduced Brillouin zone where a gap
opens. On the other hand, interactions make the Bose condensate a superfluid, which can be
seen by the linear behaviour of the lower band about the origin.

We shall now continue to compute the average depleted fraction, and the amplitude of the
bosonic charge density wave η. We follow the same methods, as in our previous discussion in
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Figure 2.18: (color online): Band structure
for Ubf/tb = 5 and the values of Ubb = 0

(blue), 5 (red), 10 (cyan), and 20 (yellow).
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Figure 2.19: (color online): Band structure
for Ubb/tb = 5 for the values of αUbf = 2

(green), 5 (red) and 10 (cyan).

Chapter 2.1.3, and proceed to calculate the total density at ~ri = 0 first:

n(~ri = 0) =
1

Ns

∑
k1,k2∈BZ

〈GS|b†k1bk2 |GS〉 =
1

Ns

∑
k1,k2∈BZ′

〈α†k1αk2 + β†k1βk2 + α†k1βk2 + h.c.〉

=
1

2Ns

∑
k1,k2∈BZ′


〈~α†k1


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1


︸ ︷︷ ︸

=:P

~αk2〉 − 2δk1,k2


=

1

2Ns

∑
k1,k2∈BZ′

(
〈~α†k1P~αk2〉 − 2δk1,k2

)
(2.57)

Next, we perform the Bogoliubov approximation according to Eq. (2.22):

n(~ri = 0) −→ 1

2Ns

N0 (A,B,A,B)P


A
B
A
B

+
∑
k∈BZ′

〈~γ†kM †PM︸ ︷︷ ︸
=:P̃

~γk〉 − 2δk1,k2




=
N0

Ns
(A+B)2 +

1

2Ns

∑
k∈BZ′

(P̃ 33
k + P̃ 44

k − 2). (2.58)

At unit filling Ns = N0, and noticing that A2 +B2 = 1, the expression simplifies to

n(~ri = 0) = n0(1 + 2AB) +
1

2Ns

∑
k∈BZ′

(P̃ 33
k + P̃ 44

k − 2). (2.59)

As before, we explicitly impose the filling condition. We can thus identify the first term in
(2.59) as the condensate fraction on sublattice A, while the second term provides us with
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the expression for the depleted density (again on sublattice A). Since we know there is also
an induced CDW present, the above relation provides us with the modification of η0 due to
interactions:

η := n0(1 + 2AB) +
1

2Ns

∑
k∈BZ′

(P̃ 33
k + P̃ 44

k − 2)− 1. (2.60)

A quick check for Ubb = 0 yields n0 = 1, and ndep = 0. Then we recover the familiar relation
η0 = 2AfreeBfree. The exact numerical solution to Eq. (2.60) is shown in Figs. 2.20 and 2.21
for different values of Ubf and Ubb. We observe that the CDW amplitude is reduced with
increasing interaction strength. While it rises monotonically all the way from 0 to 1 as a
function of αUbf/tb, the decrease rate a s function of the interaction Ubb/tb is much weaker.
Furthermore, the curvature of η as a function of Ubb/ztb changes from positive to negative
beyond a critical value of αUbf (c.f. Fig. 2.20).
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Figure 2.20: (color online): CDW amplitude
in the weakly interacting limit as a function
of the interaction Ubb/ztb for fixed values of
αUbf = 0 (blue), 1 (green), 2 (red), 5 (cyan),
8 (purple), 10 (yellow) and 20 (black line).
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Figure 2.21: (color online): CDW amplitude
in the weakly interacting limit as a function

of the interaction αUbf/ztb for fixed values of
Ubb = 0 (blue), 1 (green), 5 (red), 8 (cyan), 10

(purple), 15 (yellow) and 20 (black line).

We are not done yet, as we are missing the expression for the total average condensate
density n0. In order to obtain it, we need to calculate the local density profile at sublattice
B. This is done straightforwardly as

n(~ri = ~ex) =
1

Ns

∑
k1,k2∈BZ′

ei(k1−k2)〈~α†k1αk2 + β†k1βk2 − α
†
k1
βk2 − h.c.〉

−→ 1

2Ns

N0 (A,B,A,B)R


A
B
A
B

+
∑
k∈BZ′

〈~γ†kM †RM︸ ︷︷ ︸
=:R̃

~γk〉 − 2δk1,k2




=
N0

Ns
(A−B)2 +

1

2Ns

∑
k∈BZ′

(R̃33
k + R̃44

k − 2), (2.61)
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where the matrix R is given by

R =


1 −1 0 0
−1 1 0 0

0 0 1 −1
0 0 −1 1

 . (2.62)

The total average density then reads

n = n0 +
1

4

∑
k∈BZ′

(R̃33
k + R̃44

k + P̃ 33
k + P̃ 44

k − 4)

= n0 +
1

4

∑
k∈BZ′

[(R̃+ P̃ )33
k + (R̃+ P̃ )44

k − 4]

= n0 +
1

2

∑
k∈BZ′

[(M †M)33
k + (M †M)44

k − 2]. (2.63)

This is the generalized version of Eq. (2.18). Recalling that we are interested in a system at
unit filling, we finally arrive at the number equation

1 = n0 +
1

2

∑
k∈BZ′

[(M †M)33
k + (M †M)44

k − 2]. (2.64)

Notice first, that in the case Ubf = 0, we indeed recover (2.18) exactly. Moreover, since the
matrix M depends on the modified amplitudes A and B, which are already known to the
desired accuracy, the above relation provides again a self-consistency relation for the average
total condensate number n0 in the presence of the staggered potential. Solving this equation,
we can substitute in Eq. (2.60) to find the modified CDW amplitude η. Figs. 2.22 and 2.23
show the behaviour of n0 as a function of Ubb and Ubf .

These plots confirm our previous analysis that the role of interactions is to deplete the
~k = ~π condensate. Observe that both the interactions and the staggering strength deplete
the condensate fraction. Hence, these effects inevitably increase the ground state energy of
the system.

As a final remark, let us mention that the self-consistent equation for the total condensate
fraction n0 can also be obtained from a minimization of the free energy Ω w.r.t. µ using the
thermodynamic relation n = − 1

Ns
∂µΩ. In the resulting equation, one should substitute the

values for µ and A from Eq. (2.45) only after the minimization is complete. Alternatively,
from the form of the Bose-Hubbard Hamiltonian in a staggered potential, one sees that the
staggered strength αUbf and the CDW amplitude η are also conjugate variables. Hence, it is
possible to determine η from the thermodynamic relation η = − 1

Ns
∂(αUbf )Ω. In most practical

cases, these relations are much easier to obtain, because of the computationally unhandy form
of the transformation matrix M .

2.3 Conclusion

In this chapter, we revisited the physics of the Bose-Hubbard model, including Bose-Einstein
condensation in lattice systems and superfluidity. We derived the MF phase boundary be-
tween the Mott insulator state within second-order perturbation theory, and reviewed the
Bogoliubov approximation to describe the deep SF regime.
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Figure 2.22: (color online): Total condensate
fraction n0 in the weakly interacting limit as
a function of the interaction Ubb/ztb for fixed
values of αUbf = 0 (blue), 1 (green), 2 (red), 5
(cyan), 8 (purple), 10 (yellow) and 20 (black

line).
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Figure 2.23: (color online): Total condensate
fraction n0 in the weakly interacting limit as

a function of the interaction αUbf/ztb for
fixed values of Ubb = 0 (blue), 1 (green), 5

(red), 8 (cyan), 10 (purple), 15 (yellow) and
20 (black line).

The BHM was then investigated in the presence of a staggered potential. Starting from
free staggered bosons, we found that in terms of the initial operators of the model b and
b†, a second mode at ~k = ~π becomes macroscopically occupied, besides the expected ~k = 0
condensation. This effect is solely due to the reduced translational symmetry of the lattice
model. The condensate fractions in the two modes were then calculated exactly. We found
that increasing the staggering strength shifts more bosons into the ~k = ~π condensate, but
equality of the two fractions is only achieved at infinite potential strengths. Furthermore,
analytical expressions were obtained for the CDW amplitude as a function of the potential
strength and the hopping amplitude. As expected, the former increases the CDW, while the
latter leads to a reduction in the amplitude.

We proceeded with the correction to the MI-SF transition which was obtained with the
help of the Cumulant Expansion Method. It allows to efficiently incorporate the remaining
reduced translational symmetry of the problem, using a Green’s functions approach equiv-
alent to standard MF, but easily generalizable beyond it. The phase boundary is given by
Eq. (2.2.2).

Finally, we generalized the Bogoliubov approximation to incorporate the effects of the
staggered field in the deep SF regime. To this end, we proved a theorem of linear algebra
(cf. Appendix A) which extends the concept of Bogoliubov transformations to higher matrix
dimensions and allows to diagonalize any quadratic Hamiltonian consisting of more than one
bosonic species. We found that interactions shift parts of the ~k = ~π superfluid into the ~k = 0
one via scattering of condensed bosons. Approximate expressions have been given for the
chemical potential and the occupation of the two superfluid fractions, too. The staggering
field was found to open up a gap at the edge of the reduce Brillouin zone, reminiscent of
the free model discussed earlier. The interactions effectively linearize the dispersion relation
in the centre of the Brillouin zone, thus rendering the Bose condensate a superfluid. Last,
we remark that increasing either one of the potential or the interaction strength leads to a
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further depletion of the total condensate fraction.



Chapter 3

The Fermi Hubbard Model

The Fermi Hubbard Model (FHM) was initially proposed by Anderson to describe strongly
correlated electrons in atomic lattices. Most of the attention of the condensed matter commu-
nity is focused on two dimensions, where it is believed that the model is capable of explaining
high-Tc superconductivity. Instead, here we provide a mean-field-based discussion of the
ground state properties of the 3D Hubbard model with particular emphasis on the most
symmetric case of half-filling.

The model describes fermions of spin σ =↑, ↓ on a lattice. Each fermion can hop to the
nearest-neighbour sites, gaining an energy tf . When two fermions of different spin happen to
be on the same lattice site, one needs to provide the energy Uff . Since we are interested in
low temperatures, fermions can only interact in the s-wave channel due to the Pauli Exclusion
Principle. Last, the lattice filling is controlled by the chemical potential µ.

The Hamiltonian for this model is given by

H = −tf
∑
〈ij〉,σ

(
c†iσcjσ + h.c.

)
− µ

∑
i

mi + Uff
∑
i

mi↑mi↓, (3.1)

where the c-operators satisfy fermionic commutation relations: {ciσ, c†jσ′} = δσ,σ′δij . The

number operator is given by mi = mi↑ + mi↓ with miσ = c†iσciσ. Half-filling is imposed
by the condition 〈mi〉 = 1, which is equivalent to µ = EF = 0. We shall shortly show
that the phase diagram of the model for a repulsive system Uff > 0 can be derived using a
symmetry transformation from that of attractive interactions Uff < 0. Therefore, we shall
focus on the attractive side throughout the entire thesis. It is noteworthy that despite its
obvious simplicity, the model is not exactly solvable in 3D. This poses considerable challenge
on understanding the physics behind it. To circumvent this formidable problem, different
approximation schemes such as mean-field have been introduced.

An intuitive understanding of the physics can be gained by considering a lattice of two
sites only, for which the model is exactly solvable. The interested reader is referred to [58].

We open the discussion by describing the phases of Superfluidity/Superconductivity (SF)
and Charge Density Wave (CDW) in fermionic systems. Next, we examine the rich symmetries
the FHM exhibits, and discuss their profound meaning for the phase diagram. Further, we
review the most significant results of the BCS-BEC crossover. The main result of this chapter
is the development of a self-consistent double mean-field description of the CDW and SF
phases of the FHM, along the lines of a previous general MF discussion, [15, 43]. This allows
to look for a supersolid state without overcounting the interaction energy. We shall conclude
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the discussion by switching on an alternating potential, as was done previously in the case of
bosons. Last, we briefly examine the FHM away from half-filling, including nearest-neighbour
(nn) interactions, and discuss the consequences for the phase diagram.

3.1 BCS theory of Superconductivity

The Bardeen-Schrieffer-Cooper (BCS) theory was introduced in 1957, [5], as the first micro-
scopic theory of superconductivity. Ever since, it has been proved experimentally numerous
times. Recently, superfluidity of fermions has also been observed using cold atoms in optical
lattices, as mentioned in Chapter 1.

The underlying idea behind this theory is that fermions of opposite spin and momenta can
form pairs (so-called Cooper pairs) in the vicinity of the Fermi surface in the case of attractive
interactions, no matter how weak. These pairs can be effectively viewed as spinless bosons
which condense and become superfluid (superconducting). Strange as it might seem, this new
ground state consisting of Cooper pairs has a lower energy than the Fermi sea, and is hence
preferred. A pictorial representation of the SF phase is given in Fig. 3.1. In the literature,
this phenomenon is known as the (s-wave) pairing instability in fermionic systems. It must
be mentioned that superconductivity is a pure many-body (or collective) phenomenon which
does not occur in few-particle systems, where the notion of the Fermi sea is not well-defined.

Figure 3.1: Pictorial representation of the SF state: a spin up (green) and a spin down (red)
fermion pair together and delocalize (grey) over the entire lattice.

Since we want to describe pairing in momentum space, it is advantageous to cast the
Hamiltonian (3.1) at half-filling in the form

HBCS =
∑
kσ

εkc
†
kσckσ +

Uff
Ns

∑
k,k′,q

c†k+q↑c
†
−k↓c−k′↓ck′+q↑. (3.2)

The interaction term obeys momentum conservation. This particular way of assigning the
momenta k, k′ and q defines the so-called Cooper channel, depicted in Fig. 3.2.

To make progress, we need a way to cast the interaction part in the BCS-Hamiltonian (3.2)
in a term quadratic in the operators c and c†, since quadratic theories are exactly solvable.
This is done most easily in a MF description, whose essence was explained in Section 2.1.1.
To this end, we define the gap function ∆q by

∆q =
Uff
Ns

∑
k∈BZ

〈c†k+q↑c
†
−k↓〉. (3.3)
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Figure 3.2: The Cooper channel for interacting fermions of opposite spin.

From the point of view of the theory of Phase Transitions and Critical Phenomena, this
quantity defines the SF order parameter. Its physical meaning will become clear only in
the very end of this section. It represents half the energy needed in order to break a pair of
fermions. In general, the gap is a function of the quasi-momentum q. If expanded into the basis
with respect to the point group of the underlying lattice, the different components correspond
to s-, p-, d-wave pairing, etc. The isotropic s-wave pairing is then defined by the constant term
∆0 in this generalized Fourier expansion. In many physical systems this is the dominating
pairing process. However, the other types, also known as exotic (or unconventional) pairing,
may also be taken into account.

In this chapter, we restrict our discussion to s-wave pairing only. Effects beyond this are
reviewed later on in Chapter 5 in the context of the Bose-Fermi mixture. The mean-field
decoupling takes the form

Uff
Ns

∑
k,k′,q

c†k↑c
†
−k↓c−k↓ck↑ ≈ ∆0

∑
k

c−k′↓ck′+q↑ + ∆∗0
∑
k

c†k+q↑c
†
−k↓ −

Ns

Uff
|∆0|2. (3.4)

In general, ∆0 takes values in the complex plane. We will do a further approximation, treating
it as a real number. This is motivated by the fact that only the absolute value |∆0| enters the
equations determining the phase boundary. The Hamiltonian takes the following quadratic
form within the MF approximation

H ≈− N0

Uff
|∆0|2 +

∑
k∈BZ

εkc
†
kσckσ + ∆0

(
c−k↓ck↑ + c†k↑c

†
−k↓

)
=− N0

Uff
|∆0|2 +

∑
k∈BZ

εk +
∑
k∈BZ

(
c†k↑, c−k,↓

)( εk ∆0

∆0 −εk

)(
ck↑
c†−k↓

)
. (3.5)

Due to the form of the tight-binding dispersion, we have
∑

k∈BZ εk = 0, and hence the second
term vanishes identically. The Hamiltonian can be diagonalized by a unitary transformation
M given by

M =


√

1
2

(
1 + εk√

ε2k+|∆0|2

)
−

√
1
2

(
1− εk√

ε2k+|∆0|2

)
√

1
2

(
1− εk√

ε2k+|∆0|2

) √
1
2

(
1 + εk√

ε2k+|∆0|2

)
 . (3.6)
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Defining new operators ~ak = M~ck with ~ck = (ck↑c
†
−k↓)

t, we arrive at

H = Egs +
∑

k∈BZ,σ

Eka
†
kσakσ,

Egs = −
∑
k∈BZ

Ek −
N0

Uff
|∆0|2. (3.7)

The new operators ~ak are designed to describe the excitations of the system above the ground

state with energy Egs.
1 Their dispersion is given by Ek =

√
ε2
k + |∆0|2. It is gapped, and the

gap ∆0 gives half the energy necessary to break an s-wave pair. The dispersion is plotted in
Fig. 3.3.
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Figure 3.3: (color online): Dispersion relation of the Cooper pairs for the simple cubic
lattice (z = 6), and values of the gap ∆0/ztf = 0 (blue), 0.5 (green), 1.0 (red), 2.0 (cyan), 5

(purple).

Having diagonalized the MF Hamiltonian, we proceed to fix the value of the gap function.
This can be done in two different but equivalent ways: one can either minimize Egs w.r.t. ∆0,
or determine it self-consistently. Here, we follow the second route:

∆0 =
Uff
Ns

∑
k∈BZ

〈c†k↑c
†
−k↓〉 =

Uff
Ns

∑
k∈BZ

〈~c†k

(
0 1
0 0

)
~ck〉

=
Uff
Ns

∑
k∈BZ

〈~a†kM
†HM~ck〉 =

Uff
Ns

∑
k∈BZ

(M †HM)
(22)
k . (3.8)

This way, we obtain the celebrated gap equation [5]

∆0 = −
Uff
2Ns

∑
k∈BZ

∆0√
ε2
k + |∆0|2

. (3.9)

1 See the discussion in Appendix A for a better explanation of this fact.
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The first thing to notice is that the above equation has a solution only for Uff < 0. Therefore,
any attractive interaction, no matter how small, changes the ground state of the system,
inducing pairing between the electrons.

A quick inspection of (3.9) shows that ∆0 = 0 is always a solution. This corresponds to
the normal phase of the system. In general, the solution to the above equation is not known.
One can calculate it approximately for weak interactions with the methods of Section 5.5. It
reads

∆0 ≈ const× e
− 1
N (0)Uff , (3.10)

where N (0) is the density of states at the Fermi surface. We note that this behaviour is
sensitive to the exact form of the density of states assumed which, in turn, depends strongly
on the lattice dispersion relation. One immediately sees the non-analytic behaviour as a
function of N (0)Uff . Clearly, such a result cannot be obtained within perturbation theory.
This comes to no surprise, as MF is equivalent to a self-consistent Hartree-Fock approximation
which sums up an infinite number of Feynman diagrams. The full solution is plotted in
Fig. 3.4.
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Figure 3.4: (color online): Energy gap ∆0/tf as a function of the fermion-fermion
interaction Uff/tf for a simple cubic lattice (z = 6).

The linear behaviour for large values of Uff/tf can be obtained from a strong coupling

expansion [30], and is given by |∆0|/tf =
(
|Uff |
2tf

+
6tf
|Uff |

)√
m(m− 2). The slope of 1/2 agrees

precisely with the numerical plot above. Last, we remark that BCS theory describes correctly
the ground state of the FHM for interactions |Uff/tf . 5 (c.f. the discussion on the BCS-BEC
crossover in Section 3.4)

3.2 Charge Density Waves

In this Section, we consider another instability of fermionic systems. At half-filling the Fermi
surface exhibits perfect nesting, when translated by the vector ~π = (π, π, π) in momentum
space. This makes it possible for a charge density wave (CDW) to form. This state is easily
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pictured in the case of tf = 0, where two fermions of opposite spin occupy every second site
of the lattice establishing what we shall later refer to as diagonal long-range order (DLRO).2

Such a ground state is depicted in Fig. 3.5. This phase is also gapped like the SF, since
one needs a minimum energy to overcome the attractive interaction and put a fermion to a
neighbouring site. In fact, both phases share a lot of common features, as will become clear
from the following discussion.

Figure 3.5: Pictorial representation of the CDW state for tf = 0: a spin up (green) and a
spin down (red) fermion stack up on top of each other leaving every other site empty. The

ground state is doubly degenerate in 1d.

Since the spin degree of freedom is not essential to the calculations, we omit the spin
index. Keep in mind, however, that it is the spin degree of freedom that enables two fermions
to occupy the same lattice site at low energies, without violating the Pauli Principle. This
time, the interaction is mediated through the Density channel, given in Fig. 3.6.

Again, we need the Hamiltonian in momentum space, to make use of the nesting condition:

H =
∑
k

εkc
†
kck +

Uff
Ns

∑
k,k′,q

c†k+qckc
†
k′−qck′ . (3.11)

Motivated by the perfect nesting property, we expect the mode ~q = ~π to give the dominant
contribution to the interaction. Therefore, we single it out and neglect the other terms in the
q-summation. This allows for a mean-field decoupling in terms of a real order parameter ∆c

2 This name comes in contrast to a superfluid phase where there is off-diagonal long-range order (ODLRO).
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Figure 3.6: The Density channel for interacting spinless fermions.

defined by

∆c =
Uff
Ns

∑
k∈BZ

〈c†k+πck〉 =
Uff
Ns

∑
k∈BZ′

〈c†k+πck + c†kck+π〉, (3.12)

where BZ′ denotes the reduced Brillouin zone, shown in Fig. 2.4. As in the previous chapter,
this parameter is proportional to the energy gap in the dispersion relation of the excitations.
Following the same procedure, we obtain for the interaction term

Uff
Ns

∑
k,k′,q

c†k+qckc
†
k′+qck′ ≈ −

Ns

Uff
|∆c|2 + 2∆c

∑
k∈BZ′

c†k+πck + c†kck+π. (3.13)

Plugging this into the Hamiltonian (3.11) yields

H ≈ − Ns

Uff
|∆c|2 +

∑
k∈BZ′

εk

(
c†kck − c

†
k+πck+π

)
+ 2∆c

∑
k∈BZ′

c†k+πck + c†kck+π

= − N0

Uff
|∆c|2 +

∑
k∈BZ′

(
c†k, c

†
k+π

)( εk 2∆c

2∆c −εk

)(
ck
ck+π

)
. (3.14)

The Hamiltonian is diagonalized by the same transformation M given in (3.6), with the
replacement ∆0 −→ 2∆c. Again, we define operators ~ak = Mk~ck, and find

H = − N0

Uff
|∆c|2 +

∑
k∈BZ′

Ek

(
a†1,ka1,k − a†2,ka2,k

)
, (3.15)

with Ek =
√
ε2
k + |2∆0|2 the dispersion relation. The crucial difference this time is made

by the ground state, which is defined by filling in the entire negative band, i.e. the band
corresponding to the operators a2,k: |GS〉 =

∏
k≤|kF | a

†
2,k|0〉. The ground state energy is

given by

Egs = − N0

Uff
|∆c|2 −

∑
k∈BZ′

Ek. (3.16)

Minimizing w.r.t. ∆c, we obtain the gap equation for the CDW order parameter ∆c:

∆c = −2
Uff
Ns

∑
k∈BZ′

∆c√
ε2
k + |2∆c|2

. (3.17)
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We see that the properties of ∆c are essentially the same as these of the superconducting gap
∆c. In order to understand this coincidence at first sight, we need to carefully examine the
symmetries of the FHM.

3.3 Symmetries of the Fermi Hubbard Model

The FHM allows various symmetry transformations. They are very important for construct-
ing low-energy effective theories, as is the goal of this thesis, since the ground state of the
system must transform in the representation of its symmetry group. Furthermore, the model
has effectively two free parameters (the chemical potential and the interaction strength).3

Relations between the different values they take can be established. For instance, the Lieb-
Mattis transformation discussed below maps the repulsive FHM to the attractive one, while
the Particle-Hole transformation changes the sign of the chemical potential µ −→ −µ. These
symmetries are usually very helpful when performing any kind of numerical simulations, since
they can tremendously reduce the cost of computations, but also often serve as consistency
checks.

3.3.1 Lieb-Mattis and Particle-Hole Symmetries

In this subsection, we present the Particle-Hole and the Lieb-Mattis transformations. The
aim is to understand how they can be used to obtain parts of the phase diagram from other
by introducing a one-to-one mapping between them.

We begin with the Particle-Hole symmetry. Consider first the FHM on a bipartite lattice4

at half-filling. The relevant physical question behind the transformation reads: What is the
relation between the distribution of fermionic particles, created by the operator c†, and holes
(antifermions) created by c in the eigenstates of the Hamiltonian5

H = −tf
∑
〈ij〉,σ

(
c†iσcjσ + h.c.

)
− µ

∑
i

mi + Uff
∑
i

(
mi↑ −

1

2

)(
mi↓ −

1

2

)
. (3.18)

In other words, we seek a transformation of the model parameters which leaves H invariant
and maps particles to holes. Simply interchanging the roles c ←→ c† of the two operators
would not do the job, because of the fermionic commutation relations which would map the
kinetic term to its negative (effectively replacing the hopping constant tf −→ −tf ). However,
we can do better, provided we can divide the lattice into two interlaced sublattices, which is
equivalent to requiring that the lattice be bipartite. To get the correct sign of the hopping
parameter, we introduce a checker-board-type staggered term (−1)i = (−1)ix+iy+iz . This
amounts to a local gauge transformation and it affects non-local terms only (such as the
kinetic one). Since the interaction term is local, it is left invariant. Having said all this, we
are ready to give the exact Particle-Hole transformation:

c†iσ −→ (−1)iciσ. (3.19)

3When we normalize them by the hopping amplitude tf .
4This is an essential condition, as can be seen from the definition of the transformation itself.
5Notice that we slightly changed the form of the interaction here, without changing the physics. We shall

comment on this shortly.
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As already mentioned, it leaves the kinetic term invariant. The particle density is mapped to
the hole density c†iσciσ −→ 1 − c†iσciσ. We see that at half-filling (〈mi〉 = 1 and µ = −Uff )
the particle number operator is mapped to the corresponding one for holes. One can check
that the interaction term is also invariant under this transformation.

