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1 Introduction

A random matrix is a random variable with values in the real or complex matrices of a determin-
istic size. They were first introduced by Wishart in 1928. He used random matrices to model
problems in mathematical statistics and data analysis [16]. In 1955, Wigner conjectured that the
eigenvalues of random matrices should describe the energy levels of large atoms [15]. Since then,
random matrices appeared in a number of physical models. Some applications are described in
[13] and in Journal of Physics A 36(12), 2003: Special issue: Random Matrix Theory.
The second example indicates that the distribution of the eigenvalues of a random matrix is

a particularly interesting and often studied question in random matrix theory. This justifies the
focus on square matrices, i.e. N×N matrices with N ∈ N. For a random matrix with eigenvalues
(λi)Ni=1, this distribution is defined by µN ..= N−1∑N

i=1 δλi
and is called the empirical spectral

measure. A first answer has already been given by Wigner in [15]. Under some assumptions
about the entries, he could show by computing its moments that the empirical spectral measure
follows the semicircle law induced by the density

√
(4− x2)+/(2π) in the limit that the matrix

size N goes to infinity.
This result, which is called Wigner’s semicircle law, makes it possible to compute the part of

the eigenvalues contained in a fixed interval in the limit N to infinity. In more recent results, this
value is calculated for a variable interval size as well. However, the interval size is not allowed
to decrease too fast to guarantee that the interval contains at least some eigenvalues for each
matrix size N . Such statements are called local semicircle laws.
Different versions of local semicircle laws were proved by Erdős and coworkers during their

work on the Wigner-Dyson-Gaudin-Mehta conjecture which is formulated in Conjecture 1.2.1
and Conjecture 1.2.2 in [13]. It asserts that the local statistics of the eigenvalues of a random
matrix are independent of the distribution of the entries in the limit N to infinity. This indepen-
dence of the actual distribution is called universality. The proof of this conjecture by Erdős and
coworkers in [5, 8, 11] is build upon establishing a local semicircle law in the first step. Their
solution is reviewed in [4, 9]. Their most general version of a local semicircle law is verified
in [7]. Besides technical assumptions about the regularity of the entries the most important
requirement is their interdependence structure. The matrix H = (hxy)x,y is supposed to be
complex Hermitian (or real symmetric) i.e. hxy = h̄yx for all x and y such that (hxy)x≤y forms
an independent family of random variables. This means that the entries are independent up to
the hermiticity constraint.
Most of the work in random matrix theory starts with this independence assumption. There-

fore, it is an interesting aim to study such questions without this assumption or with a weaker
substitute. In the present thesis, we determine the limiting distribution for a class of random ma-
trices obeying a different interdependence structure. We introduce further dependences among
the entries by adding an additional symmetry to the hermiticity assumption. More precisely, we
suppose that the random variables (hxy;x, y = −N/2, . . . , N/2) satisfy the symmetry constraint

hxy = h̄yx = h−y,−x = h̄−x,−y

for all x and y and are independent besides these relations. We call this symmetry fourfold
symmetry.
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1 Introduction

The local semicircle law in Theorem 4.1, which is the main result of this thesis, has the same
formulation as Theorem 5.1 in [7] which means that the same estimates hold in the current
situation as well. However, several parts of the proof given there have to be adapted to the
fourfold symmetry. In particular, it is necessary to transfer the fluctuation averaging which is
a key tool for the approach which is pursued in [7] and the present work and which is based on
Stieltjes transforms