Actually, this is the reason why it is advantageous to define the interaction term with the
help of the factors 1/2. Had we not done this, the half-filled case would correspond to µ = 0,
such that µ intersects the energy bands exactly in the middle. Having made this point clear,
from now on we use the interaction term Uff

∑
imi,↑mi,↓.

Hence, we have found a transformation which interchanges the roles of particles and
holes. The real advantage comes when we go away from half-filling. Clearly, as the den-
sity operator is mapped to its negative, we see that the chemical potential term changes
sign and the transformation no longer leaves the full Hamiltonian invariant. We now have
H(µ/tf , Uff/tf ) −→ H(−µ/tf , Uff/tf ). But this implies that every quantity which depends
on µ (in particular, the expectation value of the number operator) will exhibit an axial sym-
metry w.r.t. the line µ = 0. From this, we can deduce that the phase diagram away from
half-filling will be symmetric w.r.t. the line 〈mi〉 = 1.

The second important symmetry we discuss here is given by the Lieb-Mattis transforma-
tion. It is also known as a partial particle-hole transformation, since it is performed only on
one spin species. It is defined through

c†i↓ −→ (−1)ici↓

c†i↑ −→ c†i↑. (3.20)

Again, the kinetic term is left invariant, due to the local gauge (−1)i. The interaction term,
however, changes sign, since we only transform one spin species. We immediately see that
the Lieb-Mattis transformation is a symmetry of the Hamiltonian if and only if we impose
half-filling. We have established a mapping H(0, Uff/tf ) −→ H(0,−Uff/tf ). According to
the considerations above, this implies that the ground state phase diagram of the FHM at
half-filling is symmetric w.r.t. the line given by the non-interacting point Uff = 0. Therefore,
one needs to consider solely attractive (or repulsive) interactions only. Here, we choose to
work on the attractive side.

In order to translate the statements to the repulsive side, it is useful to keep in mind the
following dictionary:

mi↑ +mi↓ = mi ←→Mz,i = mi↑ −mi↓

c†i↑c
†
i↓ = ∆0,i ←→M+

i = c†i↑ci↓

ci↑ci↓ = ∆∗0,i ←→M−i = ci↑ci↓, (3.21)

where mi denotes the fermion particle number operator, while Mi denotes the onsite magne-
tization operator. It is very interesting to note that spin correlations along the z-direction are
mapped onto the charge operator mi, whereas spin correlations in the xy-plane (being linear
combinations of M+ and M−) are mapped onto the s-wave (or on-site) pairing operator ∆0,i.

This comes as a surprise on the attractive side, where the two phases CDW and SF
appear very different from the physical perspective. On the repulsive side, however, they
appear as different manifestations of the same magnetic order. We have almost anticipated
such relations from our previous discussion of the two phases, which resulted in the same gap
equation for the order parameters ∆0 and ∆c.
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These relations appear even more surprising, if one recalls that the components of the
magnetization Mi,z and M±i are defined w.r.t. a coordinate system which we are free to
choose. The latter suggests that, due to the Lieb-Mattis transformation, we can view the
CDW state as a SF state, if we choose to label the magnetization axes differently. In order
to get a better insight into this peculiarity from a theoretical point of view, we need to look
at the full symmetry group of the Fermi-Hubbard model.

3.3.2 The Full SO(4) Symmetry Group

The Fermi-Hubbard model has a rich symmetry structure which is inevitably reflected by the
dimension of its symmetry group. It is responsible for the variety of different phases proposed
in the literature, and the present controversies concerning the ground state properties of the
model. It is our goal in this subsection to gain a solid understanding of the similarities and
differences between the charge order represented by the CDW ground state, and the superfluid
order present in the SF state.

To this end, we start again with the FH Hamiltonian at half-filling. The experienced eye
recognizes immediately that it is symmetric under the exchange of the two spin species ↑ and
↓. This is obviously true for the kinetic term, while the interaction term requires to notice
that the number operators for the spin species are bosonic (consisting of two fermions), and
hence [mi↑,mi↓] = 0. Therefore, the model exhibits an SU(2) spin symmetry with generators
given by the spin operators

σ− =
∑
i

c†i↑ci↓

σ+ =
∑
i

c†i↓ci↑

σz =
1

2

∑
i

(mi↓ −mi↑). (3.22)

From these, we define σx,y in the standard way via σ± = σx ± σy. It is straightforward to
show that the the spin operators satisfy the SU(2) algebra given by

[σα, σβ] = iεαβγσ
γ (3.23)

for α = x, y, z. However, this is not the only symmetry present in the model. In 1989 Yang
and Zhang [60] showed that the FHM on a bipartite lattice at half-filling obeys a further
symmetry, the so-called pseudo-spin symmetry. It is generated by the pseudo-spin operators

η− =
∑
i

(−1)ici↑ci↓

η+ =
∑
i

(−1)ic†i↓c
†
i↑

ηz =
1

2

∑
i

(mi↓ +mi↑ − 1). (3.24)

As before, we define ηx,y by η± = ηx ± ηy to arrive at the SU(2) pseudo-spin algebra

[ηα, ηβ] = iεαβγη
γ . (3.25)
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The model then enjoys an SO(4) = SUη(2) × SUσ(2)/Z2 symmetry [12], i.e. [H, ηα] = 0 =
[H,σα]. On a lattice with even number of sites, one has to divide by the group Z2 to avoid
double counting of states [60].

We are now in a position to proceed with the group theoretical description of the SF and
CDW phases, which both represent second-order (Landau) phase transitions. According to
Landau’s theory [31], such a transition has to break a continuous symmetry reducing the total
symmetry group of the model. The discussion on superfluidity in Chapter 2.1.1 showed that in
the bosonic case, the U(1)-symmetry of the Bose-Hubbard model is broken by the emergence
of an order parameter related to the SF density. In the fermionic case, the U(1) group is not
explicitly present. Instead, one needs to break either one of the SU(2) spin groups available.
This fact can be inferred from numerical simulations, which put the Hubbard model at half-
filling into the Heisenberg universality class, corresponding to an SO(3) symmetry group
[49].

To understand this better, we recall that U(1) is the group of unitary transformations in
one complex dimension which can be thought of as the group of rotations in the real plane
SO(2). On the other hand, the real rotations in the plane constitute a proper subgroup of
the real rotations in three dimensions, i.e. SO(2) ⊂ SO(3). The relation between orthogonal
rotations in three dimensions and unitary transformations in two dimensions is given by the
Lie algebra isomorphism so(3) ' su(2). This makes it plausible that U(1) ⊂ SU(2), and it is
precisely the part of SU(2) which gets broken by the real part of the order parameter ∆0.

The previous paragraph raises the question, which one of the pseudo-spin and the spin
SU(2) takes part in the symmetry breaking. To answer this, it will be helpful to define the
following set which consists of the three operators of interest:

∆− =
∑
i

ci↑ci↓

∆+ =
∑
i

c†i↓c
†
i↑

∆z =
1

2

∑
iσ

(−1)imiσ. (3.26)

Taking the ground state expectation value of these operators, we recover the familiar order
parameters ∆0 and ∆c.

6 Symmetrizing the SF order parameters via ∆± = ∆x ± ∆y, a
straightforward calculation yields

[ηα,∆β] = iεαβγ∆γ . (3.27)

Therefore the order parameters transform in the representation of the pseudo-spin group
SUη(2). The commutator relation (3.27) says that the pseudo-spin operators can rotate one
order parameter into the other, pretty much the same way we anticipated this towards the end
of the previous subsection. This ultimately proves the degenerate nature of the ground state of
the FHM at half-filling: superfluidity and the charge density wave are present simultaneously,
the ground state being an arbitrary superposition of both.

The transformation (3.27) ultimately sheds light on the question we posed earlier: it says
that the pseudo-spin symmetry generators and the order parameters7 are conjugate variables
[12]. Hence, it is the pseudo-spin SUη(2) which gets broken in the ground state.

6Up to a proportionality factor, given by the interaction strength Uff .
7The triplet (∆x,∆y,∆z) transforms in the vector representation of the SUη(2) group.
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3.4 Phase Diagram of the FHM and the BCS-BEC Crossover

In this section, we discuss the phase diagram of the Fermi-Hubbard model at half-filling,
putting the emphasis on the BCS-BEC crossover. Although we are ultimately interested in
zero-T , we give a comprehensive review of the results also at finite T .

From the previous Section, we already know that the phase diagram must be symmetric
w.r.t. flipping the sign of the interaction Uff due to the Lieb-Mattis transformation. Moreover,
based on symmetry arguments, we found that the ground state for attractive interactions is
an arbitrary superposition of a CDW and SF state. Furthermore, it can be shown [38] that all
physical quantities determined by the one-particle correlation functions (such as the specific
heat and the entropy) are independent of the sign of Uff .8 Since we can freely rotate one
order into the other by means of the SUη(2), these have to be considered as the two sides
of the same medal. Hence, from now on we do not formally distinguish between them at
half-filling.

One can further characterize the ground state by considering the limits of weak and
strong interactions. Here we review their basic properties - for a comprehensive description,
the reader is referred to Table V of [38].

Weakly interacting fermions, |Uff | � ztf , pair in the s-wave channel. The resulting
Cooper pairs describe two fermions of opposite spin and momenta close to the Fermi surface.
Having a definite momentum, in real-space these objects stretch over distances larger than
the lattice spacing and parts of them overlap. This can be explained by the weak interactions
assumed between them. The energy needed to break a pair is given by twice the s-wave gap
∆0 which is exponentially small. Finally, this limit shall be referred to as the BCS regime.

Figure 3.7: (color online): Temperature-interaction strength (T,Uff ) phase diagram of the
Fermi-Hubbard model at half-filling [16].

8This is not true for the two-particle correlators and quantities derivable from them, such as their magnetic
susceptibility which is suppressed by attractive interactions, [38].
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In the opposite case of strongly interacting fermions, |Uff | � ztf , one expects the pairs
(sometimes also called molecules in this limit) to be strongly localized in real-space, and
completely delocalized in momentum-space. These molecules behave essentially as point-like
bosons, and one obtains a very accurate description of the underlying physics by modelling
the system as a condensate of bosonic molecules with half the particle number and twice the
mass of a fermion constituent. The binding energy in this case is roughly set by the interaction
strength −|Uff |. The pairs hop along the lattice via the so-called virtual ionization. They
can be described effectively by hardcore bosons with hopping amplitude tM = −2t2f/|Uff |
and nearest-neighbour repulsion given by W = 2t2f/|Uff |, [38]. This limit is called the BEC
regime.

Figure 3.8: Temperature-interaction strength (T,Uff ) phase diagram of the Fermi-Hubbard
model at half-filling. One distinguishes the lines of pair formation and condensation, given

by Tp and Tc. The notations SRO and LRO signify short-range and long-range order,
respectively. The superfluid phase (SF) and the charge-ordered phase (CDW) are
degenerate at half-filling even at finite temperatures (figure adopted from [48]).

Despite the different physical mechanisms, it has been experimentally confirmed [16] that
there is no phase transition between the two limits, meaning that the momentum distribution
function mk evolves smoothly from one regime to the other. As the interaction strength
changes gradually, so do the molecular size and the statistics of the pairs. The BEC-BCS
cross-over regime poses a considerable challenge from theoretical point of view and is not
completely understood yet.

The phase diagram at finite temperature is shown in Figs. 3.7 and 3.8. One can clearly see
the symmetry about the line Uff = 0. Furthermore, the BCS and BEC regimes are found on
the attractive side, the crossover lying in between. It is noteworthy, that the critical pairing
temperature, denoted by Tp increases exponentially weakly, and sets the phase boundary in
the BCS regime. In this weakly-interacting limit, the fermionic pairs appear and condense
simultaneously. Conversely, in the limit of strong interactions the pairs form well above the
condensation temperature Tc, but Bose-Einstein condensation does not occur until the Tc-line
(see Fig. 3.8) is reached. Deep into the BEC regime, the condensation temperature decreases
as Tc ∼ t2f/|Uff |.
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3.5 Double MF-Description of the FHM at Half-Filling

The qualitative results based on symmetry arguments obtained in Section 3.3 make use of a
general group-theoretical approach and are, therefore, exact. In this chapter, we are going to
derive them qualitatively within a double mean-field approximation. The main result of this
section is the coupled set of gap equations for the CDW and the SF gaps. We also show that,
if carried out carefully, MF is capable of capturing the degeneracy in the ground state of the
Fermi-Hubbard model.

Being familiar with the independent MF treatment of the CDW and the SF phases pre-
sented in Sections 3.1 and 3.2, the careful reader might have noticed one crucial difference in
the two approaches: the decoupling of the interaction term in BCS theory is possible since
we can precisely identify the interaction channel with the Cooper channel (Fig. 3.2). On the
other hand, the CDW description requires us to decouple in the Density channel (Fig. 3.6).
Since the two channels have a different physical meaning, which can be seen most easily from
the Feynman graphs, we are not able to obtain a CDW-like decoupling from the Cooper
channel or vice versa. This poses a fundamental problem on the basic MF ansatz.

Luckily, any self-consistent mean-field treatment is based on breaking the corresponding
symmetry9 and minimization of the ground state energy w.r.t. the introduced order param-
eters. Therefore, the way out is to assume a ground state in which the expectation value of
the order parameters is non-zero. We make the following ansatz [15, 43] and apply Wick’s
theorem to the interaction term to obtain∑

k1,...,k4,σ,σ′

δσ,↑δσ′,↓δ̄ (k1 − k2 + k3 − k4) 〈c†k1σck2σc
†
k3σ′

ck4σ′〉

=
∑

k1,...,k4,σ,σ′

δσ,↑δσ′,↓δ̄ (k1 − k2 + k3 − k4)
[
〈c†k1σck2σ〉〈c

†
k3σ′

ck4σ′〉+ 〈c†k1σc
†
k3σ′
〉〈ck4σ′ck2σ〉

]
,

(3.28)

where δ̄ denotes the delta function modulo the reciprocal lattice vector. This way, we allow
for resonant process in both the Density and the Cooper channels. The dominating process
from the Density channel is expected to occur when k1 = k2 + π and k3 = k4 + π, whereas
from the Cooper channel we retain the scattering processes at k3 = −k1 and k4 = −k2.

If we assume that ∆↑ = ∆↓, and the two order parameters are given by

∆̂c =
Uff
2Ns

∑
k∈BZ,σ

c†k+π,σck,σ =
Uff
2Ns

∑
i,σ

(−1)ic†i,σci,σ

∆̂0 =
Uff
Ns

∑
k∈BZ

c†k,↑c
†
−k,↓ =

Uff
Ns

∑
i

c†i↑c
†
i↓, (3.29)

we can obtain the expectation value (3.28) in the following way: The effective quadratic
interaction Hamiltonian, given by

Hint = ∆̂2
c + |∆̂0|2, (3.30)

together with the mean-field approximation (∆̂†c/0 −∆∗c/0)(∆̂c/0 −∆c/0) ≈ 0 yields

H
(MF )
int = ∆c

∑
k,σ

c†k+π,σck,σ +
∑
k

(∆0c−k,↓ck,↑ + h.c.)− Ns

Uff

(
∆2
c + |∆0|2

)
. (3.31)

9In the case of the FHM both orders are needed to break the symmetry group.
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Here the hat denotes operators and the quantities without hats are their expectation values
- the gap functions.

Before we continue, we make a short remark: in the bosonic case, the CDW induced by
the external staggered potential also coupled the condensates at ~k = 0 and ~k = ~π via the
term b†k+πb

†
−k. It would, therefore, seem natural to include another gap function, given by

∆π =
Uff
Ns

∑
k〈c
†
k+π↑c

†
−k↓〉 =

Uff
Ns

∑
i(−1)i〈c†i↑c

†
i↓〉, even without the presence of the staggered

potential, as the CDW appears intrinsically in the ground state of the FHM. This quantity
measures the difference of the superconducting order parameter ∆0 on both sublattices A
and B. Notice, however, that this ∆π gap vanishes identically by symmetry arguments: it
coincides precisely with the η− generator of the pseudo-spin symmetry group SUη(2), given
in Eq. (3.24). The group is broken to its U(1) subgroup, generated by η−. Hence, we find
∆π = 0 even in the case of a broken SUη(2) as a consequence of residual symmetry. Another
way to see why ∆π = 0, as discussed in Chapter 3.6.1, is due to Particle-Hole symmetry at
half-filling, [30].

The effective MF Hamiltonian at half-filling takes the form

H =− Ns

Uff

(
∆2
c + |∆0|2

)
︸ ︷︷ ︸

=: H0

+
∑
k∈BZ

[(∑
σ

εkc
†
kσckσ + ∆cc

†
k+πσckσ

)
+ ∆0

(
c†k↑c

†
−k↓ + h.c.

)]
. (3.32)

Next, we reduce the Brillouin zone, defining operators αkσ and βkσ via

ckσ =

{
αk,σ for k ∈ BZ′

βk±π,σ for k /∈ BZ′
(3.33)

where the reduced Brillouin zone is given by BZ′ := {~k ∈ BZ : cos(kx)+cos(ky)+cos(kz) ≥ 0}.
As in the case of bosons, the notation k ± π stands for the eight possible combinations of
distributing the ±-signs among the components of the vector ~π = (π, π, π). The crucial
difference is that the operators α and β are fermionic and anti-commute with each other.
The terms in the Hamiltonian in the new operators read∑

k∈BZ

εkc
†
kσckσ =

∑
k∈BZ′

εk

(
α†kσαkσ − β

†
kσβkσ

)
∑
k∈BZ

c†k+π,σckσ =
∑
k∈BZ′

(
α†k+π,σβkσ + h.c.

)
∑
k∈BZ

c†k,↑c
†
−k↓ =

∑
k∈BZ′

(
α†k,↑α

†
−k↓ + β†k,↑β

†
−k↓

)
. (3.34)

Hence, the Hamiltonian is given by

H = H0+
∑
k∈BZ′

εk

(
α†k↑αk↑ − αk↓α

†
k↓ − β

†
k↑βk↑ + βk↓β

†
k↓

)
+ ∆c

(
α†k↑βk↑ + β†k↑αk↑ − α

†
k↓βk↓ − α

†
k↑βk↑

)
+ ∆0

(
α†k↑α

†
−k↓ + β†k↑β

†
−k↓ + α−k↓αk↑ + β−k↓βk↑

)
. (3.35)
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Defining the vector ~αk = (αk↑, βk,↑, α
†
−k↓, β

†
−k↓)

t, we make use of matrix notation to put it
into the form

H = H0 +
∑
k∈BZ′

~α†kH~αk, (3.36)

where the matrix H is given by10

H =


εk ∆c ∆0 0
∆c −εk 0 ∆0

∆0 0 −εk −∆c

0 ∆0 −∆c εk

 . (3.37)

Introducing a unitary transformation M , which diagonalizes H, we define the new operators
~γk = Mk~αk, such that ~γk = (γ1,k, γ2,k, γ

†
3,k, γ

†
4,k)

t, to arrive at

H = H0 +
∑
k∈BZ′

~α†kH~αk = H0 +
∑
k∈BZ′

~γ†kM
†HM~γk

= H0 −
∑
k∈BZ′

Ek

(
γk,3γ

†
k,3 + γk,4γ

†
k,4

)
+
∑
k∈BZ′

Ek

(
γ†k,1γk,1 + γ†k,2γk,2

)
= H0 − 2

∑
k∈BZ′

Ek︸ ︷︷ ︸
=: Egs

+
∑

k∈BZ′,σ

Ekγ
†
k,σγk,σ. (3.38)

The γσ operators describe the excitations above the ground state with energy Egs. They

populate the degenerate bands Ek =
√
ε2
k + ∆2

c + |∆0|2. The index σ = 1, . . . , 4 counts the

different operators γσ. Clearly, all of them fill in the same excited band Ek, which is a
manifestation of the residual spin symmetry.

In the remainder of this section, we fix the particle density using the fact that we are at
half-filling, and derive self-consistently the gap equations. Minimizing Egs w.r.t. the order
parameters ∆0 and ∆c yields two equations, so that the ground state properties of the system
are completely described within MF by a set of two coupled equations.

The procedure for fixing the filling is the same as in the bosonic case. This time, however,
one has to be careful with the anti-commutator relations. Again, we choose to evaluate the

10We use the same notation for the Hamiltonian operator and the Hamiltonian matrix H.
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density at the lattice site ~ri = 0 for simplicity:

〈m̂~ri=0〉 =
1

Ns

∑
k1,k2∈BZ,σ

〈c†k1σck2σ〉

=
1

Ns

∑
k1,k2∈BZ′,σ

〈α†k1σαk2σ + β†k1σβk2σ + α†k1σβk2σ + β†k1σαk2σ〉

=
1

Ns

∑
k1,k2∈BZ′

〈α†k1↑αk2↑ + α†k1↓αk2↓ + β†k1↑βk2↑ + β†k1↓βk2↓

+ α†k1↑βk2↑ + α†k1↓βk2↓ + β†k1↑αk2↑ + β†k1↓αk2↓〉

=
1

Ns

∑
k1,k2∈BZ′

〈~α†k


1 1 0 0
1 1 0 0
0 0 −1 −1
0 0 −1 −1


︸ ︷︷ ︸

=: P

~αk2〉+ 2δk1,k2

= 1 +
1

Ns

∑
k∈BZ′

〈~γ†kM
†
kPMk︸ ︷︷ ︸
=: P̃k

~γk〉 = 1 +
1

Ns

∑
k∈BZ′

(
P̃

(33)
k + P̃

(44)
k

)
. (3.39)

We assume an enhancement of the density on the sublattice containing ~r = 0, which is
equivalent to assuming that the CDW gap ∆c ≥ 0 (c.f. Eq. (3.41)). Making the ansatz

〈m̂~ri=0〉
!

= 1 + α, we arrive at the expression for the fermionic CDW amplitude

α =
1

Ns

∑
k∈BZ′

(
P̃

(33)
k + P̃

(44)
k

)
. (3.40)

There exists a relation between the CDW gap and the CDW amplitude, given by

∆c =
Uff
2Ns

∑
i

(−1)i〈mi〉 =
Uff
2Ns

∑
i

(−1)i
[
1− (−1)iα

]
=
α|Uff |

2
≥ 0. (3.41)

Hence, Eq. (3.40) is equivalent to the gap equation for ∆c, since the matrix P̃ depends on ∆c

through the transformation M .

The corresponding self-consistency equation for ∆0 can be derived similarly. We omit the
details here:

∆0 = (1− p)
Uff

Ns

∑
k∈BZ

〈c†k↑c
†
−k↓〉 = · · · = (1− p)

Uff

Ns

∑
k∈BZ′

〈~γ†kM
†
kS0Mk︸ ︷︷ ︸
=: S̃0

~γk〉, (3.42)

where S0 is given by

S0 =

(
02×2 12×2

02×2 02×2

)
. (3.43)

The full set of equations determining the phase transition in the Fermi-Hubbard model
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reads:

∆c =
|Uff |
Ns

∑
k∈BZ′

∆c√
ε2
k + ∆2

c + |∆0|2

|∆0| =
|Uff |
Ns

∑
k∈BZ′

|∆0|√
ε2
k + ∆2

c + |∆0|2

(3.44)

Assuming we are in the ordered phase, we divide the first equation by ∆c, the second by |∆0|,
and add them up. Comparing the resulting equation with either of the first two, we arrive at

1 =
|Uff |
Ns

∑
k∈BZ′

1√
ε2
k + ∆2

c + |∆0|2
. (3.45)

Clearly, this equation is equivalent to any of the gap equations derived for the BCS and the
CDW gaps separately, if we define ∆ =

√
|∆0|2 + ∆2

c . Therefore, the general solution reads

|∆0|2 + ∆2
c = const, (3.46)

for some number depending on the model parameters tf and Uff (c.f. Eq. (3.10)). Hence,
any pair (∆c,∆0) which satisfies the above relation is admissible. Moreover, the two order
parameters enter in the ground state energy only through the combination |∆0|2 + ∆2

c , so
that all these states indeed have the same energy.

This is the prove for the degeneracy of the ground state within the double MF description.
It is an arbitrary superposition of the CDW and the SF state. The equation for ∆2

c + |∆0|2
reduces to the usual MF one given by Eq. (3.9). Clearly, the above analysis agrees precisely
with the conclusions drawn from symmetry considerations in Section 3.3.2.

3.6 FHM away from Half-Filling

With respect to our subsequent analysis of the Bose-Fermi mixture, it would be advantageous
to devote parts of the discussion to fermionic systems away from half-filling. In particular,
we are interested in studying the FHM in the presence of a staggered potential and nearest-
neighbour (Coulomb) interactions. The first two effects will compete against each other to
determine the MF phase diagram of the Bose-Fermi mixture, addressed in the next chapter,
and are of special interest.

Clearly, any of these additional terms breaks the pseudo-spin symmetry of the model.
Therefore, one may investigate the possibility for a mixed phase of a staggered superconductor
away from half-filling. The relevant order parameter to describe it is given by

∆π =
Uff
Ns

∑
k∈BZ

〈c†k+π↑c
†
−k↓〉 =

Uff
Ns

∑
k∈BZ

(−1)i〈c†i↑c
†
i↓〉. (3.47)

The first thing to note is that this gap measures the difference of the superconducting gap
∆0 on the two sublattices A and B induced by the staggered order. Since the pseudo-
spin symmetry is no longer there, in principle one has to allow for a non-zero value of this
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parameter. Second, it is clear from the form of the interaction term in the Cooper channel
that this gap arises from this channel when one takes into account the momentum at ~q = ~π.
This process is expected to be resonant just like in the bosonic case. Whether the gap ∆π is
present or not, will be determined from the extended set of the corresponding self-consistency
equations.

To this end, we need to expand the analysis of the previous Section 3.5. We begin by
making a convention: as before, we choose the CDW to diminish the average particle number
on the even sublattice A which contains the origin, and to enhance it on the odd sublattice
B, keeping ∆c ≥ 0. The sign of the gap ∆π is not easily determined. However, we can safely
assume it to be real, since the phase difference between ∆0 and ∆π is easily found to be zero,
[30], by minimization of the energy. Finally, we remark that we necessarily have |∆π| ≤ |∆0|.

The mean-field Hamiltonian reads

H =− Ns

Uff

(
∆2
c + |∆0|2 + |∆π|2

)
︸ ︷︷ ︸

=: H0

+
∑
k∈BZ

[(∑
σ

(εk − µ) c†kσckσ + ∆cc
†
k+πσckσ

)

+ ∆0

(
c†k↑c

†
−k↓ + h.c.

)
+ ∆π

(
c†k+π↑c

†
−k↓ + h.c.

)]
. (3.48)

Reducing the Brillouin zone, we supplement Eq. (3.34) by∑
k∈BZ

c†k+π↑c
†
−k↓ =

∑
k∈BZ′

(
α†k,↑β

†
−k↓ + β†k,↑α

†
−k↓

)
. (3.49)

The rest of the procedure is similar to what we did earlier. The Hamiltonian matrix reads

H =


εk − µ ∆c ∆0 ∆π

∆c −εk − µ ∆π ∆0

∆0 ∆π −εk + µ −∆c

∆π ∆0 −∆c εk + µ

 , (3.50)

and hence we need a different unitary transformation M to diagonalize it. This time the
energy bands for the excitations are non-degenerate only for µ 6= 0,11 and are given by

E
(1/2)
k =

√
∆2
c + |∆0|2 + ∆2

π + ε2
k + µ2 ± 2

√
(|∆0|∆π + µ∆c)

2 + ε2
k (∆2

π + µ2). (3.51)

They are reminiscent of the two excitation bands we derived for the Bose-Hubbard model
within the Bogoliubov approximation in Chapter 2.2.3. The definition of the γkσ operators is
the same as in the previous Section. The Hamiltonian assumes the following diagonal form

H =H0 −
∑
k∈BZ′

(
E

(1)
k + E

(2)
k + 2µ

)
+
∑
k∈BZ′

[
E

(1)
k

(
γ†k,1γk,1 + γ†k,3γk,3

)
+ E

(2)
k

(
γ†k,2γk,2 + γ†k,4γk,4

)]
(3.52)

11At half-filling, due to Particle-Hole symmetry, we still have ∆π = 0.
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The total ground state energy reads

Egs = − Ns

Uff

(
∆2
c + |∆0|2 + |∆π|2

)
−
∑
k∈BZ′

(
E

(1)
k + E

(2)
k + 2µ

)
. (3.53)

Minimizing w.r.t. the order parameters ∆c,∆0, and ∆π, and defining

X =

√
(|∆0|∆π + µ∆c)

2 + ε2
k (|∆π|2 + µ2), (3.54)

we obtain the extended set of gap equations to be

∆c =
|Uff |
2Ns

∑
k∈BZ′

(
∆c + µ |∆0|∆π+µ∆c

X

E
(1)
k

+
∆c − µ |∆0|∆π+µ∆c

X

E
(2)
k

)

|∆0| =
|Uff |
2Ns

∑
k∈BZ′

(
|∆0|+ ∆π

|∆0||∆π |+µ∆c

X

E
(1)
k

+
|∆0| −∆π

|∆0|∆π+µ∆c

X

E
(2)
k

)

∆π =
|Uff |
2Ns

∑
k∈BZ′

(
∆π +

|∆0|2+µ∆c|∆0|+∆πε2k
X

E
(1)
k

+
∆π −

|∆0|2+µ∆c|∆0|+∆πε2k
X

E
(2)
k

)
. (3.55)

Before we continue, we wish to make a couple of remarks about the system of coupled equa-
tions above: first, in the limit of µ → 0 we have that |∆π| → 0, the above system reduces
to Eq. (3.44). Second, we see that if ∆c → 0, we immediately find ∆π → 0 and thus the
staggered superconductivity goes away. Due to the relation |∆π| ≤ |∆0|, if ∆0 → 0 so does
∆π, which makes sense, since we cannot have a staggered superconductor with a vanishing
superconducting gap ∆0.

The last equation we need is the Number equation which fixes the chemical potential µ
from the given filling m. We can readily obtain in from the expectation value of the fermion
number operator M̂ :

m =
1

Ns
〈M̂〉 =

1

Ns

∑
k∈BZ′

〈~γ†kM
†


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

M~γk〉+ 2, (3.56)

where the matrix M is the unitary transformation that diagonalizes the Hamiltonian (3.64).
If we define four 2× 2 matrices Mi via

M =

(
M1 M2

M3 M4

)
, (3.57)

the unitarity of M implies M †2M2 + M †4M4 = 1. Using this, the number equation assumes
the simple form

m =
2

Ns

∑
k∈BZ′

2× tr
(
M †2M2

)
. (3.58)

An equivalent way of finding the number equation is to consider a temperature-dependent
system (c.f. Section 4.3) and put T → 0 in the very end of the calculation. This gives the
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number equation

m =
2

Ns

∑
k∈BZ′,s

[
1 +

∂E
(s)
k

∂µ
tanh

(
β

2
E

(s)
k

)]
. (3.59)

Both approaches are, of course, equivalent. Finally, in terms of the model parameters, it takes
the form

m = 1 +
1

2Ns

∑
k∈BZ′

[
µ+

|∆0|∆π∆c+µ(∆2
c+ε

2
k)

X

E
(1)
k

tanh

(
β

2
E

(1)
k

)

+
µ− |∆0|∆π∆c+µ(∆2

c+ε
2
k)

X

E
(2)
k

tanh

(
β

2
E

(2)
k

)]
. (3.60)

Before we take a closer look at the special cases mentioned at the beginning of the section,
we notice one final thing. As they stand, Eq’s (3.55) might still need modification: the
symmetry breaking via nearest-neighbour interactions or a staggered potential will change
the expressions under the momentum summation for the different gaps via the dispersion
relation. As we know from the analysis of the FHM in the previous section, the self-consistency
equations are very sensitive towards this change.

3.6.1 FHM in a Staggered Potential

Let us now take a closer look at the consequences of applying a staggered potential. We add
to the Fermi-Hubbard Hamiltonian an alternating term so that it takes the form

H =− tf
∑
〈ij〉,σ

(
c†iσcjσ + h.c.

)
− µ

∑
i

mi + Ubf
∑
i

[
1 + (−1)iη

]
mi + Uff

∑
i

mi↑mi↓. (3.61)

The staggering strength is given by the parameter η ∈ [0, 1]. As in the bosonic case from
Chapter 2, this form is motivated by a mean-field decoupling of the interspecies density-
density interaction of the Bose-Fermi mixture. We see that a part of the staggered term
induces a shift in the chemical potential. We choose the case Ubf ≥ 0 which removes the
internal degeneracy of the CDW state shown in Fig. 3.5, enhancing the fermionic density on
the odd sublattice B.

Notice, however, that at half-filling Particle-Hole symmetry maps m→ 1−m and Ubf →
−Ubf , thus interchanging the role of the two sublattices. Therefore, in this special case,
we also have ∆π = 0, even thought the pseudo-spin symmetry is explicitly broken by the
staggered field [30].

Very recently, Iskin analyzed the effect of staggered potential on the superfluid phase
of an interacting fermionic system, [30]. At half-filling, one finds a phase transition in the
(ηUbf , |Uff |/tf ) plane given by the solution of the BCS gap equation (3.1). For high in-
teraction strengths and low staggering strengths one finds an induced supersolid (staggered
superfluid), while above the critical line the SF gap suddenly disappears and the ground state
is a pure CDW. However, this analysis did not take into account the possibility for a degen-
erate SF-CDW ground state at half-filling when the staggered potential is switched off, as it



58 3. The Fermi Hubbard Model

did not directly refer to the Fermi-Hubbard model. Therefore, below we provide an analytical
investigation of this scenario.

The Hamiltonian for the system takes the form

H =− tf
∑
〈ij〉,σ

(
c†iσcjσ + h.c.

)
− (µ− Ubf )

∑
i

mi

+ ηUbf
∑
i

(−1)imi + Uff
∑
i

(
mi↑ −

1

2

)(
mi↓ −

1

2

)
. (3.62)

The staggered term enhances the CDW amplitude, which can be seen from its momentum-
space representation:∑

i

(−1)imi =
∑

k∈BZ,σ

c†k+πσckσ =
∑
k∈BZ′

(
α†kσβkσ + h.c.

)
. (3.63)

The MF Hamiltonian assumes the following form, including the gap ∆π:

H =− Ns

Uff

(
∆2
c + |∆0|2 + |∆π|2

)
︸ ︷︷ ︸

=: H0

+
∑
k∈BZ

[(∑
σ

(εk − µ+ Ubf )c†kσckσ

+ [∆c + ηUbf ] c†k+πσckσ

)
+ ∆0

(
c†k↑c

†
−k↓ + h.c.

)
+ ∆π

(
c†k+π↑c

†
−k↓ + h.c.

)]
. (3.64)

The ground state energy is given by

Egs =
Ns

|Uff |
(
∆2
c + |∆0|2 + |∆π|2

)
−
∑
k∈BZ′

(
E

(1)
k + E

(2)
k − 2(µ− Ubf )

)
, (3.65)

where the band structure is modified according to

E
(1/2)
k =

√
(∆c + ηUbf )2 + |∆0|2 + |∆π|2 + ε2

k + (µ− Ubf )2 ± 2X ′,

X ′ =

√
(|∆0|∆π + (µ− Ubf )(∆c + ηUbf ))2 + ε2

k (|∆π|2 + (µ− Ubf )2). (3.66)

The self-consistency equations (3.55) and the Number equation (3.60) can be generalized
easily, replacing on the right hand sides ∆c → ∆c + Ubfη and µ→ µ− Ubf .

This concludes the discussion on the FHM in the presence of a staggered field.

3.6.2 Nearest-Neighbour Interactions and the Extended FHM

The extended Fermi-Hubbard model takes into account nearest-neighbour (nn) interactions
in addition to the already familiar on-site attraction (repulsion). The Hamiltonian reads

H = −tf
∑
〈ij〉,σ

(
c†iσcjσ + h.c.

)
− µ

∑
i

mi + Uff
∑
i

mi↑mi↓ +
W

2

∑
〈ij〉

ninj . (3.67)

Clearly, due to the presence of the nn interaction term we no longer have the pseudo-spin
symmetry. Therefore, it can be shown that the degeneracy of the ground state is lifted, [38].
In the attractive FHM, a positive intersite interaction W > 0 will favour charge order and
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the ground state prefers the DLRO of the CDW phase. This is intuitively clear, since the
fermionic density distribution will tend to avoid configurations with neighbouring fermions,
as they will cost more energy.

On the other hand, an attractive nn interaction, W < 0, enhances the ODLRO, and the
system prefers the SF state. It would be energetically cheaper for the fermions to occupy
every site at half-filling which clearly enhances and stabilizes the superconducting state.

In the strong-coupling limit, the Hamiltonian (3.67) can be mapped to a spin system using
the mapping [48, 47].

Figure 3.9: Different types of superconducting order parameters for the Fermi-Hubbard
model with broken pseudo-spin symmetry.

ρ+
i = c†i↑c

†
i↓, ρ−i = ci↓ci↑

ρzi =
1

2
(mi↑ +mi↓ − 1) . (3.68)

The resulting spin model Hamiltonian H̄ is given by

H̄ = −J
∑
〈ij〉

ρ+
i ρ
−
j +K

∑
〈ij〉

ρzi ρ
z
j − µ̄

∑
i

(2ρzi + 1)− zNs

4
(J + 2W ), (3.69)

where J = 2tf/|Uff | is the effective hopping strength, K = J + 2W defines the effective
strength of the intersite density-density interaction, and µ̄ = µ + 1

2Uff − zW is the new
chemical potential.

The main properties and definitions of the possible phases of this model are summarized
in Fig. 3.9.
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Figure 3.10: Phase diagram of the FHM at any filling n ∈ [0, 2] for K = J + 2W . The
phase boundaries were obtained simultaneously from a mean-field approximation (MFA)

and a rotating phase approximation (RPA). (figure adopted from [38]).

The phase diagram of the model is given in Fig. 3.10. It is noteworthy that in the presence
of repulsive nn interactions, and away from half-filling one finds a staggered superconducting
phase, characterized by the non-vanishing order parameter ∆π.

Before we finish this section, we finally mention that there exists a mapping from the
FHM with attractive interactions at arbitrary filling to the extended Hubbard model with
repulsive interactions at half-filling. It was first introduced in [48].

3.7 Conclusions

In retrospect, we have analyzed the properties of the Fermi-Hubbard model and its extension
to nearest-neighbour interactions. At half-filling, the model enjoys a Particle-Hole symmetry,
which postulates that the ground state phase diagram of the model is symmetric w.r.t. the
line µ = 0. The Lieb-Mattis transformation, on the other hand, allows to transfer all the
results for the model from the attractive to the repulsive side of the interaction parameter
Uff . It provides a dictionary between the magnetic phases on the repulsive interaction side,
and the CDW and SF (pairing) phases on the attractive side.

Moreover, at half-filling the full symmetry group of the FHM, SO(4) = SUη(2)×SUσ(2)/Z2,
consists of a spin SUσ(2) subgroup and a pseudo-spin SUη(2) subgroup. In the ground state,
there are two degenerate orders: the CDW and the SF (superconducting) one, and hence the
true ground state is an arbitrary superposition of both. The emergence of the order parame-
ters ∆0 and ∆c breaks the SUη(2) subgroup of the pseudo-spin part. Before, we break it, the
pseudo-spin symmetry generators rotate one order parameter into the other, as described in
Section 3.3.2. Within the CDW-SF state, the BCS-BEC crossover and its essential features
were briefly discussed.

As a proof of this general statement based on symmetry arguments, an extended (double)
mean-field decoupling scheme has been introduced. The results confirmed the group theoret-



3.7 Conclusions 61

ical predictions on a MF level, and we showed that both orders have the same energy, while
any combination of a simultaneous CDW and SF state was observed to have higher energy,
and should hence be rendered non-physical.

Through the remainder of the discussion, the FHM away from half-filling was considered,
which inevitably breaks the pseudo-spin symmetry. Applying a staggered potential to the
FHM, we calculated a set of four self-consistency equations: three from the CDW, SF and
mixed gaps and one for the chemical potential. Further, we gave a brief survey over well-
established results concerning the MF phase diagram of the extended Hubbard model. If
the nearest-neighbour interaction strength is repulsive, it stabilizes the CDW order, while if
it is attractive the SF phase will be preferred. Away from half-filling any negative nearest-
neighbour interaction whatsoever stabilizes the SF, while a positive one drives the system
into a mixed phase, characterized by the non-vanishing order parameter ∆π which measures
the difference between the values of the superconducting gap ∆0 on the two sublattices A
and B.
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Chapter 4

Bose-Fermi Mixtures

Bose-Fermi mixtures describe interacting bosons and fermions in optical (or crystal) lattices.
To motivate why it is useful to consider such a model, we briefly review several situations in
which bosons modify the low-energy physics of fermions and vice-versa.

The modern theory of conventional superconductivity relies on the experimentally verified
phonon-induced attractive interaction between fermions. On a fundamental level, this can
be elegantly derived within a field-theoretical approach [1] from the Fröhlich Hamiltonian
by integrating out the bosonic degrees of freedom. In order this to work, it is assumed
that the phonons are interacting weakly enough, so that they can be treated within the
Bogoliubov approximation. This leaves many questions open, among which: How does a
strongly correlated bosonic system coupled to a strongly interacting fermionic one changes
the physics of the model? What kind of phases of matter can occur in the ground state of
such a model?

Other systems, whose physics can be described by Bose-Fermi mixtures, include 3He-4He
mixtures, fermionic polarons and systems where electron-polaron interactions are dominating,
and even quark-gluon plasmas (although we shall restrict to the non-relativistic limit of the
model). Last but not least, the Bose-Fermi mixture is interesting on its own. Taking into
account the recent progress made in cold-atom experiments, being able to simulate and inves-
tigate the rich physics of the model in a highly controllable way under laboratory conditions
may be useful towards the future development of superconducting technology.

The goal of this chapter is to calculate the MF phase diagram of the model for bosons
at unit filling and fermions at half-filling. We compare it to the result obtained via a single-
site dynamical mean-field theory (DMFT) [2], which finds a double superfluid phase, mixed
phases in which one of the species looses its superfluid properties but charge order is present,
and a supersolid phase. We give intuitive physical explanations for the transition lines and,
where appropriate and possible, mean-field arguments to supplement these. Further, a self-
consistent mean-field theory of the BFM is proposed in the BCS limit which is capable of
describing all the phases found of the DMFT phase diagram. However, it produces only
two distinct phases, and is hence insufficient to capture the ground state properties entirely.
Towards the end of this chapter, we include finite temperature effects. The discussion is
closed with a critical analysis of the MF model compared to DMFT and real experimental
conditions.
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4.1 Properties of the Model

The Bose-Fermi mixture is described by the Bose-Hubbard model coupled to the Fermi-
Hubbard model via a density-density-type instantaneous interaction. The Hamiltonian is
given by

H = Hb +Hf +Hint

Hb = −tb
∑
〈ij〉

(b†ibj + h.c.)− µb
∑
i

ni +
Ubb
2

∑
i

ni(ni − 1)

Hf = −tf
∑
〈ij〉,σ

(c†iσcjσ + h.c.)− µf
∑
i

mi + Uff
∑
i

mi↑mi↓

Hint = Ubf
∑
i

nimi. (4.1)

Here tb and tf define the bosonic and the fermionic hopping amplitudes to nearest-neighbouring
sites, µb and µf are the chemical potentials, Ubb and Uff are the bosonic and fermionic on-
site interaction strengths. In this thesis, we assume a repulsive bosonic and an attractive
fermionic interaction. The interspecies interaction is described by Ubf . We shall comment on
its sign shortly. The Hilbert space for the model is given by the tensor product of a bosonic
and a fermionic Fock space. We shall refer to the bosonic (fermionic) part of the ground state
w.r.t. this factorization.

It is easily seen that the boson-fermion coupling breaks the Lieb-Mattis symmetry of
the Fermi Hubbard model, since it maps the fermionic occupation number operator to the
on-site magnetization operator (cf. Section 3.3.1). However the Particle-Hole symmetry of
the fermions can be used to reduce the computational effort needed to determine the phase
diagram. It follows that

H(tf , tb, Uff , Ubb, µf , µb, Ubf )
p. h.−→ H(tf , tb, Uff , Ubb,−µf , µb,−Ubf ) (4.2)

Therefore, the sign of Ubf is irrelevant for the spinful BFM at half-filling. From now on, we
shall work on the repulsive side assuming Ubf ≥ 0.

Moreover, if we think for a moment of Hint as a term modifying the chemical potential of
the fermions, it follows from the considerations in Section 3.3.2 that the charge sector of the
symmetry group of the FHM SUη(2) is broken to its U(1) subgroup, and hence we expect
the degeneracy in the ground state in the fermionic sector to be lifted. The continuous part
of the full symmetry group of the Bose-Fermi mixture reads

G = SUσ(2)× Uf (1)× Ub(1), (4.3)

where the subindices σ and b stand for the fermionic spin sector and bosons, respectively.
We have omitted the discrete lattice point symmetry group which has to be added to obtain
a complete group-theoretical description. The appearance of Charge Density Waves (CDW)
in the phase diagram (Fig. 4.1) signals that this part also plays an important role for the
low-energy physics.

In the following, we first discuss the DMFT ground state phase diagram of the model.
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4.2 Analysis of the DMFT Phase Diagram at Half-Filling

As mentioned already several times, single-site dynamical mean-field theory (DMFT) has
been employed to numerically simulate the Bose-Fermi mixture at unit filling for the bosons,
and half-filling for the fermions [2]. The model was found to display a very rich ground-
state phase diagram (c.f. Fig. 4.1). Four distinct phases have been found at temperatures
T/tf = 0.2 close to the absolute zero limit, containing charge density waves, superfluids and
an exotic supersolid in the (Ubf/tf , tb/tf ) plane. The fermionic hopping is used as an energy
reference scale and can be thought to be put to unity. We also mention that the attractive
interaction causes the fermions to pair in order to lower their energy. Whether these pairs
remain localized (CDW) or delocalize over the entire lattice (SF) depends on the remaining
parameters. In this section, we propose an intuitive explanation for the transition lines, some
of which appear rather peculiar at first sight.

Figure 4.1: The DMFT phase diagram of the Bose Fermi mixture at unit filling for the
bosons and half-filling for the fermions: the model parameters are Ubb/tf = 20,

Uff/tf = −10, and T/tf = 0.2. The abbreviations of the phases stand for charge density
wave (CDW), superfluid (SF) and supersolid (SS = CDW + SFb+f). The subscripts b and f

denote the bosonic and the fermionic sectors, respectively (image taken from [2]).

We begin by discussing the trivial cases of the lines Ubf = 0 and tb/tf = 0. The former
describes the fully decoupled pure Hubbard models, discussed thoroughly in Chapters 2 and 3.
Hence, starting from a critical value of the bosonic hopping tb/tf & 0.53, the bosons become
superfluid, in contrast to the Mott insulator which dominates in the regime tb/tf . 0.53. The
ground state of the fermions, as explained in Section 3.3.2, is degenerate and constitutes an
arbitrary superposition of a CDW and a superfluid.

Along the line tb/tf = 0, the bosons are completely frozen and their hopping between
nearest-neighbouring sites is truly inhibited, while the fermions provide the background. This
line also contains a critical point, where the cost of putting two bosons on the same site is
lower than the repulsive interaction between them. Hence, approximately at Ubf ≈ Ubb/2 a
bosonic CDW emerges, which in turn enhances the amplitude of the fermionic CDW.
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The phase CDW+SFf is the only phase where the bosons are found insulating at a finite
value of Ubf > 0. However, the insulator is perturbed by the CDW induced by the fermions.
From Fig. 4.1 it can be inferred that a small but finite interspecies interaction removes the
degeneracy in the fermionic ground state in favour of a simultaneous presence of both the
SF and CDW orders. This results in a fermionic supersolid (or a staggered superfluid1).
As the boson-fermion interaction is instantaneous, the bosonic density picks up the CDW
immediately. This can be traced intuitively via the mechanism described in Section 2.2.2
which makes use of higher order correction to the ideal insulator state. It is natural to expect
that increasing the bosonic hopping amplitude tb/tf , a similar transition to the MI-SF one
in the Bose-Hubbard model will occur. This is intimately related to the observed shift of the
MI-SF line reported in [6] for the spin-polarized mixture. Expressed in correct units, the MF
description of the MI-SF transition in the presence of a staggered potential, derived in Section
2.2.2 produces an extremely similar result, shown in Fig. 4.2. Hence, we strongly believe that
this entire line is governed by the bosonic insulator to superfluid transition.

Depending on the value of Ubf , upon increasing the hopping tb the system enters two
different phases. For strong boson-fermion interactions, the fermions are found to loose their
superfluidity and retain only the charge order. Moreover, this event coincides exactly with the
bosonic MI-SF line which ultimately renders the transition first order. This peculiar abrupt
change in the fermionic sector can be explained in the following intuitive way: at the mo-
ment when the bosons become superfluid, they delocalize completely. However, the fermionic
background is staggered, which immediately enhances the CDW in the bosonic system. Ac-
cording to our previous analysis in Section 2.2.1, any further increase in the bosonic hopping
tb leads to a decrease in the bosonic CDW amplitude, c.f. Fig. 2.8. Hence, the bosonic CDW is
strongest at the transition line, since it is certainly stronger there than in the insulating phase
where the hopping of the bosons is disfavoured. Taking into account the strong boson-fermion
repulsion, it is plausible that a strong bosonic CDW squeezes the fermionic wave function so
much that the fermions eventually localize in the staggered superfluid bosonic background,
and hence loose the superfluidity.2

Weak boson-fermion interactions, on the other hand, are insufficient to cause strong lo-
calization of the fermions. Therefore, the latter retain the superfluidity and the transition
which is purely due to the bosons becomes second order. Although such Ubf ’s do not cause
a major change in the system, it is expected that due to the increase in the bosonic CDW,
the fermionic CDW amplitude will also increase, in consistency with the back-action mecha-
nism proposed in [37]. The mixture then enters a double supersolid phase where both species
sustain both diagonal and off-diagonal long-range order. Starting from this SS phase, and
increasing the value of Ubf naturally leads to the loss of the fermionic superfluidity. This is
again due to the aforementioned squeezing induced by the bosons as a back-action, and the
mixture enters the CDW+SFb phase, undergoing a second-order phase transition.

The transition line to the double superfluid SFb+f at large fixed values of Ubf can also be
readily understood. Increasing the bosonic hopping amplitude beyond a critical value, the
bosons would like to get rid of the staggered order. This can be seen from the fact that the
square root of the density is proportional to the bosonic wave function, and any changes in the

1This state is not to be confused with what is usually called a staggered superconductor. In the latter case
the staggering refers to a non-vanishing ∆π gap.

2A similar scenario is possible for attractive boson-fermion interactions, where the fermion wave functions
are squeezed due to strong attraction on the sites with excess of delocalized bosons. This is consistent with
the fact that the phase diagram at half-filling is symmetric w.r.t. Ubf → −Ubf due to Particle-Hole symmetry.
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behaviour of the latter compared to the uniform case produces kinetic energy in excess. On
the other hand, a similar statement applies to the fermions, except that the energy balance
there is more subtle: the fermionic CDW is favoured to leading order for large values of Ubf ,
as the CDW is a direct consequence of the instantaneous density-density interaction. On the
other hand, the boson-fermion interaction does not favour the fermionic superfluidity to first
order.3 Hence, a double superfluid state is possible, only if the gain in energy of the bosons
is higher than the loss by the fermions. A compromise where the bosons exhibit a uniform
SF while the fermions display a pure CDW is not possible due to the density-density type of
coupling between the Hubbard models. This transition is again of second order.

A similar transition is found from the SS to the double SFb+f state for lower values of Ubf .
Since only the charge order is lost in this transition, it is of second order. We believe that
the mechanism stabilizing the SS phase at any finite value of Ubf whatsoever is independent
of the bosonic hopping strength tb, and hence the SS phase extends to infinity, although
it certainly shrinks down tremendously. Crossing this transition line to the SFb+f state in
Fig. 4.1 can be easily understood with the mechanism explained above, if we keep Ubf fixed
and increase the bosonic hopping. Why the mixture prefers to get rid of the charge order at
fixed hopping amplitude tb with increasing boson-fermion interaction Ubf remains a mystery,
since it is expected that the CDW is favoured in this case.

This concludes our brief summary of the phases and the explanation of the transition lines
in the DMFT phase diagram. In the next chapter, we proceed to develop and examine the
phases predicted by a self-consistent mean-field approach.

4.3 Mean-Field Theory of the Bose-Fermi Mixture

The physics of the Bose-Hubbard and the Fermi-Hubbard models has already been described
on the level of MF in Chapters 2 and 3. Since we are interested in the modifications introduced
by the interspecies density-density interaction, we propose the following natural mean-field
decoupling scheme to incorporate the first-order corrections:

nimi ≈ ni〈mi〉+ 〈ni〉mi − 〈ni〉〈mi〉. (4.4)

To allow for diagonal long-range order which exist in the phases where a CDW is present, we
assume to following form for the ground-state expectation values of the density operators

〈ni〉 = 1 + (−1)iη,

〈mi〉 = 1− (−1)iα, (4.5)

where η, α ∈ [0, 1] define the amplitudes of the bosonic and fermionic CDW’s, respectively.
The choice of sign for a particular sublattice is rather a convention, while the different signs
of the alternating factor reflect the positivity of the boson-fermion interaction. This type of
decoupling is equivalent to doubling the unit cell, or reducing the Brillouin zone. Hence, it
also breaks the discrete translational symmetry group.

The parameters α and η shall be determined self-consistently. It will turn out that they
are not independent of one another, and hence we implement the required back-action effect

3The boson-induced attraction between the fermions is a second order process, and its strength scales as
U2
bf/Ubb.
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discussed in [37]. The Hamiltonian of the BF mixture assumes the form

H =− tb
∑
〈ij〉

(b†ibj + h.c.)− (µb − Ubf )
∑
i

ni − αUbf
∑
i

(−1)ini +
Ubb
2

∑
i

ni(ni − 1)

− tf
∑
〈ij〉,σ

(c†iσcjσ + h.c.)− (µf − Ubf )
∑
i

mi + ηUbf
∑
i

(−1)imi + Uff
∑
i

mi↑mi↓

− Ubf
∑
i

(
1 + (−1)iη

) (
1− (−1)iα

)
︸ ︷︷ ︸

= Ns(1−ηα)

. (4.6)

The physical mechanism behind this approach is the following: First, we allow the fermions
to obtain a CDW order in the ground state at a finite value of Ubf . Due to the instantaneity
of the density-density interaction the fermions act to first order as a staggered external field
imposed on the bosons. In accordance with the results of Section 2.2.3, the bosons will
rearrange themselves and form a CDW. This, on the other hand, will act as a staggered field
back on the fermions. Due to the repulsive nature of the interaction, this will increase the
fermionic CDW amplitude. This process will be iterated until a stable equilibrium is reached.
Whether the charge order is preferred at all, will then ultimately be determined by comparing
the ground state energies of the states with and without long-range order.

In a recent work [37], it has been shown that beyond the MF level, this process can induce
long-range interactions between the species. Using a cumulant expansion scheme within the
framework of many-body perturbation theory, one can find expressions for the induced long-
range interaction strength. Naturally, the longer the range of the interaction, the weaker its
strength becomes [37]. In the case of 1d spin-polarized mixtures, these higher order terms
result in an ultraviolet divergence of the two-body interaction energy, if the back-action is
not taken into account. However, in the case of a strong attractive interactions between the
fermions in 3d, long-range corrections are expected to have an insignificant influence, since
the induced n.n. interaction strength W will be small compared to Ubf .

If we look carefully at (4.6), we will recognize the decoupled Bose-Hubbard and Fermi-
Hubbard models in the presence of a staggered potential, which we solved within a MF
approximation in Chapters 2 and 3, respectively. It will be computationally advantageous to
consider the bosonic CDW amplitude η = η(α) as a function of the fermionic one - α. We
also remind the reader of Eq. (3.41) which states that α ∼ ∆c with ∆c the fermionic CDW
order parameter. In the following discussion, we choose to use α instead of ∆c.

Let us begin by specifying clearly the somewhat more complex MF scheme we want to
implement. We restrict the analysis to the case where the bosons are superfluid, as the
insulating case was discussed in the previous chapter. We also discuss the fermions in the
BCS limit where the interaction strength is supposed to be |Uff | ≤ 5. This time, we consider
the general MF theory of the BFM at any fermionic filling. We also include finite temperature
effects through the parameter β = 1/T , denoting inverse temperature. The Bose and Fermi
distribution functions are denoted by fF and fB, respectively: fF/B(·) = (exp(β(·))± 1)−1.

1. We pick a number α ∈ [0, 1], and consider the Bose-Hubbard model in the presence of
a staggered field as in Section 2.2.3. Within the Bogoliubov approximation we choose a
viewpoint considering the chemical potential µb(n0) as a function of the total condensate
fraction n0. The chemical potential µb and the ~k = 0 condensate fraction (and hence
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the ~k = ~π condensate fraction) are determined as a solution of Eq. (2.45) which we
repeat here

(−ztb − µb + Ubf )A− αUbfB + n0UbbA(1 + 2B2)
!

= 0

(ztb − µb + Ubf )B − αUbfA+ n0UbbB(1 + 2A2)
!

= 0. (4.7)

We also recall the non-linear constraint A2 +B2 = 1 for completeness.

2. To fix the total condensate fraction, we calculate the bosonic density inside the (double)
unit cell, using the condition for unit filling. It is given by the solution of the following
self-consistency equation

1 = n0 +
1

2Ns

∑
k∈BZ′,s

[
−1 +

∂E
(b,s)
k

∂µb
coth

(
β

2
E

(b,s)
k

)]
. (4.8)

Recall that the energies E
(b,1/2)
k both depend on α explicitly, and implicitly via the

parameters A and µb, which we have already found.

3. The amplitude of the bosonic CDW, η(α), is determined from inside the unit cell by
calculating the expectation value of the bosonic density at the sublattice A which con-
tains the origin. This can be done with the help of the MF condition 〈ni〉 = 1+η which
is equivalent to the minimization η = − 1

Ns
∂(αUbf )Ω

b, with Ωb the bosonic free energy
(c.f. Eq. (4.13)), and yields:

η = n02AB − 1

2Ns

∑
k∈BZ′,s

∂E
(b,s)
k

∂(αUbf )
coth

(
β

2
E

(b,s)
k

)
. (4.9)

Notice that the parameter dependence on µb, A and n0 has been eliminated in the previ-
ous two steps, and hence η(α) is a function determined solely by the model parameters
α, Ubb, tb, and Ubf .

4. Next, we turn to the Fermi-Hubbard model in the presence of a staggered potential.
The fermionic chemical potential is found again from the number equation for the full
(double) unit cell, which results in

m =
1

2Ns

∑
k∈BZ′,s

[
1 +

∂E(f,s)

∂µf
tanh

(
β

2
E

(f,s)
k

)]
. (4.10)

The condition for half-filling is equivalent to µf = Ubf , which corresponds to filling
in the lower Hubbard bands completely. We recall that at half-filling, we furthermore

have ∆π = 0 due to Particle-Hole symmetry. The band structure E
(f,1/2)
k is given in

Eq. (3.66).

5. Further, we need to find the gap equations for the s-wave gap ∆0 and the π-momentum
gap ∆π. In this case, the minimization procedure is equivalent to the self-consistent
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calculation, leading to the equations:

|∆0| =
|Uff |
2Ns

∑
k∈BZ′

∂E(f,s)

∂|∆0|
tanh

(
β

2
E

(f,s)
k

)

∆π =
|Uff |
2Ns

∑
k∈BZ′

∂E(f,s)

∂∆π
tanh

(
β

2
E

(f,s)
k

)
. (4.11)

The precise form of these equations is not particularly illuminating. We remark that

they are the same as in Eq. (3.55), with the replacements ∆c →
|Uff |α

2 + η(α)Ubf and
µf → µf − Ubf .

6. Last, we fix the MF criterion 〈mi〉 = 1− α for the fermionic density by calculating the
total density at the origin (sublattice A). The resulting equation can be viewed as the
self-consistent equation for the fermionic CDW amplitude α. It reads

α =
1

Ns

∑
k∈BZ′

[
(
|Uff |α

2 + η(α)Ubf

)
+ (µf − Ubf )

|∆0|∆π+(µf−Ubf )

(
|Uff |α

2
+η(α)Ubf

)
X

E
(f,1)
k

tanh

(
β

2
E

(f,1)
k

)

+

(
|Uff |α

2 + η(α)Ubf

)
− (µf − Ubf )

|∆0|∆π+(µf−Ubf )

(
|Uff |α

2
+η(α)Ubf

)
X

E
(f,2)
k

tanh

(
β

2
E

(f,2)
k

)]
.

(4.12)

This determines the parameter α (∆c) self-consistently. Notice that this does not!
correspond to minimization of the total ground state energy, since in general one would
have to also take into account the functional dependence of η(α). The reason why this,
and not the minimization one, is the correct equation is that we have to satisfy the MF
constraint 〈mi〉 = 1− α, which closes the cycle.

We can now iterate the above steps until a solution is found. It may well happen, that
the system has multiple fixed points. In such a case, the correct solution will be determined
by that one which minimizes the free energy Ωtot of the Bose-Fermi mixture within the MF
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approximation, given by

Ωtot = Ωb + Ωf + Ωint

Ωb = Ns

[
−ztb(A2 −B2)− µb + Ubf − αUbf2AB +

Ubb
2
n0(A4 + 6A2B2 +B4)

]

− 1

2
Ns(µb − Ubf − 2U) +

1

2

∑
k∈BZ′,s

E
(b,s)
k − 1

β

∑
k∈BZ′,s

log

1 + coth
(
β
2E

(b,s)
k

)
2


Ωf =

Ns

|Uff |

((
|Uff |

2
α

)2

+ |∆0|2 + |∆π|2
)

−
∑

k∈BZ′,s

(
E

(f,s)
k + (µf − Ubf )

)
+

2

β

∑
k∈BZ′,s

log

1 + tanh
(
β
2E

(f,s)
k

)
2


Ωint = −NsUbf (1− η(α)α) , (4.13)

where the dispersion of the excitations E
(b,1)
k and E

(f,1)
k was calculated previously in Eqs. (2.55)

and (3.55), respectively.

The results of the solution of these self-consistency equations will be discussed in the next
section.

Before we close this section, we would like to give a generalization of the boson-induced
fermion-fermion interaction of Eq. (1.3) to the case where the bosons display both the super-
fluid and the charge orders. A straightforward calculation yields

Hind =
1

Ns

∑
ki,q∈BZ′,σσ′

Uind(q, ω; ki)c
†
k1σ
c†k2σ′ck3σ′ck4σ

Uind(q, ω; ki) =
∑
s

2n0U
2
bf

(
ε̄k

ω2 −
(
E

(b,s)
k

)2 δk1,kδk2,kδk3,k+qδk4,k−q

+ 2AB
ε̄k+π

ω2 −
(
E

(b,s)
k+π

)2 δk1,kδk2,kδk3,k+q−πδk4,k−q

)
, (4.14)

with ε̄k = εk +
√

(αUbf )2 + (ztb)2, and εk = −
√

(αUbf )2 + ε2
k is the free dispersion in the

presence of a staggered field. Clearly, the above formula reduces to Eq. (1.3) in the case of
a missing charge order, i.e. α = 0. This modification is important to study unconventional
mechanisms of fermionic pairing within a supersolid phase. For instance exotic d-wave super-
solids might be possible if a positive fermion-fermion interaction is used to effectively close the
s-wave channel (c.f. the discussion in Chapter 5). Whether this makes the SS state collapse
or not is a topic of future research.
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4.4 Mean-Field Phase Diagram of the BFM

The T = 0 phase diagram at half-filling is governed by the following set of two self-consistency
equations, derived as a special case from the procedure in the previous chapter:

α =
2

Ns

∑
k∈BZ′

|Uff |α
2 + η(α)Ubf√

ε2
k + |∆0|2 +

(
|Uff |α

2 + η(α)Ubf

)2

|∆0| =
|Uff |
Ns

∑
k∈BZ′

|∆0|√
ε2
k + |∆0|2 +

(
|Uff |α

2 + η(α)Ubf

)2
, (4.15)

where we have used that µf = Ubf and ∆π = 0 at half filling. The function η(α) is determined
from Eq. (4.9). Notice that this set of equations is particle-hole symmetric: indeed, Particle-
Hole symmetry is equivalent to sending Ubf → −Ubf and α → −α. The statement then
follows from the relation η(−α,−Ubf ) = η(α,Ubf ) which has been confirmed numerically.
A rigorous derivation of the latter is possible in the limits of Ubb = 0, in which ηfree(α) =

αUbf/
√

(αUbf )2 + (ztb)2, and for small α, for which η(α)
αUbf→0
∼ αUbf .

The system (4.15) has only two non-trivial solutions.4 This fact is a direct consequence
of the broken pseudo-spin symmetry, which allowed a continuous family of solutions for the
Fermi-Hubbard Model (c.f. Section 3.5). The two solutions can be found in the following way:
assume that we are in a phase where ∆0 6= 0. We can use the second equation and plug it in
the first one to obtain

α =
2

|Uff |

(
|Uff |

2
α+ η(α)Ubf

)
. (4.16)

Simplifying, we are left with η(α)
!

= 0, whose only solution is α = 0, since η(α) is a monoton-
ically increasing function. The other solution is found at ∆0 = 0. Hence, the resulting phase
can either be a SF or a CDW, but not a superposition.

To understand which one of the two possibilities minimizes the total ground state energy,
observe that a further consequence of (4.15) is |Uff |α/2 ≥ |∆0|. A numerical comparison of
the ground state energies of the two states clearly favours the charge order at any Ubf . We
believe that this can be traced back to the behaviour of the total GS energy as a function of
the order parameters, which was observed in the numerical plots. The reason why the CDW
energy is lower than that of the double SFb+f state is that the energy gain by the bosons is
insufficient to overcome the sum of the energy loss of the fermions due to the enhanced CDW
(c.f. the discussion of the CDW+SFb to SFb+f transition line for large Ubf in Section 4.2),
and the MF decoupling energy (c.f. Ωint in Eq. (4.13)). Nevertheless, for small enough values
of Uff , i.e. deep into the BCS regime, the values of the ground state energies differ in the
fourth digit after the decimal point. The same situations is observed in the deep SF limit
of the bosonic sector, Ubb/tb ∼ 1. Naturally, the bosonic CDW amplitude η takes on values
∼ 10−3, which in turn leads to the relation |Uff |α/2 ≈ |∆0|. This is consistent with our
previous analysis, as the bosons essentially behave as if they were free, and is also responsible
for the small difference in the ground state energies of the SF and CDW states of the fermionic
sector.

4There always exists the normal phase, characterized by α = 0 and ∆0 = 0. This is a solution of (4.15),
since for α = 0 we necessarily have η(0) = 0
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Figure 4.2: The MF phase diagram of the Bose Fermi mixture at unit filling for the bosons
and half-filling for the fermions: the model parameters are Ubb/tf = 20, Uff/tf = −4, and
T/tf = 0(abbreviations are the same as in Fig. 4.1 ). The MI-SF transition line for the

bosons looks extremely similar to the one found by DMFT (for a detailed discussion, see
Chapter 4.2). In the grey zone we could not make rigorous statements due to limitations of

the Bogoliubov approximation used.

Finite temperature does not change the above analysis in any way. This has been con-
firmed by the numerical solution of the equations. Indeed, the values of the SF gap function
and the charge density wave amplitude decrease with increasing temperature and, eventually,
beyond a certain value of T cease to exist, but finite temperature does not appear as a relevant
factor in the MF model. Due to the staggered field induced by the bosons, the CDW gap
is larger than the SF one, and vanishes last with increasing temperature. This is intuitively
clear, since temperature is competing with the two gaps at the finite-T transition boundary.
Summarizing, the CDW state is preferred by the fermionic sector at finite temperature and
half-filling, and the ground state of the BFM is again a CDW+SFb.

In summary, the MF description ultimately finds the CDW+SFb phase at half-filling in the
region of the phase diagram where the bosons can be treated within the extended Bogoliubov
approximation, c.f. Fig 4.2.

4.5 Outlook

In this chapter we proposed a self-consistent mean-field treatment of the Bose-Fermi Hub-
bard model. The fermionic sector enjoys a reduced symmetry even at half-filling, due to the
density-density boson-fermion interaction which ultimately breaks the pseudo-spin SUη(2)
symmetry of the pure FHM. As a consequence, the Lieb-Mattis transformation no longer
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applies. Nevertheless, a similar role for the model plays the Particle-Hole symmetry, which
requires simultaneous flipping the sign of the fermionic density and the boson-fermion inter-
action strength. Therefore, the phase diagram of the model is axially symmetric w.r.t. the
line Ubf = 0.

Treating the boson-fermion interaction along the lines of mean-field effectively decouples
the bosons from the fermions. One then finds both the Bose and Fermi-Hubbard models in
the presence of a staggered potential, whose strength is determined by the on-site density
expectation value of the opposite species. This allows to look for exotic supersolid states,
characterized by a simultaneous superfluid and crystalline long-range orders. We successfully
calculated a very similar transition line to the one observed in DMFT for the CDW+SFf to
CDW+SFb transition, as a consequence of the bosonic MI-SF transition in the presence of a
staggered potential. Hence, this transition is strongly believed to be governed by the bosons.

As a solution to the self-consistency equations of the fermionic system, we recover the
familiar pure SF and CDW phases. A proof was given that a supersolid phase is not possible
at half-filling within this description. As the main reason for this we identified the difference in
the values of the CDW and SF gap induced by the staggered potential. The ultimate ground
state of the entire mixture has been determined by comparing the total MF free energy of
the solutions. We found that MF supports only the CDW+SFb phase. The energy balance
shows that the gain in energy in the bosonic sector due to the induced density modulations
(compared to the uniform case) is smaller than the sum of the positive MF decoupling cost
(due to Ωint), and the loss in energy in the fermionic sector due to an increased CDW gap
(by the back-action of the periodically modulated bosonic density). We verified that finite
temperature does not have any effect on the ground state phase properties, and the CDW
gap vanishes after the SF gap has already done so, with increasing temperature.

The MF description of the BFM clearly misses two of the phases found by DMFT: the
SS and the SFb+f. Hence, it cannot be rendered a good enough description of the model.
There are various reasons why it could potentially produce misleading results. First, the
values of the free energies deep in the BCS limit differ only in the fourth digit after the
decimal point. Although the relative error tolerance of the numerical solver was set to 10−6,
numerical imprecision might have been the cause for not finding a SFb+f phase. Another
conceivable reason for this is the effect of quantum fluctuations, typically neglected within
MF.

Moreover, the above analysis treats the attractive FHM in the BCS regime. Therefore,
its applicability is limited to values of |Uff |/tf . 5. It would be certainly possible to extend
the analysis to the BEC side, where the fermions can be replaced by hardcore bosons with
renormalized hopping and repulsive nearest-neighbour interaction strengths (c.f. the discus-
sion is Section 3.4 ). Moreover, the entire bosonic description applies in the deep superfluid
regime only, due to the limited validity of the Bogoliubov approximation. Hence we are not
able to make rigorous statements about the states of the fermionic sector which appear in the
immediate vicinity of the boson-induced transition.

One advantage of the MF decoupling proposed in this chapter is that it implements in a
natural way the back-action of the bosons on the fermions. This effect was argued to be of
crucial importance if one wants to obtain an good description of the mixture [37, 58]. In the
same work, Mehring and Fleischhauer considered a spin-polarized mixture which allowed them
to effectively integrate out the fermions. This is not possible without further approximations
in the spinful case, as it assumes that the ground state of the Fermi-Hubbard model is precisely
known. Nevertheless, it should be theoretically possible to develop a MF description for the
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fermions and integrate out the effective quadratic Hamiltonian, but the analysis becomes
computationally heavy. However, if carefully carried out, this procedure, in turn, would result
in an effective bosonic Hamiltonian, with additionally induced long-range density-density
interactions. They are definitely sub-leading terms, but could have a significant influence on
the ground-state energy, and may stabilize the SFb+f phase.

Compared to DMFT, the main disadvantage of the MF approach is that it misses not
only the higher-order corrections, but also any retardation effects. The latter certainly in-
duce spontaneous density fluctuations which could stabilize one order or another, given the
admittedly sensitive nature of our MF theory. Furthermore, MF is not capable of capturing
the BCS-BEC crossover regime at all.

Last, but not least, even DMFT misses to implement significant effects found in experi-
mental systems, such as the renormalization of the hopping parameters and the interaction
strengths of the species due to the induced squeezing of the wave functions via the back-action
mechanisms, as explained in [58]. Moreover, the effects of higher bands and the harmonic
confinement potential are completely left out of considerations, but may still change parts
of the ground-state physics. A comprehensive understanding of the Bose-Fermi mixture is
expected to be able address this issues.
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Chapter 5

Unconventional Superfluidity in
Bose-Fermi Mixtures

5.1 Introduction

Due to advanced progress in recent experiments with ultra-cold atoms, theoretical work in the
field of condensed matter has been thoroughly examined. Optical lattices provide excellent
controllability over model parameters and allow for precise testing of theoretical results in
modern laboratories. It is expected that in the nearest future this advancements will reach
the technology and methodology to reveal the physics of one of the quite complex and exciting
models - the Bose-Fermi mixture.

The Bose-Fermi mixture was initially proposed to model the mutual effect of interacting
bosons on interacting fermions and vice-versa. Owing to recent success of BCS theory in
describing conventional superconductivity, it has been proposed and proved [25] that in the
limit of superfluid bosons, an effective attractive interaction between the fermions can be
induced, leading to pairing between them.

In this chapter, we present a detailed mean-field analysis of different types of unconven-
tional pairing mechanisms in a Bose-Fermi mixture.

Consider a system of spinless bosons and spinful fermions on a 3D cubic lattice with the
fermionic (pseudo-) spin, as an internal degree of freedom, denoted by s =↑, ↓. Both species
are allowed to hop between nearest-neighbouring sites only, with hopping amplitudes tb and
tf , respectively. Bosons can interact with each other and with fermions of either spin, via
density-density coupling, whereas only fermions of opposite spin can interact with one another
due to the Pauli Exclusion Principle. Such a system is called a Bose-Fermi mixture and its
Hamiltonian is therefore given by
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H = Hb +Hf +Hint, (5.1)

Hb = −tb
∑
〈ij〉

b†ibj − µb
∑
i

nb
i +

Ubb

2

∑
i

nb
i (nb

i − 1),

Hf = −tf
∑
〈ij〉,s

c†iscjs − µf
∑
i,s

nf
is + Uff

∑
i

nf
i↑n

f
i↓,

Hint = Ubf

∑
i,s

nb
i n

f
is,

with Hb and Hf the usual Bose and Fermi-Hubbard Hamiltonians. We are interested
in the regime of unit filling for the bosons, i.e. 〈nb

i 〉 = 1, and half-filling for the fermions,
i.e. 〈nf

is〉 = 1/2. Furthermore, we assume a repulsive bosonic interaction, Ubb > 0, to avoid
bosonic collapse and an attractive fermionic one, Uff < 0, to enable unassisted fermionic
pairing. At this particular commensurate filling, it can be verified using a Particle-Hole
transformation that the physics for Ubf < 0 can be obtained from that of Ubf > 0. Therefore,
we use Ubf > 0 throughout the rest of this note.

The purpose of this work is to investigate the different fermionic pairing scenarios that
can be induced by superfluid bosons within mean-field theory. To assure for superfluidity, we
consider low enough temperatures. Then the bosons can be treated within the Bogoliubov
approximation and an effective fermion-phonon Hamiltonian is obtained [2, 55]:

Heff =
∑
k,s

(εf
k − µf )c†kscks +

1

2Ω

∑
k,ss′

V eff
k,ss′ρk,sρ−k,s (5.2)

with ρk,s =
∑

ps c
†
k+p,scps the fermionic density operator of spin s and momentum k and the

fermionic dispersion εf
k = −2tf [cos(kx) + cos(ky) + cos(kz)] =: −tfγk. The effective potential

is given by

V eff
k,ss′ = Uffδs,−s′ + Vind(k). (5.3)

The induced part of the potential Vind(k) is obtained within perturbation theory from the
bosonic part of the Hamiltonian [2, 55]. In the fast-phonon limit, when the phonon velocity
sph =

√
2nbUbbtb is much larger than the Fermi velocity vF =

√
2EF/m∗, the frequency

dependence of Vind(k), and thus any retardation effects, can be safely neglected to obtain

Vind(k) = −
U2

bf

Ubb

1

1 + ξ2(6− γk)
, (5.4)

with ξ =
√
tb/2nbUbb, the so-called bosonic correlation length. In this limit, the bosons

induce a purely attractive potential for the fermions that can lead to pairing even when
fermions have initially been free, i.e. for Uff = 0. Moreover, fermions of the same spin s
are now also interacting, allowing for the formation of exotic bound states, such as p-wave
pairing.

Due to the momentum dependence of the potential, the gap function needed for the inves-
tigation of the unconventional pairing mechanisms will also exhibit a non-trivial dependence
on the momentum k, a feature not present in BCS theory. Since for a general k-dependence
no exact analytic results can be obtained, owing to the complexity of the gap equation (see
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below), we choose to investigate the limit of small bosonic healing length, ξ � 1, and expand
the potential as follows

Vind(k) ≈ −
U2

bf

Ubb

(
1

1 + 6ξ2
+

ξ2

(1 + 6ξ2)2
γk

)
= −U −Wγk, (5.5)

with the short-hand notation U := U2
bf/Ubb(1+6ξ2)−1 > 0, and W := U2

bf/Ubbξ
2(1+6ξ2)−2 >

0. The approximation is valid for ξ . 0.3 within an error of at most 3%1, as can be seen
from Fig. 5.1. For example, if one has Ubb/tf = 20 and tb/tf ≈ 1 one gets at unit filling
ξ =

√
1/40 ≈ 0.15.
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Figure 5.1: (color online): Linear approximation to Vind(k) for different values of the
bosonic healing length ξ within the 1st Brillouin zone

Although unconventional pairing is mostly pronounced in the limit of ξ ≈ 1, [55], the
above approximation allows for invaluable analytical results showing astonishing agreement
with numerical simulations. We develop a method of low-Tc expansion to perform the com-
plicated lattice integrals using an almost perfect approximation to the exact density of states.
This leads to the derivation of transcendental equations for the critical temperature Tc of
the different pairing bound states, which are eventually solved numerically to determine the
functional dependence of Tc on the constants U and W .

5.2 Unconventional Pairing

Following the introduction in the previous chapter, we consider a system given by the Hamil-
tonian

H =
∑
k,s

εkc
†
kscks +

1

2Ω

∑
k,s,s′

Vk,ss′ρk,sρ−k,s (5.6)

with the dispersion εk = −tfγk − µ and γk = 2[cos(kx) + cos(ky) + cos(kz)]. The potential is
given by Vk,ss′ = Uffδs,−s′ + Vind(k) with Vind(k) = −U −Wγk.

1estimated as maxγ∈[−3,3]

∣∣∣Vexact(γ)−Vapprox(γ)

Vexact(γ)

∣∣∣ = 3%
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We are interested in the different types of unconventional superconductivity within mean-
field theory that the above model exhibits. The gap equation for a generic k-dependent gap
function ∆k,ss′ = Ω−1

∑
p Vs,s′(k − p)〈c

†
psc
†
−p,s′〉 is given by [55]

∆k,ss′ = − 1

2Ω

∑
p

Vs,s′(k − p)
∆s,s′(p)

Ep
tanh

(
βEp

2

)
, (5.7)

where Ep =
√
ε2
p + ∆2

p and Ω is the volume of the system. We note that the p−summations

in this chapter are always over the first Brillouin zone.
In the following, we shall distinguish between singlet (s- and d-wave) and triplet (p-wave)
pairing mechanisms characterized by order parameters obeying the following symmetries [46,
3]:

s-wave: ∆k =
∆s√
8π
, with ∆s = const.

extended s-wave: ∆k = ∆s−
γk√
48π3

dyz-wave: ∆k =
1√
2π3

∆yz sin ky sin kz =: ∆yz
ζ1
k√

2π3

dxz-wave: ∆k =
1√
2π3

∆xz sin kx sin kz =: ∆xz
ζ2
k√

2π3

dxy-wave: ∆k =
1√
2π3

∆xy sin kx sin ky =: ∆xy
ζ3
k√

2π3

dz2-wave: ∆k = ∆z2
3 cos kz − 1

2γk√
24π3

=: ∆z2
τk√
24π3

dx2−y2-wave: ∆k = ∆x2−y2
1√

32π3
2(cos kx − cos ky) =: ∆x2−y2

ηk√
32π3

(5.8)

p-wave: ~dk =
∆p

√
4π3

(sin kx, sin ky, sin kz) (5.9)

The irrelevant normalization prefactors make sure that the functions on the RHS including
γk, τk, ηk and the ζik’s are orthonormal within the first Brillouin zone. The extended s-wave
order parameter still preserves the full rotational symmetry of the gap function, but allows for
several nodes on the Fermi sphere compared to the conventional s-wave symmetry. The dz2-
and the dx2−y2-wave gap functions lead to degenerate transition temperatures, as mentioned
in [46]. We shall also observe and verify this fact later on in our discussion.

Before we continue, we take a look at the RHS of the gap equation (5.7). We use a
trigonometric identity to decompose γk−q =

∑
i(cos ki cos qi + sin ki sin qi).

5.3 Singlet Pairing

Let us first consider singlet pairing only. The gap function is, consequently, an even function

of p, and if we define F (p) :=
tanh(βEp/2)

Ep
, Ep =

√
ε2
p + ∆2

p, which are also even, passing to

the TD-limit
(∑

p −→ Ω
∫
BZ

d3p
(2π)3

)
the terms proportional to the odd functions sin pi vanish
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due to symmetry. Therefore, we have γk−q
singlet

= 2
∑

i cos ki cos qi, and hence the potential
factorizes. The next step is to further decompose γk−q into the ONB defined above. Once we
have this decomposition, the gap equation for singlet pairing can be decomposed into several
independent ones for the linearly independent, k-dependent coefficients. We make the ansatz
(which turns out to be exact within the approximation of Eq. (5.5))

γk−q = c1(k)
1√
8π3

+ cγ(k)
γq√
48π3

+ cη(k)
ηq√
32π3

+ cτ (k)
τq√
24π3

+
∑
i

cζi(k)
ζi(q)√

2π3
(5.10)

Due to symmetries, the coefficients c1 = cζi = 0 all vanish. The remaining ones yield:

γk−q = aγγkγq + aηηkηq + aττkτq, (5.11)

with aγ = 1/6, aη = 1/4, and aτ = 1/3. Since singlet pairing requires s = −s′, the constant
first term in the potential has to be added to the equation above. Defining V := Uff −U , the
part of the potential relevant for s- and d-wave pairing reads V (k − q) = V −W (aγγkγq +
qηηkηq + aττkτq).

As mentioned before, for a general k-dependent potential the gap function is also k-
dependent and can, therefore, be also expanded in the lattice ONB considered above. Ne-
glecting higher order contributions, we have

∆
(singlet)
k,ss′ ≈ δs,−s′

(
∆s√
8π3

+
∆s−√
48π3

γk +
∆x2−y2√

32π3
ηk +

∆z2√
24π3

τk

)
(5.12)

Plugging it into the gap equation and comparing the coefficients on both sides, and using
V = Uff − U , we obtain the following self-consistency equations:

∆s√
8π3

= − V

2Ω

∑
p

∆pF (p), (5.13)

∆s−√
48π3

=
W

2Ω
aγ
∑
p

∆pγpF (p), (5.14)

∆x2−y2√
32π3

=
W

2Ω
aη
∑
p

∆pηpF (p), (5.15)

∆z2√
24π3

=
W

2Ω
aτ
∑
p

∆pτpF (p). (5.16)

Recalling the purpose of this work, we proceed to investigate the transition temper-
atures for s-wave, extended s-wave, and d-wave pairing separately. Since the normal-to-
superconductor transition is a continuous one, at the critical temperature the gap vanishes
and we have Ep = εp.

For pure s-wave pairing (s- and extended s-wave simultaneously), putting Fp(β) = Fp(βc) =
Fp and neglecting the d-wave contributions yields:
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∆s = − V

2Ω

∑
p

(∆s +
∆s−√

6
γp)Fp, (5.17)

∆s− =
W

2Ω
aγ
∑
p

(
√

6∆s + ∆s−γp)γpFp. (5.18)

To keep the notation simple, we follow [39] and define the auxiliary functions

ϕ1(βc) :=
1

2Ω

∑
p

Fp(βc) (5.19)

ϕ2(βc) :=
1

2Ω

∑
p

γpFp(βc) (5.20)

ϕγ(βc) :=
1

2Ω

∑
p

γ2
pFp(βc). (5.21)

Then the above system takes the form:

(
−(1 + V ϕ1) − V√

6
ϕ2√

6aγWϕ2 aγWϕγ − 1

)(
∆s

∆s−

)
!

= 0, (5.22)

which leads to the transcendental equation that determines the critical temperature:

aγVWϕ2
2(βc) + (1 + V ϕ1(βc))(1− aγWϕγ(βc))

!
= 0. (5.23)

The standard (conventional) s-wave pairing follows as a special case from (5.13) or (5.23)
neglecting all the unconventional pairing contributions:

1
!

= −V ϕ1(βc). (5.24)

The critical temperature for extended s-wave pairing only, on the other hand, reads

1

aγW

!
= ϕγ(βc). (5.25)

The critical temperature for d-wave pairing is obtained in a similar fashion from equation
(5.15), and is given by

1

aηW

!
= ϕη, with ϕη(βc) :=

1

2Ω

∑
p

η2
pFp(βc). (5.26)

For completeness, we also give the corresponding equation for the dz2 symmetry:

1

aτW

!
=

1

2Ω

∑
p

τ2
pFp(βc). (5.27)

That the value for βc obtained from (5.26) is the same as the one from (5.27) requires
some algebra and will be shown shortly.
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5.4 Triplet Pairing

Now, we turn back to p-wave pairing. The starting point is once again the trigonometric
identity γk−q =

∑
i(cos ki cos qi + sin ki sin qi). This time, however, the symmetry requires

the gap function to be antisymmetric and the fermions couple with equal spin, i.e. ∆
(t)
i (k) :=

δs,s′∆
p sin ki√

4π3
. The gap equation takes the form

∆
(t)
i (k) = − 1

2Ω

∑
p

[−U −Wγk−p] ∆
(t)
i (p)Fp(β). (5.28)

Notice that the constant part of the potential ∝ Uffδs,−s′ is not present here. Since the sum-
mation is over momenta in the first Brillouin zone only, for p-wave pairing the only remaining

terms are γk−p
triplet

= 2
∑

i sin ki sin pi = 2
∑

i λkiλpi , where λki := sin ki.

Plugging this into the gap equation (5.28), we observe that the part of the potential

∝ U sums up to zero too in the TD-limit: U
2Ω∆p

∑
p λpiFp −→ ∆p U

2

∫
BZ dpλpiFp

~p→−~p
=

−∆p U
2

∫
BZ dpλpiFp, since λpiFp is odd for any i ∈ {x, y, z}.2 Hence, we obtain the gap

equation

1
!

=
2W

2Ω

∑
p

sin2 piFp(β). (5.29)

Similar arguments as for singlet pairing show that the critical temperature for p-wave pairing
in either direction i can be computed from

1

2W

!
= ϕp(βc), with ϕp(βc) :=

1

2Ω

∑
p

sin2 pxFp(βc). (5.30)

5.5 Approximate Results for the Critical Temperature

Approximate results for the critical temperatures can be obtained using the density of states
(DOS) on a 3D cubic lattice, denoted by N3D(ε). To this end, we need to compute (and
invert, if possible) the functions ϕj(βc), j ∈ {1, 2, γ, η, p}. We proceed as follows:

1. We pass to the TD limit.

2. We make use of a logarithmic approximation to the 2D DOS to define the 3D DOS.

3. Due to the structure of N3D(ε), we use suitable approximations to Fp(βc) to divide the
dimensionless half bandwidth interval (to be integrated over) in two pieces: [0, 3] =
[0, 1] ∪ [1, 3].

4. We keep the full temperature dependence of Fp(βc) in the interval [0, 1] where exact
results for the 3D DOS can be obtained, while putting βc � 1 in [1, 3], thus replacing
tanh(βcε/2) ≈ 1. Hence, we ignore the temperature contribution of the complicated
part of N3D(ε) in the interval [1, 3] evaluating the resulting integral to a non-universal
constant.

2Here ∆p is just the amplitude of the p-wave gap function and thus does not change its sign.
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Let us recall the definitions

ϕ1 =
1

2Ω

∑
p

Fp, ϕ2 =
1

2Ω

∑
p

γpFp

ϕγ =
1

2Ω

∑
p

γ2
pFp, ϕη =

1

2Ω

∑
p

η2
pFp

ϕp =
1

2Ω

∑
p

sin2 pxFp (5.31)

We begin by observing that Fp = F (γp) and N3D(ε) ∼ N3D(γp). Therefore, ϕ1, ϕ2, and ϕγ
are relatively easy to compute. The computation of ϕη turns out to be the hardest. Luckily,
there exists a way to relate it to the others which we show here. First, define a measure

dµ(p) := d3p
2(2π)3

Fp to integrate over the first Brillouin zone. Now, observe that for any fixed i

and any function f = f(pi) we have
∫
dµ(p)f(pi) =

∫
dµ(p)f(pj) for any i, j ∈ {x, y, z}, since

Fp = F (γp), γp = 2
∑

i cos pi, and pi ∈ [−π, π]. Then, we have

3ϕη + ϕγ =

∫
BZ
dµ(p)3η2

p + γ2
p

=

∫
BZ
dµ(p)4

(
4
(
cos2 px + cos2 py

)
+ cos2 pz

− 4 cos px cos py + 2 (cos px cos pz + cos py cos pz)

)
pi↔pj

=

∫
BZ
dµ(p)36 cos2 px = 36(ϕ1 − ϕp) =: 36ϕ̃p, (5.32)

where the underlined terms cancel each other out due to the aforementioned symmetry prop-
erty. Finally, we obtain the relation

ϕη = 12ϕ̃p −
1

3
ϕγ . (5.33)

Using precisely the same symmetry argument, it follows that aηϕη = aτϕτ , and hence
Eqs. (5.26) and (5.27) for dz2 and dx2−y2 symmetry, respectively, yield the same critical
temperature.

5.5.1 Calculation of ϕ1 and ϕ̃p

In order to calculate the integrals in the TD limit we need an approximation to the exact
DOS on a simple cubic lattice. It can be calculated from the 2D one which is given by

N2D(ε) =
1

π2

∫ π

0
dpx

∫ π

0
dpyδ(ε− 2tfW (px, py)) =

2

Dπ2
K

(√
1−

( ε
D

)2
)
, (5.34)

with K(x) the complete elliptic integral of the first kind and D = 4tf the half bandwidth.
The function W (px, py) = − cos px− cos py is proportional to the 2D lattice dispersion. Since
this is a special function we use a logarithmic approximation whose error turns out to be
extremely small, as can be seen from Fig. 5.2:
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N2D(ε) ≈ 2

Dπ2
log

∣∣∣∣∣4
√

2D

ε

∣∣∣∣∣ . (5.35)
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Figure 5.2: (color online): Density of states
N2D for a 2D square lattice: exact curve

(solid blue line) vs. the logarithmic
approximation (dashed red line).
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Figure 5.3: (color online): Density of states
N3D for a 3D cubic lattice: exact curve (solid
blue line) vs. the logarithmic approximation

(dashed red line).

The exact 3D DOS is obtained from the 2D one to be:

N3D(2tfγ) =
1

π

∫ min{2,γ+1}

max{−2,γ−1}

N2D(2tfw)√
1− (γ − w)2

. (5.36)

Within the logarithmic approximation, we have

N3D(2tfγ) =
N0

π

[
1 {γ ≤ −1}

∫ γ+1

−2
dw + 1 {|γ| ≤ 1}

∫ γ+1

γ−1
dw + 1 {γ ≥ 1}

∫ 2

γ−1
dw

] log
∣∣∣8√2
w

∣∣∣√
1− (γ − w)2

,

(5.37)
where N0 = 1/(2tfπ

2), and we used ε = 2tfw. Due to the even symmetry of the function we
can restrict to positive arguments γ > 0 only:

N3D(2tfγ) =


N0

9
2 log 2 , 0 ≤ γ ≤ 1

N0

π

∫ 2

γ−1
dw

log
∣∣∣8√2
w

∣∣∣√
1− (γ − w)2

, 1 ≤ γ ≤ 3

The functional behaviour of N3D over the whole bandwidth is shown in Fig. 5.3.

Now we are ready to proceed towards the calculation of ϕ1. At the critical temperature
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the gap closes and we have Ep =
√
ε2
p + ∆2

p = εp. Using this, we compute

ϕ1(βc) =
1

2Ω

∑
p

Fp(βc)
TD-limit−→ 1

2

∫
BZ

d3p

(2π)3
Fp(βc)

=
1

2

∫ 6tf

−6tf

dεN3D(ε)
tanh

(
βcε
2

)
ε

=

∫ 3

0
dγN3D(2tfγ)

tanh(βctfγ)

γ

= N0

[ ∫ 1

0
dγ log(16

√
2)

tanh(βctfγ)

γ
+

∫ 3

1
dγ
N3D(2tfγ)

N0

tanh(βctfγ)

γ

]
= N0

[
9

2
log 2

∫ 3

0
dγ

tanh(βctfγ)

γ
+

∫ 3

1
dγ

(
N3D(2tfγ)

N0
− 9

2
log 2

)
tanh(βctfγ)

γ︸ ︷︷ ︸
≈ 1
γ

]

u:=tfβcγ
= N0

[
9

2
log 2

∫ 3βctf

0
du

tanhu

u
+

∫ 3

1
dγ

(
N3D(2tfγ)

N0
− 9

2
log 2

)
1

γ︸ ︷︷ ︸
=:κ1=−1.90

]

≈ N0

[
9

2
log 2 log

(
12eC

π
βctf

)
+ κ1

]
, (5.38)

with C ≈ 0.577 the Euler-Mascheroni constant.

The calculation of ϕ̃p is a little bit more involved, but it is it that enables us to obtain
approximate analytic results for d-wave and p-wave pairing. This time, we shall need the 2D
DOS, as will become clear shortly. We remind the reader of the previously defined function
W (px, py) = − cos px − cos py, and we proceed:

ϕ̃p(βc) =
1

2Ω

∑
p

cos2 pxFp(βc)
TD-limit−→ 1

2

∫
BZ

d3p

(2π)3
cos2 pxFp(βc) =

1

2

∫
BZ

d3p

(2π)3
cos2 pz

tanh
(
βcεp

2

)
εp

=
1

2

∫ 6tf

−6tf

dε
tanh

(
βcε
2

)
|ε|

∫
BZ

d3p

(2π)3
cos2 pzδ(ε− 2tf [W (px, py)− cos pz])

ε=2tfγ
=

1

2

1

2tf

∫ 3

−3

dγ

γ
tanh(βctfγ)

∫
BZ

d3p

(2π)3
cos2 pzδ(γ − [W (px, py)− cos pz])

=
1

2

∫ 3

−3

dγ

γ
tanh(βctfγ)

1

2tfπ3

∫ π

0
dpx

∫ π

0
dpy

(γ −W [px, py])
2√

1− (γ −W [px, py])2
1{|γ −W (px, py)| ≤ 1}

w:=W (px,py)
=

1

2

∫ 3

−3

dγ

γ
tanh(βctfγ)

1

π

∫ min{2,γ+1}

max{−2,γ−1}
dwN2D(2tfw)

(γ − w)2√
1− (γ − w)2

,

(5.39)

where we made use of the definition of the 2D density of states (5.34) in the last equality.
Next, we take a closer look at the inner integral and, making the substitution w := γ + sin θ
we define:

M(γ) :=
1

π

∫ π/2

−π/2
dθ log

∣∣∣∣∣ 8
√

2

γ + sin θ

∣∣∣∣∣ sin2 θ, for |γ| ≤ 1, (5.40)
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which is the part of M(γ) than can be evaluated analytically within the logarithmic approx-
imation. Further, using the transformation γ → −γ and θ → −θ (or w → −w, respectively)
to shift the domain of γ to the positive reals, we end up with the compact expression

ϕ̃p(βc) = N0

∫ 3

0

dγ

γ
tanh(βctfγ)M(γ). (5.41)

The complete functionM(γ) is shown in Fig. 5.4, and has the following functional behaviour
within the logarithmic approximation to the 2D DOS:

M(γ) =


1
2

(
γ2 − 1

2 + 9
2 log 2

)
, 0 ≤ γ ≤ 1

N0

π

∫ 2

γ−1
dw log

∣∣∣∣∣8
√

2

w

∣∣∣∣∣ (γ − w)2√
1− (γ − w)2

, 1 ≤ γ ≤ 3
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Figure 5.4: (color online): Auxiliary function M(γ)

The rest of the calculation is similar to that for ϕ1 and will not be given here. The final
result reads

ϕ̃p(βc) ≈
N0

4

(
−π

2

12

1

(βctf )2
+ (9 log 2− 1) log

(
12eC

π
βctf

)
+ κ4

)
(5.42)

with κ4 = −0.65.

5.6 Approximate Results

The approximate functional behaviour of the other ϕj ’s in the limit βctf > 1 is obtained in a
similar fashion as in Section 5.5.1. Since the calculations are pretty lengthy, we only give the
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final results:

ϕ1(βc) ≈ N0

[
9

2
log 2 log

(
12eC

π
βctf

)
+ κ1

]
ϕ2(βc) ≈ N0

[
− 9(log 2)2

2

1

βctf
+ κ2

]
ϕγ(βc) ≈ N0

[
− 3π2 log 2

16

1

(βctf )2
+ κγ

]
ϕη(βc) ≈ N0

[
π2

4

(
log 2

4
− 1

)
1

(βctf )2
+ 3(9 log 2− 1) log

(
12eC

π
βctf

)
+ κη

]
ϕ̃p(βc) ≈

N0

4

[
− π2

12

1

(βctf )2
+ (9 log 2− 1) log

(
12eC

π
βctf

)
+ κ4

]
ϕp(βc) ≈

N0

4

[
π2

12

1

(βctf )2
+ (9 log 2 + 1) log

(
12eC

π
βctf

)
+ κp

]
(5.43)

with the non-universal, dimension-dependent constants κj given by

κ1 = −1.90, κ2 = 5.46, κγ = 5.47,

κ4 = −0.65, κp = −6.96, κη = −3.78. (5.44)

The accuracy of the approximation used so far has been tested via comparison to numerical
calculations. The functions ϕj relevant for singlet pairing are shown in Fig. 5.5, while ϕp,
relevant for triplet pairing, is shown in Fig. 5.6. The astonishing agreement observed serves
as a justification of the low-Tc method used in the previous section.
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Figure 5.5: (color online): Comparison
between exact curve (solid blue line) and
approximate analytical result (dashed red

line) for singlet pairing: φj = ϕj/N0
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Figure 5.6: (color online): Comparison
between exact curve (solid blue line) and
approximate analytical result (dashed red

line) for triplet pairing: φp = ϕp/N0

If we take a closer look at the above functions, we find that the critical temperature for
the extended s-wave pairing only which is proportional to ϕγ (cf. Eq. (5.25)), therefore, has
an algebraic decay. It can be solved for analytically, to give
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Tc
tf

=

√
16

3π2 log 2

(
κγ −

1

aγN0W

)
. (5.45)

The above result is non-perturbative and compared to the numerical curve for the full ϕγ in
Fig. 5.9, justifies once more the validity of the approximations used so far. Furthermore, it fol-
lows from Eq. (5.45) that there cannot be any extended s-wave pairing for W < 1/(aγκγN0).

In contrast, the conventional s-wave pairing critical temperature exhibits exponential
decay, cf. (5.24), which is a well-established result of BCS theory. Again, one needs a negative
potential V < 0 in order to obtain a well-defined solution to the gap equation. The exact
s-wave critical temperature can be solved for analytically to give

Tc
tf

=
12eC

π
exp

[
− 2

9 log 2

(
−κ1 +

1

N0|V |

)]
. (5.46)

In Fig. 5.7 we give a numerical solution following Eq. (5.24).
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Figure 5.7: (color online): Critical temperature for s-wave pairing as a function of
interaction strength V : exact curve (blue solid line) vs. approximate result (dashed red
line). The result agrees with the one from BCS theory exhibiting an exponential decay.

However, the pure d-wave or p-wave pairing functions, ϕη and ϕp, contain both algebraic
and logarithmic terms. Hence, inverting the corresponding equations (5.26) and (5.30) to
obtain an analytical expression for the critical temperature is possible only numerically. For
p-wave pairing, Efremov and Viverit, [14], predict an exponential decay of the critical temper-
ature for a Bose-Fermi mixture not on a lattice using a similar expansion technique for the gap
function. Therefore, the effect of the lattice structure for p-wave pairing can be traced back
to the appearance of an algebraic term in ϕp(βc) ∝ 1/(βctf )2. Fig. 5.8 shows the behaviour
of the critical temperature as a function of the interaction strength W . Similar results have
been obtained in the 2D model by Micnas et al. [39]. The plot suggests that p-wave pairing
is suppressed by d-wave pairing throughout the entire regime of validity, βctf & 1.
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Figure 5.8: (color online): Critical
temperature as a function of the interaction
strength W for d-wave pairing (solid blue
line) and p-wave pairing (dashed red line).

The curves are obtained numerically.
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Figure 5.9: (color online): Critical
temperature for extended s-wave pairing as a
function of interaction strength W . The solid
blue line represents the numerical curve and

the red dashed line follows Eq.(5.45).

5.7 Analysis of the Results

In this section we address the issue of which one of the pairing instabilities is the dominant
one. To this end, we exploit the full dependence of the model on the interaction strength
parameters:

U =
U2

bf

Ubb

1

1 + 6ξ2

W =
U2

bf

Ubb

ξ2

(1 + 6ξ2)2

V = Uff − U. (5.47)

A direct comparison between the pairing instabilities for extended s-, d- and p-wave pairing
is possible, since their critical temperatures depend on the parameter W only. From Figs. 5.8
and 5.9 it becomes clear that d- and p-wave pairing is possible also for small W values where
extended s-wave pairing is completely suppressed. We believe that for fixed W it is the d-wave
that dominates among these pairing mechanisms.

The situation becomes more involved if we take the s-wave pairing into account, for its
critical temperature is a function of V < 0 only. Hence, using the bare fermionic interaction
Uff it might be possible to tune the critical temperature for s-wave below that of d-wave
(cf. Fig 5.7) or even switch it off completely in favour of the d-wave pairing, in which case a
positive and large enough Uff would be needed. We remark that dominant d-wave pairing has
already been predicted in a 2D Bose-Fermi mixture on an isotropic square lattice by Mathey
et al. using a Renormalization Group approach [36].

Another conceivable scenario becomes interesting when the bare fermionic interaction is
completely switched off, i.e. Uff = 0. From Eq. (5.47) then one can establish a direct relation
between U and W : W = ξ2(1 + 6ξ2)−1U which opens up a possibility for a direct comparison
for any given fixed ξ � 1. However, within the validity of our approximation methods we
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have W � U and therefore the d-wave pairing is strongly suppressed. This result agrees very
well with the observation in [55], according to which the unconventional pairing mechanisms
are mostly pronounced for ξ ∼ 1.

5.8 Conclusions

In this chapter, we investigated the Bose-Fermi mixture for unconventional pairing within
mean-field theory. To this end, we consider small enough temperatures, making use of the
Bogoliubov approximation for the bosons and neglecting retardation effects. To obtain an-
alytical results, we further restrict our attention to the case of small bosonic healing length
ξ � 1, after which only the leading linear k-dependence of the potential has been retained.

A low-temperature expansion method has been applied to obtain extremely accurate ap-
proximate results for βctf & 1. The key feature is using a very powerful logarithmic approx-
imation to the 2D density of states, suitable for energies in the vicinity of the Fermi surface
where pairing is expected to occur. Altogether this method allows for obtaining the equations
determining the critical temperature Tc.

We also derive exact gap equations for unconventional s-, extended s-, pure s-, d- and p-
wave pairing, obeying the required symmetries. The corresponding critical temperatures are
obtained from them as a special case of vanishing gap parameter, which leads to transcendental
equations, except for the cases of s- and extended s-wave pairing.

For s-wave, we recover the exponential decay, expected from BCS theory with appropri-
ate prefactors within the mean field-approximation. For extended s-wave, we find a non-
perturbative power-law dependence Tc/tf ∼

√
(c1 − c2/(WN0). According to it, extended

s-wave pairing is possible starting from a critical value Wc = 1/(aγκγN0). Both results come
in precise agreement with the numerical solutions for the gap equations.

The critical temperature for the remaining d- and p-wave pairing as a function of the
dimensionless interaction strength WN0 has been obtained numerically. We find the same
scenario as [39]: both functions are convex and monotonically increasing within the validity
of the considered approximation. The curve for d-wave pairing lies clearly above the one for
p-wave, thereby rendering p-wave pairing suppressed.

Among the extended s-, d- and p-wave instabilities, the dominant one is the d-wave.
Taking the s-wave stability into account there are two interesting scenarios: either one can use
the bare fermionic interaction Uff to effectively sweep the parameter V up to zero closing the
s-wave channel, so that the s-wave instability succumbs to the d-wave one, or one can consider
the Uff = 0, in which case we recover the observation of [55] that unconventional pairing is in
general pronounced for ξ ∼ 1 and hence the conventional s-wave pairing dominates.
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Chapter 6

Supersymmetric Bose-Fermi
Mixtures

6.1 Introduction

Supersymmetry has been attracting the attention of the physics community for a long time.
Simplicity and beauty on a deep mathematical level predict that every elementary particle
might have a heavy supersymmetric partner of the opposite type. If this is true, then the
electron will come up in pair with a boson, dubbed selectron, while the photon’s partner
would be the spin-1

2 photino.

After it originated from high-energy physics, SUSY has rarely been applied to non-
relativistic quantum systems. In 1984, Clark and Love [10] pioneered the development of a
supersymmetric non-relativistic many-body quantum field theory. With the recent advance-
ment of cold atom experiments, condensed matter theorists have looked for supersymmetry
on several occasions, mainly in Bose-Fermi mixtures, where a sharp fermionic collective mode
which can be identified with a Goldstino-like mode has recently been predicted [61]. Su-
persymmetric lattice gauge theories have also been considered in the context of cold atoms,
[34].

In this chapter, we consider a theory of a spinful Bose-Fermi mixture in the non-degenerate
regime above the SF-transition temperature. We show that the system exhibits a supersym-
metric point in parameter space, upon exchanging a boson with a fermion. Starting from
the SUSY Poincaré algebra, we employ the method of İnönü-Wigner contraction to find in
the nonrelativistic limit the Galilean SUSY algebra, since a many-body theory is assumed to
be non-relativistic in general. Using its representations, we define bosonic chiral superfields
which incorporate manifestly the supersymmetric nature of the theory. Exploiting the conse-
quences of this additional symmetry, we proceed to derive an effective single-field ϕ4-theory
in the real-space sector of a general supersymmetric field theory. The Grassmann sector is
proved to be rigid to perturbation theory to any order, as a direct consequence of a man-
ifest SUSY. We also address the issue of SUSY-breaking which provides a way to develop
perturbation theory around the SUSY point.
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6.2 The Spinful Bose-Fermi Mixture

The Hamiltonian of a general Bose-Fermi mixture of spinful fermions ψα (α =↑, ↓), and two
types of bosons A, B is given by

H = H0 +H1
int +H2

int

H0 =

∫
d3xA†(x)

(
− 1

2mA
∇2 + µA

)
A(x) +B†(x)

(
− 1

2mB
∇2 + µB

)
B(x)

+
∑
α

ψ†α(x)

(
− 1

2mα
∇2 + µα

)
ψα(x)

H1
int =

1

2

∫
d3xgAAA

†(x)A†(x)A(x)A(x) + gBBB
†(x)B†(x)B(x)B(x)

+ gFFψ
†
↑(x)ψ†↓(x)ψ↓(x)ψ↑(x)

H2
int =

1

2

∫
d3xgAF

∑
α

A†(x)A(x)ψ†α(x)ψα + gBF
∑
α

B†(x)B(x)ψ†α(x)ψα

+ gABA
†(x)A(x)B†(x)B(x), (6.1)

where the constants gij denote the interaction strength between species i and j. Due to the
Pauli Exclusion Principle, the fermion-fermion interaction is possible only between fermions
of different spin.

For a SUSY theory one needs the following general form of the fermion-fermion interaction:

Hψ =
gFF

2

∑
α,β

ψ†α(x)ψ†β(x)ψβ(x)ψα(x). (6.2)

The factor 1/2 comes from the fact that whenever α =↑, β =↓, or vice-versa, we should recover
the original interaction. However, if α = β, using the commutator relations for fermions, we
have ψ†ψψ†ψ = ψ†ψ again due to the Pauli principle. These terms are then ‘borrowed’ from
the chemical potential of the fermions. Hence, the H0 and H1

int terms can be cast into the
form

H0 =

∫
d3xA†(x)

(
− 1

2mA
∇2 + µA

)
A(x) +B†(x)

(
− 1

2mB
∇2 + µB

)
B(x)

+
∑
α

ψ†α(x)

(
− 1

2mα
∇2 +

(
µα −

gFF
4

))
ψα(x)

H1
int =

1

2

∫
d3xgAAA

†(x)A†(x)A(x)A(x) + gBBB
†(x)B†(x)B(x)B(x)

+
gFF

2

∑
α,β

ψ†α(x)ψ†β(x)ψβ(x)ψα(x). (6.3)

The requirement for the theory to exhibit SUSY then takes the form

µA = µB = µα −
gFF

4

!
= µ, α =↑, ↓

gAA = gBB =
gFF

2

!
= g,

gAF = gBF = gAB
!

= 2g. (6.4)
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Under this conditions, and adopting the spinor notation
∑

α ψ
†
αψα = ψσ0ψ̄, where σ0 =

−12×2, ψ̄ = ψ†, the total interaction term reads

Hint =
g

2

∫
d3xA†

(
A†A+B†B + ψσ0ψ̄

)
A+B†

(
A†A+B†B + ψσ0ψ̄

)
B

+ ψσ0
(
A†A+B†B + ψσ0ψ̄

)
ψ̄. (6.5)

We shall later on observe that it can be cast in a manifestly supersymmetric way which will
facilitate a further discussion on a diagrammatic level.

6.3 Supersymmetric extension of the Galilean Group

6.3.1 The İnönü-Wigner Contraction

The many-body description of bosons and fermions implicitly assumes a non-relativistic set-
ting. Therefore, in this section, we derive the algebra of the SUSY extension of the Galilean
group. To this end, we employ the method of İnönü-Wigner contraction [28] to contract the
(relativistic) SUSY Poincaré algebra in the limit c→∞, where c denotes the speed of light.
The resulting algebra is dubbed the nonrelativistic SUSY algebra and we shall later impose
that the non-relativistic quantum fields describing the mixture of bosons and fermions shall
transform according to its representations.

To clarify the method, we first take a look at the contraction of the Lorentz group to the
Galilean group in the limit c → ∞. Let Ji denote the generator of rotations (the angular
momentum operator) and let Ki denote the generator of boosts in direction i, respectively.
The Lorentz algebra is defined as

[Ji, Jj ] = iεijkJk,

[Ji,Kj ] = iεijkKk,

[Ki,Kj ] = −iεijkJk. (6.6)

We wish to derive from it the Galilean algebra, given by

[Ji, Jj ] = iεijkJk,

[Ji,Kj ] = iεijkKk,

[Ki,Kj ] = 0. (6.7)

To employ the limiting procedure c→∞, we seek a representation of the Lorentz algebra,
in which the speed of light appears as a parameter. Such a representation is for example
given by the well-known Lorentz transformation, which leaves two of the spatial dimensions
invariant:

Λ(v) =

(
γ γ vc
γ vc γ

)
. (6.8)
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Next, we introduce a singular transformation

U =

(
c 0
0 1

)
(6.9)

chosen such that

UΛ(v)U−1 c→∞−→
(

1 v
0 1

)
. (6.10)

The result of this procedure agrees precisely with the expected Galilei transformation.
To bring the discussion to a more general level, consider an algebra {Xi}, i ∈ {1, ..., n+m},

defined by
[Xi, Xj ] = ifkijXk, (6.11)

with fkij the structure constants. Further, consider a singular transformation U that defines
new generators Yi via

Yi = U jiXj . (6.12)

Notice that due to the singular character of U , the elements Yj define a different algebra, the
so-called contracted algebra. It follows that the structure constants transform according to

fkij = Umi U
n
j f

l
mn(U−1)kl . (6.13)

We consider a U of the form

U =

(
1m×m 0

0 ε1n×n

)
, (6.14)

where the two identities need not have the same dimension. In the limit ε→ 0 the n generators
are contracted, leaving a new algebra consisting of the properly chosen m ones. This should
be done in such a way that {X1, ..., Xm} themselves form a subalgebra. These results can be
summarized in the following two theorems by İnönü and Wigner [28], the proofs of which we
omit.

Theorem 6.1. Given a Lie group G, a contraction can be performed, if and only if there
exists a nontrivial subgroup H. The algebra of H remains fixed under contraction, while the
remaining contracted algebra generates an Abelian invariant subgroup of the contracted group
G′, called N . Furthermore, G′ is the semidirect product of N and H, i.e. H ' G′/N .

Theorem 6.2. Conversely, the necessary condition for a subgroup G′ to be derivable from
another group by contraction is the existence on G′ of an Abelian invariant subgroup N and
a subgroup H, such that G′ is the semidirect product of them.

Going back to the contraction of the Lorentz group, we define new generators as follows:

J ′i = Ji,

K ′i = εKi =
1

c
Ki. (6.15)

Hence, the Lorentz algebra for the primed variables becomes
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[J ′i , J
′
j ] = iεijkJ

′
k,

[J ′i ,K
′
j ] =

1

c
iεijkKk = iεijkK

′
k,

[K ′i,K
′
j ] = − 1

c2
iεijkJ

′
k
c→∞−→ 0, (6.16)

which is exactly the Galilean algebra. According to this prescription, one obtains rigorously
the Galilean algebra from the Lorentz algebra by contracting the boosts.

6.3.2 The Non-relativistic SUSY Algebra

In this subsection, we employ the İnönü-Wigner contraction to derive the non-relativistic
Galilean algebra, following the discussion in [10]. We start by defining the SUSY-extended
Poincaré algebra

[Pµ, P ν ] = 0,

1

i
[Jµν , P λ] = ηµλP ν − ηνλPµ, (6.17)

1

i
[Jµν , Jλρ] = ηµλJνρ − ηµρJνλ + ηνρJµλ − ηνλJµρ, (6.18)

{Qα, Q̄α̇} = 2σµαα̇Pµ, (6.19)

1

i
[Jµν , Qα] = −σµνβα Qβ, (6.20)

1

i
[Jµν , Q̄α̇] = −σ̄µνα̇

β̇
Q̄β̇, (6.21)

[Pµ, Qα] = 0 = [Pµ, Q̄α̇], (6.22)

{Qα, Qβ} = 0 = {Q̄α̇, Q̄β̇}, (6.23)

where Qα and Q̄α̇ are the fermionic generators of SUSY and we follow strictly [57] for our
conventions. To perform the İnönü-Wigner contraction explicitly, we use the relativistic
energy momentum relation and the boost contraction from the previous section, defining

P 0 =
1

c
(Mc2 +H), (6.24)

J0i = cK ′i, (6.25)

Qα =
√
cQ′α, (6.26)

Q̄α̇ =
√
cQ̄′α̇. (6.27)

The scaling of the SUSY generators Qα̇, Qα follows from (6.24) and (6.19) and the condition
to obtain a non-trivial anticommutator for the SUSY generators in the non-relativistic limit.

Taking now the limit c → ∞, and dropping the primes for simplicity yields [10] the
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expected Galilean algebra:

[H,Pi] = 0, [H,Ki] = iPi, [H,Jij ] = 0,

[H,M ] = 0, [Pi, Pj ] = 0, [Pi,Kj ] = iδijM,

[Pi,M ] = 0, [Jij ,M ] = 0, [Ki,M ] = 0,

[Jij , Pk] = i(δikPj − δjkPi),
[Jij ,Kk] = i(δikKj − δjkKi),

[Jij , Jkl] = i(δikJjl − δilJjk + δjlJik − δjkJil),
[Ki,Kj ] = 0. (6.28)

together with its SUSY extension:

{Qα, Q̄α̇} = −2σ0
αα̇M, (6.29)

{Qα, Qβ} = 0 = {Q̄α̇, Q̄β̇},

[Qα, H] = 0 = [Q̄α̇, H],

[Qα,M ] = 0 = [Q̄α̇,M ],

[Qα, Pi] = 0 = [Q̄α̇, Pi],

[Qα,Ki] = 0 = [Q̄α̇,Ki],

[Jij , Qα] = −i(σij)βαQβ,

[Jij , Q̄
α̇] = −i(σ̄ij)α̇

β̇
Q̄β̇. (6.30)

As noted in [10], non-relativistic SUSY decouples from spacetime, in contrast to its relativistic
counterpart, as can be directly seen from (6.29). Therefore, it behaves much more like an
internal symmetry of the system. We shall discuss the consequences of this fact for SUSY
breaking is a subsequent section.

Another interesting fact that follows from (6.29) is that the only Pauli matrix present is
σ0 = −12×2. This will be reflected in the spacetime translations and will be the reason for
the rigidity to perturbation theory of the Grassmann part of the propagator.

6.4 Superfield Description

In this section we derive the superfield formalism necessary to describe the supersymmetric
Bose-Fermi mixture. From now on, we shall refer to non-relativistic SUSY simply as SUSY.
Following [10] and the discussion in [57], we define the SUSY covariant derivatives as follows:

Dα =
∂

∂θα
+mσ0

αα̇θ̄α̇,

D̄α̇ = − ∂

∂θ̄α̇
−mθασ0

αα̇. (6.31)

Here θ = (θ1, θ2) and θ̄ = (θ̄1, θ̄2) are tuples of independent Grassmann variables. They define
what is sometimes referred to as a quantum dimension. As in the relativistic setup, these
definitions yield the anticommutators

{Dα, D̄α̇} = −2mσ0
αα̇,

{Dα, Dβ} = 0 = {D̄α̇, D̄β̇}. (6.32)
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An (anti-) chiral superfield φ is defined as a solution of the equation D̄α̇φ(~x, t, θ, θ̄) = 0
(or Dαφ̄(~x, t, θ, θ̄) = 0, respectively). The most general (anti-) chiral superfield is then con-
structed in the usual way by first solving the above equation in a reference frame, where φ is
independent of θ̄, and then ‘rotating’ back:

φ(~x, t, θ, θ̄) = emθσ
0θ̄

(
1

m
A(~x, t) +

√
2

m
θ̄αψα(~x, t) + θ2B(~x, t)

)
,

φ̄(~x, t, θ, θ̄) = emθσ
0θ̄

(
1

m
A†(~x, t) +

√
2

m
θ̄α̇ψ̄

α̇(~x, t) + θ̄2B†(~x, t)

)
, (6.33)

where A, and B are bosonic fields and ψα is the fermion field of either spin up or down.
The mass-dependent pre-factors are chosen such that the model corresponds to the standard
conventions in many-body theory. Similar to many-body theory, the fields A† and B† create
bosons of two different types (spins), while ψ̄α̇ creates a spin-1/2 fermion of spin α̇. As pointed
out in [10], unlike non-relativistic SUSY, both bosonic fields A and B are dynamical, and so
is the fermion field.

The canonical commutator relations of the superfields take the form

δ(t1 − t2)[φ(1), φ̄(2)] = δ(4)(x1 − x2)
1

m2
e2mθ1σ0θ̄2+mθ1σ0θ̄1+mθ2σ0θ̄2 ,

δ(t1 − t2)[φ(1), φ(2)] = 0 = δ(t1 − t2)[φ̄(1), φ̄(2)], (6.34)

where we used the short-hand notation 1 = (~x1, t1, θ1, θ̄1). The normalization of the above
commutators is adopted to assure for the usual many-body conventions.

We are now in a position to write the BF mixture Hamiltonian in a manifestly supersym-
metric form:

H = H0 +Hint,

H0 =

∫
d3xd2θd2θ̄

1

2m
∇φ̄(~x, θ, θ̄) · ∇φ(~x, θ, θ̄) +

µ

2m

∫
d3xd2θd2θ̄φ̄(~x, θ, θ̄)φ(~x, θ, θ̄),

Hint =
1

2

∫
d3xd2θd2θ̄d3x′d2θ′d2θ̄′φ̄(~x, θ, θ̄)φ̄(~x′, θ′, θ̄′)V (~x; ~x′)φ(~x′, θ′, θ̄′)φ(~x, θ, θ̄), (6.35)

with V (~x; ~x′) = gδ(4)(x−x′) for some interaction strength g. Note that the potential is not a
delta function of the Grassmann variables. Doing the integrals over the Grassmann variables
results in the usual many-body Hamiltonian (6.3) for the four fields A, B, and ψα, as can be
seen from Appendix C.1.

It is noteworthy that we use a different convention for the interaction term in the Hamilto-
nian (6.3) compared to [10], whose interaction part is not normal-ordered. However, we shall
need the normal ordering to apply Wick’s theorem in the next chapter, when we compute the
corrections to the propagator within perturbation theory.

6.5 Propagator and Diagrammatics

In this section we shall explore the diagrammatics of the SUSY Hamiltonian and derive the
Feynman rules for the SUSY Bose-Fermi mixture. It is through this that the superfield
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description becomes useful, and provides not only a better book-keeping opportunity but also
a better insight into the physics of the system.

We begin by writing the action of the theory S as a sum of a quadratic, and interaction
terms:

S = S0 + Sint,

S0 =

∫
d1φ̄(1)

(
i∂t +

1

2m
∇2 − µ

)
φ(1),

Sint =
1

2

∫
d1d2φ̄(1)φ̄(2)V (1− 2)φ(2)φ(1), (6.36)

with V (1−2) = gδ(4)(x1−x2). The position in which the fields appear in the interaction term
is important, to correctly reproduce the well-known Hamiltonian (6.3). In the following, no
additional sign changes are induces, since the superfield is bosonic, and hence no additional
sign change will be induced upon pairing using Wick’s theorem.

Following the derivation in [10], we recall that the free propagator can be derived using
standard field-theoretical techniques. Due to translational invariance using a momentum-
space representation is advantageous. It should be mentioned, however, that there is no
analogue of this for the Grassmann variables, and hence they should be kept as they are.
Therefore, we use the short-hand notation Ωi which stands for (θi, θ̄i). This fact will be
confirmed by the form of the Green’s function itself:

G(0)(~k, ω,Ω1,Ω2) = − 1

m2

exp
(
−2mθ2σ0θ̄1 +mθ1σ0θ̄2 +mθ2σ0θ̄2

)
ω − εk − µ

, (6.37)

which does not depend on the differences θ1 − θ2 explicitly. It follows also from (6.37) that
both species must obey the same dispersion relation εk, and the chemical potentials need to
obey the specific relation (6.4), asserted in the end of the introductory Chapter 6.2.

The corrections to G(0) for small coupling constants g are derived using perturbation the-
ory. Due to the structure of Sint, we can immediately adopt the standard diagrammatics
scheme from many-body physics [17]. As mentioned above, the momentum-space represen-
tation is at first sight not good enough, due to the presence of the Grassmann variables.
Therefore, in superspace the vertices in the Feynman diagrams will be labelled by integer
numbers 1, 2, 3, ..., such that 1 = (t1, ~x1,Ω1).

Let us first take a look at the first order correction to the propagator, given by the Hartree
and Fock diagrams:

G(1)(1, 2) =

∫
d1′d2′G(0)(1′, 1)G(0)(2, 1′)G(0)(2′, 2′)V (1′ − 2′)

+

∫
d1′d2′G(0)(1′, 1)G(0)(2′, 1′)G(0)(2, 2′)V (1′ − 2′). (6.38)

If we consider the tadpole only, notice that in G(2′, 2′) the exponent vanishes identically.
Therefore, we have

This result is expected also without employing a SUSY description, since there would be
four tadpole diagrams in the standard many-body perturbation theory to first order: two for
the bosons, and two for the fermions. However, the latter two add up with a negative sign
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Figure 6.1

because of the sign change needed for a fermionic loop, and hence the cancellation. In this
first occasion, we encounter the elegance of the SUSY approach.

The absence of tadpoles or fermionic loops in the theory is a general feature to every order
in perturbation theory. This is a tremendous simplification, since, e.g. in second order only
three out of the standard ten diagrams survive. They are given pictorially in Fig. 6.2.

Figure 6.2

It is interesting to take a look at the only non-vanishing first-order diagram of Eq. (6.38).
While the full calculation is given in Appendix C.2, here we discuss directly the result.∫

d1′d2′G(0)(1′, 1)G(0)(2′, 1′)G(0)(2, 2′)V (1′ − 2′)

= F (Ω1,Ω2;m)g

∫
d3kdω

(2π)4
eik(x1−x2)

(
1

ω − εk − µ

)2 ∫ d3qdν

(2π)4

1

ν − εq − µ
. (6.39)

Mimicking the free propagator, the correction also factorizes in a purely Grassmann and a
purely space-time part. The astonishing result is, however, that the factor F (Ω1,Ω2;m) ap-
pears to be the same as for the free propagator, surviving the integration over the Grassmann
variables:

F (Ω1,Ω2;m) = exp
(
−2mθ2σ0θ̄1 +mθ1σ0θ̄2 +mθ2σ0θ̄2

)
. (6.40)

It obeys the remarkable ‘robustness’ identity∫
dΩ′1Ω′2F (Ω1,Ω

′
1;m)F (Ω′1,Ω

′
2;m)F (Ω′2,Ω2;m) = F (Ω1,Ω2;m), (6.41)

which is derived also in Appendix C.2. Interestingly, it holds to any order in perturbation
theory, which can be easily seen due to the fact the the propagator line is directed and
always traverses the whole diagram, since the superfield cannot be created, nor annihilated
in favour of an interaction line. A heuristic argument for this can be given as follows. In the
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second-order diagrams, Fig. 6.3, the last one reduces to two first-order ones, for which the
above relation holds separately. In diagrams containing interaction lines of the type as in the
middle one in Fig. 6.3, a systematic approach would be to begin with the innermost vertices
and do the Grassmann integrals successively outwards. The situation is least obvious for the
crossed diagrams on the left, which we explicitly show here using (6.41):∫

dΩ′1dΩ′2dΩ′3dΩ′4F (Ω1,Ω
′
1;m)F (Ω′1,Ω

′
2;m)F (Ω′2,Ω

′
3;m)F (Ω′3,Ω

′
4;m)F (Ω′4,Ω2;m)

=

∫
dΩ′3dΩ′4F (Ω1,Ω

′
3;m)F (Ω′3,Ω

′
4;m)F (Ω′4,Ω2;m)

= F (Ω1,Ω2;m). (6.42)

Figure 6.3

The physical meaning of (6.41) appears to be hidden in the philosophy of Supersymmetry
itself. If we expand the free propagator in components according to the Grassmann variables
(1, θ1, θ̄1, . . . ,Ω

2
2) we will see that breaking SUSY, e.g. by varying the chemical potentials,

the different non-vanishing components in the expansion give the propagators for the different
fields [57]. In other words, the expansion in Grassmann variables incorporates the relation
of the propagators of the different species to one another. Now, if a theory is supposed to
be supersymmetric, then exchanging either two fields should not affect the physics. The
‘robustness’ identity shows that the relations between the propagators are conserved to all
orders in perturbation theory, which is another manifestation of SUSY.

Towards the end of this section, we come to a very interesting consequence of equation
(6.39). It appears to be the key to a reformulation of the theory. If we neglect for a moment
the F pre-factor, we recover under the integrals the momentum-space propagator of a time-
dependent bosonic ϕ4-theory (cf. Fig. 6.4). This is not completely unexpected, since the
interaction was chosen to be a contact one and of the same type between the fields. Taking
into account our previous discussion, however, it follows that we can write down an exact ϕ4-
theory to describe the entire BF mixture, as the coupling between the propagators is given
by multiplying the ϕ4-propagator by the factor F . Apparently, SUSY is restrictive enough,
so that even in the non-relativistic case, the degrees of freedom of the theory, consisting
initially of four complex independent fields, can be reduced to an effective ϕ4-theory theory
for a single scalar field ϕ. It should be mentioned that this is possible exclusively due to the
contact nature of the various interactions considered.

6.6 SUSY Breaking

It was proven in [10] that due to the different nature of the particle statistics, the ground
state of the supersymmetric many-body theory does not enjoy a SUSY. This can be under-
stood intuitively, since any two fermions can never be in the same quantum state due to the
Pauli principle (Spin Statistics Theorem)., while the bosons are expected to condense Hence,
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Figure 6.4: Pictorial derivation of the effective ϕ4-theory.

exchanging a fermion with a boson does not leave the lowest energy state invariant, and thus
SUSY is broken in the ground state.

However, at high enough temperature, the quantum degeneracy of the particles is not
present, and the ground state of the system may display SUSY. It is through the excitations
modes that the remnants of a broken SUSY can be detected.

In this short section we discuss the hard-core SUSY breaking and derive perturbative
expressions for the Green’s function in the vicinity of the supersymmetric point. As was
discussed previously near Eq. (6.37), in order the theory to be supersymmetric, bosons and
fermions have to exhibit the same dispersion and chemical potential, and the interaction
constants have to be in precise relation to one another.

Although in practice the ϕ4-theory is not exactly solvable, its propagator can be calculated
and renormalized by virtue of standard procedures to any arbitrary order in perturbation
theory [31]. Therefore, in the following we shall assume that it is known exactly.

Here, we propose two ways of explicitly breaking SUSY in this model: this can be achieved
by adding to the chemical potential for the bosonic field A a small perturbation µ̃. The
perturbation term reads

µ̃A†A = µ̃

∫
d2θd2θ̄m2θ2θ̄2φ̄φ. (6.43)

The factor m2 is necessary for the correct normalization, according to the definition of the
field φ. The above equation allows us to treat the perturbation in superspace. As we assumed
that we can calculate the propagator for the SUSY theory to any order in perturbation theory
exactly, Eq. (6.43) provides a way to obtain the corrections to the SUSY Green’s function using
standard perturbation theory and diagrammatic techniques (see, e.g. [17]). The corresponding
Feynman rules would involve a factor of m2θ2θ̄2 for every vertex in superspace.



104 6. Supersymmetric Bose-Fermi Mixtures

The second way of SUSY breaking is by adding a small constant λ to the interaction
between, e.g. the A fields. This results in

λ

2

∫
d3xA†A†AA =

1

2

∫
d3x1d3x2dΩdΩ̄m2θ2

1 θ̄
2
1θ

2
2 θ̄

2
2φ̄1φ̄2U(1− 2)φ2φ1, (6.44)

with U(1− 2) = λδ(3)(~x1 − ~x2). In this form, standard many-body perturbation theory also
directly applies. This time, however, for every interaction vertex of the perturbation, one
must account for a factor m2θ2

1 θ̄
2
1θ

2
2 θ̄

2
2, which will spoil the ‘robustness’ of the phase factor F

discussed in the previous chapter, as is expected for a non-supersymmetric theory.

6.7 Conclusion

I summary, we have derived a supersymmetric φ4-theory for the spinful Bose-Fermi mixture,
under suitable conditions on the chemical potentials and the interaction constants. This
allowed for a manifestly SUSY description using chiral superfields φ which, not only serves
as a useful book-keeping tool for the zoo of Feynman diagrams present in the model, but also
incorporates the symmetries due to quantum statistics.

We derived the Feynman rules in superspace, using standard many-body perturbation
theory in the weak-coupling limit, proving the expected cancellation of all the tadpole dia-
grams. As a consequence, the number of diagrams to any order in the coupling constant in a
SUSY field theory is reduced significantly.

Analyzing further the properties of the propagator in superspace, we found that its Grass-
mann part remains rigid to any order in perturbation theory, satisfying what we called the
‘robustness’ identity. Taken together with the contact nature of the interactions assumed
throughout, this allows to write down an effective single-field bosonic ϕ4-theory for the space-
time part of the superfield propagator.

We also developed perturbation theory in the chemical potential and the contact inter-
action strength around the SUSY point, given by Eq. (6.4), in the superfield formalism,
assuming the ϕ4-propagator is known. This approach enables the description of systems not
exhibiting an exact, but only an approximate supersymmetry.



Appendix A

Generalized Bogoliubov
Transformations

In this Appendix, we generalize the concept of bosonic Bogoliubov transformations to Hamil-
tonians of matrix dimensions higher than two. Although this is in principle possible with the
method of [4], the recipe we provide at the end of this Appendix allows to circumvent pages
of unnecessary and lengthy algebra.

A very similar approach to the one discussed here was presented in Appendix B of [27].
However, it misses the precise conditions under which such a generalized Bogoliubov trans-
formation exists, and a sloppy straightforward application of the procedure in [27] may often
lead to inconsistent results. Nevertheless, it was the true inspiration for the work outlined
below.

A.1 Motivation

Bogoliubov transformations are used widely in condensed matter theory to cast a quadratic
Hamiltonian into the form H =

∑
k γ
†
kγk + const, which is usually referred to as diagonal,

since one can readily read out the corresponding dispersion or band structure. The crucial
condition on transformation is to preserve quantum statistics (i.e. be canonical), so the new
operators also obey bosonic (fermionic) commutation relations. The transformation itself is
needed in subsequent computations of any physical quantities of interest, such as the total
particle number, the ground state energy, the order parameter, etc.

To set up the stage, consider the following most general quadratic Hamiltonian in second
quantized form.

H =
∑
k

~a†kHk~ak =
∑
µ,ν,k

a†µ,kH
µν
k aν,k. (A.1)

where the creation and destruction operators ~ak = (a1,k, . . . , an,k, a
†
n+1,k, . . . , a

†
m,k)

t and ~a†k =

(a†1,k, . . . , a
†
n,k, an+1,k, . . . , am,k) obey either bosonic or fermionic commutation relations. The

matrix Hk = H†k is necessarily Hermitian.1 A quantum field theoretical description requires
a collection of infinitely many independent modes ak to model the excitations of a single field
and, therefore, a summation is imposed over the mode index k. In contrast, independent

1Note that we use the bold-face letter H to denote the Hamiltonian while for the corresponding matrix we
use Hk.
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fields are represented by another index which, when used explicitly, shall be denoted by a
Greek letter µ.

The goal of this section is to give a recipe to construct the generalized Bogoliubov transfor-
mation which puts H in a diagonal form, and renders the system solved giving its spectrum.
Since this must be done for each mode index k independently, from now on, we are not
interested in the summation over k. Therefore, we drop the index k and assume Einstein
summation convention for the Greek indices, whenever they appear. It should be emphasized
that the transformation itself and the resulting diagonal matrix do depend on k. In other
words, we seek a matrix M(k), such that

~a†H~a = ~γ†M †HM︸ ︷︷ ︸
=D

~γ = ~γ†D~γ (A.2)

with D some diagonal matrix, and ~a = M~γ. The new operators ~γ are then given by ~γk =
(γ1,k, . . . , γn,k, γ

†
n+1,k, . . . , γ

†
m,k)

t. The canonical commutation relations for the initial set of
operators can be cast into matrix form by considering

(~a~a†)t ± (~a†)t(~a)t =


 a1

...

a†m

 (a†1, . . . , am)


t

±


 a†1

...
am

 (a1, . . . , a
†
m)


 [a1, a

†
1]ξ . . . [a†m, a

†
1]ξ

...
. . .

...

a1, am]ξ . . . [a†m, am]ξ

 =



(
1n×n 0

0 1m×m

)
= 1, fermions(

1n×n 0

0 −1m×m

)
=: Σ, bosons

(A.3)

with ξ = ± for fermions/bosons, respectively. The off-diagonal elements all vanish, as the dif-
ferent types of oscillators are assumed independent. The above equation imposes a constraint
on the transformation M to obey the canonical commutation relations in the following way:

MM † = 1 for fermions, and MΣM † = Σ for bosons. (A.4)

These two relations define the unitary group U(n+m) and the pseudo-unitary group U(n|m),
respectively. Moreover, in both cases it follows that M is an invertible transformation.

The standard textbook analysis is very often limited to diagonalizing quadratic Hamilto-
nians mixing only two independent harmonic oscillators described by a1 and a2. In this case,
the Bogoliubov transformation is given by a 2 × 2 matrix which can be parametrized by a
single angle θ.2 For a symmetric H in the fermionic case, this matrix is the usual rotation
matrix, while for bosons, one needs a hyperbolic rotation:

M f =

(
cos θ − sin θ
sin θ cos θ

)
, Mb =

(
cosh θ sinh θ
sinh θ cosh θ

)
(A.5)

Clearly, for fermions we have M f ∈ U(2), while for bosons Mb ∈ U(1|1).
There are many reasons why generalizing such a transformation to matrix dimensions

higher than two can be useful. One can consider, for instance, a mixture of different types
of bosons (fermions) that are quadratically coupled to each other. The bosonic case includes

2θ will in general depend on the mode index k, too
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the usual Bogoliubov approximation as the standard description of superfluidity in weakly
interacting bosonic systems, or bosons in the presence of a staggered potential. Fermionic
cases include various mean-field analyses such as CDW, SDW, BCS-theory, back scattering,
fermions in a staggered potential, and many more. However, if one is interested in realizing
a description in which more than one of these interaction types occur simultaneously, as
in the case of a supersolid or any other more complex phases of matter, the dimension of
the matrix H grows, and finding the proper transformation becomes much more involved,
especially for bosons, where a straightforward parametrization in terms of angles becomes
quite complicated.

A.2 Fermionic Bogoliubov Transformations

The fermionic case is straightforward and shall be revisited briefly in this section. We shall use
the transformation to diagonalize two different types of Hamiltonians (in matrix dimension
D = 2) and discuss the physical meaning of that procedure.

To begin with, let us define the problem precisely:

Given a Hermitian matrix H = H† in n+m dimensions, find a transformation M , such
that M †HM = D is diagonal, and MM † = 1.

The existence and uniqueness (up to a permutation of the eigenvalues in the non-degenerate
case) of the transformation are guaranteed by the spectral theorem for self-adjoint matrices
which asserts that every Hermitian matrix can be diagonalized by a unitary transformation.
The columns of M then contain the properly normalized eigenvectors (w.r.t. the standard
scalar product in Cn+m):3

Theorem A.1 (Spectral Theorem). Given a Hermitian, (n+m)× (n+m) matrix H, there
exists a (unique)4 unitary transformation M ∈ U(n + m), such that M †HM = D, with D
diagonal and MM † = 1.

To bring out the physical meaning of the transformation, let us take a look at two different
ways of mixing the fermionic operators that can occur in D = 2. Consider first, for fermionic
operators cσ, a Hamiltonian given by

H =
∑
k

(c†k,↑, c−k,↓)

(
εk ∆
∆ −εk

)(
ck,↑
c†−k,↓

)
+ εk, (A.6)

with εk = ε−k the corresponding dispersion relation and ∆ being the gap.5 It appears
naturally in the BCS theory of (s-wave) superconductivity. Using the transformation M f

from (A.5) one arrives at the following diagonal form:

H =
∑
k

Ek

(
γ†1,kγ1,k − γ2,kγ

†
2,k

)
+ εk =

∑
k

Ek

(
γ†1,kγ1,k + γ†2,kγ2,k

)
+
∑
k

εk − Ek, (A.7)

3This should be better viewed as a normalization w.r.t. the sesquilinear quadratic form 1 from the RHS of
Eq. (A.3).

4up to reshuffling of the columns in the non-degenerate case
5We assume a real gap function ∆ = ∆∗ here for simplicity.
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with Ek =
√
ε2
k + ∆2. Notice the form of the new operator ~γ = (γ†1, γ2)t. That we chose

to call the second entry γ2 and not γ†2 is, of course, a convention, since the commutation
relations for fermions would be satisfied either way.6 One reason why this is the correct
choice is given by time-reversal symmetry: in BCS theory the latter requires flipping the sign
of the (22)-component of H which is naturally achieved by the above choice.

Another advantage of this choice can be seen if one takes a look at the way the initial
vacuum state transforms. Assuming a lattice model which results in a tight-binding dispersion
εk = −2t

∑
j cos(kj), the vacuum for the ck,σ operators is given by the unique vector in Fock

space annihilated by both ck,↑ and c−k,↓ which we denote by |0〉c. At half-filling, the ground

state of the system is given by |GS〉 =
∏
|k|≤kF c

†
k,↑c
†
−k,↓|0〉c. Since γ1,k = ukck,↑ − vkc†−k,↓ for

some uk and vk with u2
k + v2

k = 1 and γ2,k = va†k + uc−k, we have that both γ1,k and γ2,k

annihilate |GS〉 for |k| ≤ kF . This would have not been the case, had we chosen the other
convention. Hence we have managed to map the problem to that of free fermions with |GS〉
being the Fermi sea.

The last thing left to notice is that we have two distinct γk,σ operators. The reason for
this is that we started mixing fermions of different spin species. If we had a coupling of the
type aka−k (as is the case of Bogoliubov phonons), we would have to choose ~γk = (γk, γ

†
−k)

t

with the same γk in both components.

The second example we consider is described by the Hamiltonian

H =
∑
k

(a†k, c
†
k)

(
εk g
g −εk

)(
ak
ck

)
. (A.8)

It is encountered when one studies a fermionic system on a lattice under the influence of a
staggered potential of magnitude g that alternates along the lattice in a checkerboard manner,
[20]. This time, however, it is useful to adopt the other convention for the γ-operators:
~γ = (γ1, γ2), since there is no time-reversal symmetry to obey. In this example, a and c
describe the same fermionic species. Therefore, at half-filling the ground state is such that
the lowest band is completely filled. To be able to write it down, we need to diagonalize the
Hamiltonian first, for otherwise we cannot know the exact bands. It can be formally defined
as |GS〉 =

∏
k∈BZ′ γ

†
1,k|0〉γ , with BZ′ being the reduced Brillouin zone. Notice further that in

this case we have |0〉a,c = |0〉γ since γσ mix only annihilation operators.

This second way of quadratic coupling in H is fundamentally different than the first one
in terms of the underlying physics. Here, instead of considering pairs of fermions, one uses
the transformation to take into account the staggered potential by reducing the Brillouin zone
or, equivalently, doubling the unit cell.

Had we chosen the other convention, i.e. ~γ = (γ1, γ
†
2), after bringing the Hamiltonian into

normal-ordered form, the constant we would pick up along the way due to the commutator
relations corresponds precisely to the GS energy. Hence, in this case the operators would
create and destroy excitations, as was the case in the previous example.

A detailed description of how to diagonalize Hamiltonians in second quantized form is
given in [20].

6This will not be the case for bosons, though!
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A.3 Bosonic Bogoliubov Transformations

Bosonic systems require more effort to put in a diagonal form than fermionic ones. To see
this, let us again first formulate the problem in a clear way:

Given a Hermitian matrix H = H† in n+m dimensions, find a transformation M , such
that M †HM = D is diagonal, and MΣM † = Σ.

The difference to the bosonic case is the condition on M , which results from the commu-
tation relations for bosons, Eq.(A.3). It requires that M belongs to the pseudo-unitary group
U(n|m). From a mathematical point of view, such a transformation need not exist in the
first place. However, the fact that the problem comes from physics suggests that this might
be the case. This subsection gives a rigorous mathematical proof for this, under physical
conditions on H to be determined. Moreover, the proof is constructive, and hence a ‘recipe’
for constructing the transformation M could be extracted.

To understand what might go wrong from a physical point of view, let us try go write
down a simple Hamiltonian that describes pairing of bosons and conserves the momentum:

H =
∑
k

2εkb
†
kbk + V (b†kb

†
−k + bkb−k) =

∑
k

(
b†k, b

†
−k

)( εk V
V εk

)(
bk
b−k

)
− εk. (A.9)

Since the dimension of the corresponding matrix H is clearly two (D = 2), we can use a
hyperbolic rotation to bring it in the desired diagonal form. This time, there is no choice of
convention, and we are required to use a vector of the form ~γ = (γk, γ

†
k) to obey the proper

commutation relations. Notice that in this case, unlike the fermionic one, it is the same
operator γk in the components of the new basis. The fermionic case is physically different,
since there are two spin degrees of freedom (corresponding to the two fermionic species). Here,
there is only one species of bosons, and hence only one type of operator γk. As discussed
previously in the case of fermions, the new operators γ describe excitations (this time bosonic)
above the ground state. The diagonal Hamiltonian reads

H =
∑
k

Ek(γ
†
kγk + γ†kγk) + Ek − εk, (A.10)

with Ek =
√
ε2
k − V 2. We observe that this dispersion can potentially become imaginary.

For example, if we choose to work with a one dimensional tight-binding model, we have
ε2
k = 4t2 cos2 k ≥ 0, and in particular there are some k’s for which the value 0 is taken.

Hence, for these k there exists no V 6= 0, such that Ek is real. This is a contradiction to the
fact that M †HM is Hermitian for all k, since H itself is, whence D must necessarily have
real diagonal entries.

The problem obviously comes from the fact that we omitted the chemical potential µ from
the model. In the fermionic case, this did not have any effect, since one usually considers
systems at half-filling where µ = EF = 0. For bosons, however, this negative number that is
usually added to the dispersion relation does matter. Fixing µ then, in particular, allows all
values of V and Ek remains real. Clearly, this is not the case for all possible V . The reason
for this is that the bosonic system can be unstable, pretty much the same way as a system
of coupled classical harmonic oscillators can happen to have imaginary eigenfrequencies for
certain real values of the spring constants.
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To find the condition, under which the bosonic system is stable, we first map the bosonic
problem to the one of coupled QM oscillators. Consider a general Hermitian matrix H given
by

H =

(
M1 M2

M †2 M4

)
, (A.11)

with M †1 = M1 and M †4 = M4. We are interested in analyzing the stability of the Hamiltonian.
To map it back to a system of coupled oscillators, we define

~a† = (a†1, . . . , a
†
n), and ~b = (an+1, . . . , am), (A.12)

and recall the definitions ~a† = 1√
2
(~q1 − i~p1) and ~b = 1√

2
(~q2 + i~p2). Then, we have

(~a†,~b)H

(
~a
~b†

)
=

1

2
(~q1 − i~p1, ~q2 + i~p2)

(
M1 M2

M †2 M4

)(
~q1 + i~p1

~q2 − i~p2

)

=
1

2
(~p1, ~p2, ~q1, ~q2)


−i 0
0 i
1 0
0 1

( M1 M2

M †2 M4

)(
i 0 1 0
0 −i 0 1

)
~q1

~p1

~q2

~p2

 . (A.13)

Defining ~P = (~p1, ~p2)t and ~Q = (~q1, ~q2)t, and skipping a tedious step in the algebra, we have

=
1

2
(~P t, ~Qt)

(
ΣHΣ −iΣH

(−iΣH)† H

)(
~P
~Q

)

=
1

4
(~P t, ~Qt)

(
Σ −iΣ
i1 1

)(
H 0
0 H

)(
Σ −i1
iΣ 1

)
︸ ︷︷ ︸

=: C

(
~P
~Q

)

=
1

4
(~P t, ~Qt)C†

(
H 0
0 H

)
C

(
~P
~Q

)
. (A.14)

So far pi and qi were operators. Now, we pass to the classical picture leaving aside the
quantum nature. Clearly, the above quadratic form is stable, if and only if the matrix H is
positive definite, i.e. H > 0. Only then are the oscillations the system follows found around
a stable equilibrium. This stability behaviour is inherited by the quantum system as well7,
and hence the positivity of H is a natural condition to put.

Going back to the example of the bosonic chain with a Bogoliubov-type interaction, we
can compute the eigenvalues of H to be λ± = εk ± V . The stability of H then requires that
λ± > 0, and therefore λ1λ2 > 0, which in turn is equivalent to Ek ∈ R for all k.8

To bring out further peculiarities of some bosonic systems, when compared to fermionic
ones, we’ll also have a look at the other way bosonic operators can be coupled. The interesting
result in what will follow is that this type of coupling does not require a hyperbolic rotation,

7this can be justified using the concept of path integrals in which the classical action enters.
8Ek now contains the shift due to the chemical potential.
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but rather the usual rotation. Our example is the one of bosons on a chain in the presence of
a staggered potential, and assuming the Brillouin zone has already been reduced, we have

H =
∑
k

(a†k, b
†
k)

(
εk g
g −εk

)(
ak
bk

)
. (A.15)

Indeed, defining γ1 := ua−vb and γ2 := va+ub, with |u|2 + |v|2 = 1, it is readily checked that

[γ1, γ
†
1] = |u|2 + |v|2 = 1 = [γ2, γ

†
2], while [γ1, γ

†
2] = uv−vu = 0 = [γ2, γ

†
1]. Therefore, the band

structure for this model is the same as in the fermionic case, and is given by Ek =
√
ε2
k + g2.

Due to the bosonic nature of the particles, the bands will be populated differently, though.
This result is not completely unexpected: comparing with the structure of the matrix Σ, this
example remains within a block of the same signature. It is only terms of the type b†b† or b†a†

that couple the blocks of different signature, and for which a generalized hyperbolic rotation
will be needed.

Now that we have had a look at the different models of coupled bosons, we are ready to
prove the main result of this Appendix:

Theorem A.2 (Bosonic Spectral Theorem). Let H ∈ Cn+m be such that H† = H > 0.
Let Σ = diag(1n×n,−1m×m), and let ΣH be diagonalizable. Then there exists a (unique)9

pseudo-unitary transformation M ∈ U(n|m) (i.e. MΣM † = Σ), such that M †HM = D, with
D diagonal.

Proof. We shall prove the theorem in two steps:

Step 1 Consider first the matrix ΣH. Since it is diagonalizable, let λk denote the eigenvalue
corresponding to the eigenvector |vk〉, or in other words ΣH|vk〉 = λk|vk〉, for k =
1, . . . , n + m. Define also the matrix D̃ = diag(λ1, . . . , λn+m) to consist of all the
eigenvalues, listed with degeneracy (if necessary). Then we have

λk〈vk|Σ|vk〉 = 〈vk|H|vk〉 > 0, (A.16)

since H is positive definite by assumption. However, as Σ is Hermitian, we have that
〈vk|Σ|vk〉 ∈ R is real. Therefore, necessarily λk 6= 0 must be real too. In particular, it
also follows that 〈vk|Σ|vk〉 6= 0 for any eigenvector of ΣH, i.e. the eigenvectors can be
normalized w.r.t. Σ.

Further, notice that for k 6= l

λl〈vk|Σ|vl〉 = 〈vk|ΣΣH|vl〉 = 〈vk| (ΣH)†Σ†|vl〉 = λ̄k〈vk|Σ|vl〉, (A.17)

since ΣH is Hermitian. Rearranging, we obtain

(λl − λ̄k)〈vk|Σ|vl〉 = 0. (A.18)

Therefore, we conclude that 〈vk|Σ|vl〉 = 0, whenever the eigenvalues are non-degenerate,
and so the eigenvectors of ΣH corresponding to different eigenvalues are orthogonal
w.r.t. the metric Σ.

9up to reshuffling of the columns corresponding to eigenvalues of the same signature in the non-degenerate
case
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Step 2 We now proceed with the proof of the theorem. Keep in mind that in general the
eigenvalues may happen to be degenerate. In Step 1, we proved that the eigenvectors of
ΣH belonging to different eigenvalues still remain orthogonal, and the eigenvalues must
necessarily be real, due to the positivity of H. Let us first define a matrix M̃ via

M̃ := (|v1〉, . . . , |vn〉, |vn+1〉 . . . , |vn+m〉) . (A.19)

There is no need to consider the sign of the corresponding eigenvalues at this moment.
It is advantageous to consider M̃ †ΣM̃ first which is block-diagonal, due to the orthog-
onality of the eigenvectors (corresponding to different eigenvalues). Moreover, each
block is Hermitian. Therefore, there exists a unitary block-diagonal transformation
U = diag(U1, . . . , Um) (UiU

†
i = 1i), such that

UM̃ †ΣM̃U † =

 λ1 0
. . .

0 λn+m

 , (A.20)

where the eigenvalues are listed with possible degeneracy. We can therefore normalize
further using the matrix A = diag(1/

√
|λ1|, . . . , 1/

√
|λm|) to arrive at a diagonal matrix

containing ±1 on the diagonal, and (if necessary) use a further permutation matrix P
to finally obtain

PAUM̃ †ΣM̃U †A†P † = diag(1, . . . , 1,−1, . . . ,−1) = Σ. (A.21)

It should be mentioned that all the transformations used so far preserve the signature by
Sylvester’s theorem, and hence the final number of ±1’s matches precisely the signature
of Σ due to the positivity of H.

We can now define the matrix M := M̃U †A†P †. It follows that

MΣM † = M̃U †A†P †ΣPAUM̃ † = M̃U †diag

(
1

λ1
, . . . ,

1

λn+m

)
UM̃ †, (A.22)

by definition of A and P . Inverting Eq. (A.20) it follows that

diag

(
1

λ1
, . . . ,

1

λn+m

)
= UM̃−1Σ

(
M †
)−1

U †, (A.23)

and hence MΣM † = Σ, as desired.

It remains to check that M−1ΣHM = D̃, i.e. the additional matrices P,A,U leave the
diagonal matrix D̃ invariant:

M−1ΣHM = (P †)−1(A†)−1UM̃−1ΣHM̃U †A†P † = PA−1UD̃U †AP−1, (A.24)

where we used that any permutation matrix P is orthogonal, and A is diagonal. Now

comes the crucial point: recall that D̃ = diag
(
D̃1, . . . , D̃k

)
is diagonal, such that

D̃i = λi1, and U is block-diagonal, consisting of unitary matrices only. Therefore,
UD̃U † = D̃UU † = D̃, which follows immediately from UiD̃iU

†
i = λiUiU

†
i = D̃i. Since

D̃ and A are both diagonal, we readily have A−1D̃A = D̃. Last, PD̃P−1 = D̃, as P is
defined to permute diagonal elements only.

To finish the proof in this case, observe that since M ∈ U(n|m) is pseudo-unitary, we
have ΣM−1 = M †Σ. Multiplying (A.26) by Σ from the left yields M †HM = ΣD̃ =: D,
which gives the diagonal matrix D as well. This completes the proof of the theorem.
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In particular, it follows from the above proof that since H > 0, the matrix ΣH has the
signature of Σ, and so there are n positive and m negative eigenvalues. This is most easily seen
from the fact that D must be positive, and hence the diagonal matrices Σ and D̃ necessarily
have the same signature.

In the non-degenerate case, we can provide a recipe to construct M . Define the matrix M
to contain the eigenvectors |vn〉 as columns in such a way that the eigenvectors corresponding
to the negative eigenvalues of ΣH are put in the last m columns, and we normalize them
w.r.t. to Σ:

M :=

(
|v1〉√
〈v1|Σ|v1〉

, . . . ,
|vn〉√
〈vn|Σ|vn〉

,
|vn+1〉√

〈vn+1| − Σ|vn+1〉
, . . . ,

|vn+m〉√
〈vn+m| − Σ|vn+m〉

)
.

(A.25)
It follows directly from the orthogonality of the different eigenvectors and the above normal-
ization that M is pseudo-unitary by construction: MΣM † = Σ. Moreover, since M contains
the eingenvectors of ΣH, it is also true that

M−1ΣHM = D̃, (A.26)

where D̃ is diagonal and contains the non-degenerate eigenvalues λn.
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Appendix B

Effective Action for Mixtures of
(hardcore) Bosons

In this Appendix we extend1 the work of Bradlyn, dos Santos, and Pelster on the ‘Effective
Action Approach for Quantum Phase Transitions in Bosonic Lattices’, [8, 13]. Recently, they
developed a general theory for describing phase transitions in bosonic systems beyond mean
field, using a cumulant expansion method. Among the numerous advantages of this scheme
are the implementation of finite temperature effects, the possibility to go to higher order in
the small parameter(s) of the theory, and including the effect of arbitrary external potentials
(e.g. a staggered, or a harmonic potential) within the Local Density Approximation.

The extension we provide allows for applying the method to mixtures of bosons and hard-
core bosons. Including fermionic compounds is possible in interaction-dominated (insulating)
phases, since the theory is perturbative in the hopping matrix of the species. Further, we
assume that the hopping integrals will be of similar magnitude. Here, we restrict our analysis
to bosons (including hardcore bosons).

The Hamiltonian for the system is given by

H =
∑
α

(H1,α +H0,α) +H0,int

H1,α = −
∑
ij

tij,α

(
a†iαajα + h.c.

)
H0,α =

∑
i

fi,α(n̂iα)

H0,int =
∑
i

gi(n̂iα). (B.1)

The operators aiα obey the corresponding commutator relations for each species type α. The
kinetic energy term H1,α contains the hopping matrices tij,α which are assumed symmetric
and small, compared to the interaction energy. H0,α describes the interaction of the species α
via an arbitrary local function fi,α of the particle number operator n̂i,α. The different species
are allowed to be subject to different interaction terms, although it is the interaction strength
that will usually be different. The locality condition is essential to the theory, and must be

1While the original work is designed for a single species of bosons, here we present a generalization applicable
to arbitrary mixtures of bosons and hardcore bosons.
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properly stressed. The function gi models the density-density coupling of the species. As the
notation suggests, both fi,α and gi can depend on the site index i, thus taking into account
the effect of an external potential within the Local Density Approximation. Finally, we note
that the functions fα also contain the corresponding chemical potentials.

It will be useful to adopt the notation

H = H1 +H0

H1 =
∑
α

H1,α

H0 =
∑
α

H0,α +H0,int. (B.2)

In the following we follow closely the analysis [8]. We begin by introducing currents jα(τ)
to the action which break any global symmetries:

H1,α −→ H ′1,α = −
∑
ij

tij,α

(
a†iαajα + h.c.

)
+
∑
i

(
jiαa

†
iα + j∗iαaiα

)
. (B.3)

We shall use them as sources to generate a perturbative expansion in the standard field-
theoretical manner. To this end, we pass to an imaginary-time interaction picture w.r.t. H0.
The evolution operator generates a one-parameter unitary group via Schrödinger’s equation:

d

dτ
UI(τ) = −H ′1I(τ)UI(τ, τ0),

U(τ0, τ0) = 1. (B.4)

Using this, for the total partition function we have

Z[jα, j
∗
α] = tr

{
Tτe
−
∫ β
0 dτH(τ)

}
= tr

{
e−
∫ β
0 dτH0(τ)UI(β, 0)

}
, (B.5)

which is now a functional of the currents. Using the series expansion for the evolution operator
we arrive at

Z = Z(0) +
∞∑
n=1

Z(n),

Z(n) = Z(0) (−1)n

n!

∫ β

0
dτ1

∫ β

0
dτ2 . . .

∫ β

0
dτn

〈
Tτ
[
H ′1I(τ1)H ′1I(τ2) . . . H ′1I(τn)

]〉
0
. (B.6)

where

Z(0) =
∏
i

Z(0)
i

Z(0)
i =

∑
nα

e−β[gi(niα)+
∑
α fiα(niα)] (B.7)

The free energy of such a system is given by F = − 1
β logZ. It is noteworthy that due to the

fact that H0 is not quadratic, we cannon apply Wick’s theorem. The situation is saved by
the Linked-Cluster Theorem, [13], which asserts that F can be expanded diagrammatically
in terms of cumulants which in general depend on all the lattice sites. However, since the
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interaction terms are all local in nature, all cumulants can only depend on a single site index
i. They can be calculated from

iC
(0)
2n,α1,...,α2n

(τ ′1, . . . , τ
′
n|τ1, . . . , τn) =

δ2nC
(0)
0 [jα, j

∗
α]

δjiα1(τ ′1) . . . δji,αn(τ ′n)δj∗iαn+1
(τ1) . . . δj∗iα2n

(τn),

C
(0)
0 [jα, j

∗
α] = log

Z
Z0

∣∣∣∣
tij,α=0

= log

〈
Tτ exp

−
∑

i,α

∫ β

0
dτ
[
jiα(τ)a†iα + j∗iα(τ)aiα

]
〉

0

(B.8)

The left-subscript denotes the site index, on which the cumulant is calculated. The superindex
in parentheses gives the order in perturbation theory w.r.t. the hopping amplitude t. Further,
the subindex 2n gives the number of the cumulant, and finally α1 . . . α2n denote the corre-
sponding species. We shall shortly see, that the index α can only assume n different values,
as the rest will result in delta functions. Furthermore, it follows from the definition of the
operators aiα that all odd cumulants vanish identically, since the ground state of H0 is a state
of a definite particle number. Also, cumulants where the index αi is present an odd number
of times vanish identically, for creation and annihilation operators of different types commute
with each other.

Since we are ultimately interested in deriving an effective low-energy Landau-Ginzburg
theory, we only need cumulants up to 4th order. For the 2nd order cumulant, we have

iC
(0)
2,αβ(τ1|τ2) =

〈
T
[
a†iα(τ1)aiβ(τ2)

]〉
0

= δαβ

〈
Tτ

[
a†iα(τ1)aiα(τ2)

]〉
0

= δαβG
(0)
α (i, τ1|i, τ2).

(B.9)
Hence, we find that it is equal to the free Green’s function. Moreover, it is diagonal in α-

space which suggests to use the simpler notation iC
(0)
2,α. This is the reason why we only need

n indices for α to distinguish the different cumulants. The 4th order cumulant is given by

iC
(0)
4,αβ(τ1, τ2|τ3, τ4) =

〈
T
[
a†iα(τ1)a†iβ(τ2)aiα(τ3)aiβ(τ4)

]〉
0

−i C(0)
2,α(τ1|τ3)iC

(0)
2,β(τ2|τ4)−i C(0)

2,α(τ1|τ4)iC
(0)
2,β(τ2|τ3). (B.10)

Notice that this cumulant is symmetric w.r.t. the exchange of τ1 ↔ τ2, τ3 ↔ τ4, and α↔ β.
One could in principle set up a set of Feynman rules to picture the diagrammatic expan-

sion. We remark that these rules are the same as in [8], except that there is a greater variety,
since the number of species has also increased. Here, we directly give the correction to the
free energy to first order in the hoppings and fourth order in the currents.

F (1) =− 1

β

∑
i,α

{∫
τ1,τ2

[
a

(0)
2,α(i, τ1|i, τ2)jiα(τ1)j∗iα(τ2) +

∑
j

a
(1)
2,α(i, τ1|j, τ2)tij,αjiα(τ1)j∗iα(τ2)

]}

− 1

β

∑
i,αβ

{
1

4

∫
τ1,τ2,τ3,τ4

a
(0)
4,α,β(i, τ1; i, τ2|i, τ3; i, τ4)jiα(τ1)jiβ(τ2)j∗iα(τ3)j∗iβ(τ4)

+
1

2

∑
j

∫
τ1,τ2,τ3,τ4

[
tij,αa

(1)
4,αβ(i, τ1; i, τ2|j, τ3; i, τ4)jiα(τ1)jiβ(τ2)j∗jα(τ3)j∗iβ(τ4)

+ a
(1)
4,αβ(i, τ1; j, τ2|i, τ3; i, τ4)jiα(τ1)jjβ(τ2)j∗iα(τ3)j∗iβ(τ4)

]}
, (B.11)
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with

a
(0)
2,α(i, τ1|i, τ2) = iC

(0)
2,α(τ1|τ2)

a
(1)
2,α(i, τ1|j, τ2) =

∫ β

0
dτiC

(0)
2,α(τ1|τ)iC

(0)
2,α(τ |τ2)

a
(0)
4,αβ(i, τ1; i, τ2|i, τ3; i, τ4) = iC

(0)
4,αβ(τ1, τ2|τ3, τ4)

a
(1)
4,αβ(i, τ1; i, τ2|j, τ3; i, τ4) =

∫ β

0
dτ iC

(0)
4,αβ(τ1, τ2|τ, τ4)jC

(0)
2,α(τ |τ3). (B.12)

We seek an effective potential (Ginzburg free energy) for a set of order parameters ψα. To
this end, one has to follow precisely the same steps as is [8], which we omit here. It should be
mentioned that the derivation makes use of the translational invariance in the time domain,
passing over to Matsubara space, where the above quantities are somewhat simpler to handle.
It is this that enables us to incorporate finite-T effects in the theory. We define the complex
order parameter field as the functional derivative of the free energy w.r.t. the current:

ψiα(ωm) := 〈aiα(ωm)〉 = β
δF

δj∗iα(ωm)
, (B.13)

where β is the inverse temperature. The effective potential (or Landau-Ginzburg free energy)
can be calculated along the lines of [8] to be

Γ[ψα, ψ
∗
α] = F0 +

1

β

∑
i,α

{∑
ωm

 |ψiα(ωm)|2

a
(0)
2,α(i, ωm)

−
∑
j

tij,αψiα(ωm)ψ∗jα(ωm)

−
−
∑
β

∑
ωm1 ,...,ωm4

a
(0)
4,αβ(i, ωm1 ; i, ωm2 |i, ωm3 ; i, ωm4)

4a
(0)
2,α(i, ωm1)a

(0)
2,β(i, ωm2)a

(0)
2,α(i, ωm3)a

(0)
2,β(i, ωm4)

ψiα(ωm1)ψiβ(ωm2)ψ∗iα(ωm3)ψ∗iβ(ωm4)

}
(B.14)

Having derived the general result, the above scheme provides a straightforward (though
computationally involved) way to include higher order terms in the hopping matrix tij,α.
Instead, let us restrict the following analysis to a time-independent order parameter. We
want to investigate the two cases of

1. A single component interacting bosons in the presence of a staggered potential.

In the presence of an alternating potential, the order parameter will also assume a
staggered modulation in general. Since there is a residual translational symmetry cor-
responding to a larger unit cell, we need only care about physical quantities inside
this cell. If we denote the two sublattices by A and B, the effective potential at zero
temperature takes the form

Γ[ψ] = F0 +
Ns

2

(
|ψA|2

a
(0)
2 (A, 0)

+
|ψB|2

a
(0)
2 (B, 0)

)
− ztNsψAψB

− Ns

2

 a
(0)
4 (A, 0)

4
[
a

(0)
2 (A, 0)

]4 |ψA|
4 +

a
(0)
4 (B, 0)

4
[
a

(0)
2 (B, 0)

]4 |ψB|
4

 , (B.15)

with Ns the number of sites.
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2. A mixture of two species.

In this case α = {ψ, φ} can take only two values, and we denote the uniform order
parameters by ψ and φ. All cumulants take the same value on each site due to trans-
lational symmetry, and we can safely neglect the index i. The effective action for this
problem takes the form

Γ[ψ, φ] = F0 +Ns

 |ψ|2

a
(0)
2,ψ(i, 0)

+
|φ|2

a
(0)
2,φ(i, 0)

−Ns

(
ztψ|ψ|2 + ztφ|φ|2

)

− 1

4Ns

 a
(0)
4,ψψ(i, 0)[
a

(0)
2,ψ(i, 0)

]4 |ψ|
4 +

2a
(0)
4,ψφ(i, 0)[

a
(0)
2,ψ(i, 0)

]2 [
a

(0)
2,φ(i, 0)

]2 |ψ|
2|φ|2 +

a
(0)
4,φφ(i, 0)[
a

(0)
2,φ(i, 0)

]4 |φ|
4

 .

(B.16)

The analysis of the rich phase diagram coming from such a Landau-Ginzuburg free
energy with two coupled order parameters is given in the appendix of [33].

With this, we conclude our short discussion of the Cumulant Expansion Method.
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Appendix C

SUSY Calculations

C.1 Derivation of the Hamiltonian

In this Appendix we review the straightforward but computationally involved derivation of
the standard many-body Hamiltonian from the SUSY one. To begin with, note first that the
three parts of (6.35), although they have different physical meaning, have the same structure
w.r.t. the Grassmann integration: in the first one the Nabla operator refers to the spatial
variables only, and in the last term the potential does not involve any of the Grassmann
fields, and thus the integration over the primed and unprimed Grassmann variables can be
performed independently, using the expansion of the superfield in components.

Therefore, we restrict our calculation to the part involving the chemical potential and
drop the constant prefactor µ:

1

2m

∫
d2θd2θ̄φ̄φ =

1

2m

∫
d2θd2θ̄

[
emθσ

0θ

(
1

m
A(~x, t) +

√
2

m
θαψα(~x, t) + θ2B(~x, t)

)]

×

[
emθσ

0θ

(
1

m
A†(~x, t) +

√
2

m
θ̄α̇ψ̄

α̇(~x, t) + θ̄2B†(~x, t)

)]

=
1

2m

∫
d2θd2θ̄

1 + 2mθσ0θ̄ +
4m2

2
(θσ0θ̄)(θσ0θ̄)︸ ︷︷ ︸

=− 1
2
θ2θ̄2η00


×

[
1

m
A(~x, t) +

√
2

m
θαψα(~x, t) + θ2B(~x, t)

]

×

[
1

m
A†(~x, t) +

√
2

m
θ̄α̇ψ̄

α̇(~x, t) + θ̄2B†(~x, t)

]

=
1

2m

∫
d2θd2θ̄

[
A†Aθ2θ̄2 +B†Bθ2θ̄2 + 4(θσ0θ̄)(θ̄ψ̄)(θψ)

]
, (C.1)

where in the last step we kept only the non-vanishing components under the Grassmann
integration (to be carried out trivially in a subsequent step). The first two terms already
have the desired form. To see that this is true for the fermionic term as well, we employ the
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properties of the spinor algebra:

4(θσ0θ̄)(θ̄ψ̄)(θψ) = 4θβσ0
ββ̇
θ̄β̇ θ̄α̇ψ̄

α̇θαψα

= 4θβσ0
ββ̇
εγ̇β̇ θ̄γ̇ θ̄α̇︸︷︷︸

=− 1
2
εγ̇α̇θ̄2

ψ̄α̇θαψα

= −2σ0
ββ̇
εγ̇β̇εγ̇α̇︸ ︷︷ ︸

=δβ̇α̇

θ̄2θβψ̄α̇θαψα

= −2θ̄2σ0
βα̇(−ψ̄)α̇ θβθα︸︷︷︸

=− 1
2
εβαθ2

ψα

= −θ̄2θ2σ0
βα̇ψ̄

α̇ψβ = +θ̄2θ2ψσ0ψ̄. (C.2)

This term is normal ordered, since according to our convention [57], σ0 = −1 and the extra
sign is cancelled by commuting the Grassmann fields.

Precisely the same calculation can be carried out for the kinetic term, keeping the gra-
dients at each step, as they do not affect the Grassmann integration. In the interaction
term, as mentioned before, the contact interaction only couples the spatial variables, and the
above procedure together with the integral over δ(4)(x− x′) results in the standard two-body
interaction for the different fields as given by Eq. (6.3).

C.2 Evaluation of the Hartree Diagram

In this Appendix, we show the computation of the Hartree diagram in superspace and derive
the expression from Eq. (6.39).

Notice that, since the free propagator factorizes into a space-time term and a Grassmann
term, it is sufficient to deal with both of them separately, to avoid lengthy expressions. Here
we start with the space-time term, which reads

∫
d4x′1d4x′2

∫
dωd3k

(2π)4

dνd3q

(2π)4

dν̃d3q̃

(2π)4
eik(x1−x′1)eiq(x

′
1−x′2)eiq̃(x

′
2−x2)

× 1

ω − εk − µ
1

ν − εq − µ
1

ν̃ − εq̃ − µ
gδ(4)(x′1 − x′2)

= g

∫
dωd3k

(2π)4

dν̃d3q̃

(2π)4
d4x′1e

(ix′1(q̃−k))ei(kx1−q̃x2)

×
(∫

dνd3q

(2π)4

1

ν − εq − µ

)
1

ω − εk − µ
1

ν̃ − εq̃ − µ

= g

∫
d3kdω

(2π)4
eik(x1−x2)

(
1

ω − εk − µ

)2 ∫ d3qdν

(2π)4

1

ν − εq − µ
. (C.3)

Next, we prove the ‘robustness’ identity, which amounts to calculating the Grassmann part
of the Hartree diagram. Neglecting the mass prefactor (−1/m2)3, we have

e−2θ′1σ
0θ̄1+θ1σ0θ̄1+θ′1σ

0θ̄′1e−2θ′2σ
0θ̄′1+θ′1σ

0θ̄′1+θ′2σ
0θ̄′2e−2θ2σ0θ̄′2+θ2σ0θ̄′2+θ2σ0θ̄2

= e2m[θ′1σ
0θ̄′1+θ′2σ

0θ̄′2−θ′1σ0θ̄1−θ2σ0θ̄′2−θ′2σ0θ̄′1]emθ1σ
0θ̄1+mθ2σ0θ̄2 . (C.4)
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Since only the first factor contains the primed variables over which we integrate, we expand
it term by term, and retain only the terms proportional to Ω′21 Ω′22 , as all other components
will be set to zero by the Grassmann integration. It is most convenient to separate the five
exponentials and expand them exactly to second order:

=

(
1
:

+ 2mθ′1σ
0θ̄′1 +m2(θ′1)2(θ̄′1)2

)(
1
:

+ 2mθ′2σ
0θ̄′2 +m2(θ′2)2(θ̄′2)2

)
×
(

1− 2mθ′1σ
0θ̄1 +m2(θ′1)2(θ̄1)2

::::::::::::

)(
1− 2mθ2σ

0θ̄′2 +m2(θ2)2(θ̄′2)2

::::::::::::

)
×
(

1− 2mθ′2σ
0θ̄′1 +m2(θ′2)2(θ̄′1)2

::::::::::::

)
= m4Ω′21 Ω′22 +m6Ω′21 Ω′22 (θ̄1)2(θ2)2 − 25m5(θ′1σ

0θ̄′1)(θ′2σ
0θ̄′2)(θ′1σ

0θ̄1)(θ2σ
0θ̄′2)(θ′2σ

0θ̄′1)

= m4Ω′21 Ω′22 +m6Ω′21 Ω′22 (θ̄1)2(θ2)2 − 2m5(θ2σ
0θ̄1)Ω′21 Ω′22

= m4e−2mθ2σ0θ̄1Ω′21 Ω′22 (C.5)

The penultimate equality will be shown below. Dividing by the mass pre-factor, executing
the trivial integration over the Grassmann variables, and including the exponential from the
second term in (C.4), one obtains for the full F

F (Ω1,Ω2;m) = − 1

m2
exp

(
−2mθ2σ0θ̄1 +mθ1σ0θ̄2 +mθ2σ0θ̄2

)
. (C.6)

The last step consists of showing the identity

25m5(θ′1σ
0θ̄′1)(θ′2σ

0θ̄′2)(θ′1σ
0θ̄1)(θ2σ

0θ̄′2)(θ′2σ
0θ̄′1) = 2m5(θ2σ

0θ̄1)Ω′21 Ω′22 . (C.7)

To this end, we employ several times the identities (θφ)(θψ) = −1
2(φψ)θ2 and (θ̄φ̄)(θ̄ψ̄) =

−1
2(φ̄ψ̄)θ̄2 proved in [57]:

25m5(θ′1σ
0θ̄′1)(θ′2σ

0θ̄′2)(θ′1σ
0θ̄1)(θ2σ

0θ̄′2)(θ′2σ
0θ̄′1)

= 23(θ′1σ
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0θ̄′2)(θ′2σ

0θ̄′1)

= 23(θ′1θ
′
1)(θ̄′1θ̄1)(θ′2θ2

:
)(θ̄′2θ̄

′
2)(θ′2σ

0θ̄′1
::::

)

= −4(θ′1)2(θ′2)2(θ̄′2)2(θ1θ̄
′
1)(θ2σ

0θ̄′1)

= 2(θ′1)2(θ′2)2(θ̄′2)2(θ̄′1)2(θ2σ
0θ̄1), (C.8)

where we used the fact that σ0 = −1.
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and K. Sengstock, Multiband spectroscopy of ultracold fermions: Observation of reduced
tunneling in attractive Bose-Fermi mixtures, Phys. Rev. Lett. 107 (2011), 135303.

[25] H. Heiselberg, C. J. Pethick, H. Smith, and L. Viverit, Influence of induced interactions
on the superfluid transition in dilute Fermi gases, Phys. Rev. Lett. 85 (2000), 2418–2421.

[26] I. Hen and M. Rigol, Superfluid to Mott-insulator transition of hardcore bosons in a
superlattice, Phys. Rev. b 80 (2009), 134508.

[27] S. Huber, Excitations and transport in strongly correlated bosonic matter, PhD thesis,
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[28] E. İnönü and E. P. Wigner, On the contraction of groups and their representations, Proc.
Nat. Acad. Sci. 39(6) (1953), 550–24.

[29] M. Iskin, Route to supersolidity for the extended Bose-Hubbard model, Phys. Rev. A 83
83 (2011), 051606(R).

[30] , Quantum phase transition from a superfluid to a Mott insulator in a gas of
ultracold atoms, arXiv (2013), 1304.8111.

[31] M. Kardar, Statistical physics of fields, Cambridge University Press, 2007.



BIBLIOGRAPHY 127

[32] W. Ketterle, When atoms behave as waves: Bose-Einstein condensation and the atom
laser, Nobel Lecture (2001).

[33] K.-S. Liu and M. Fisher, Quantum lattice gas and the existence of a supersolid, Journal
of Low Temperature Physics 10 (1973), Nos. 5/6.

[34] G.S. Lozanoa, O. P., F.A. S., and L. Sourrouille, On 1 + 1 dimensional galilean super-
symmetry in ultracold quantum gases, Phys. Rev. A 75 (2006), 023608.
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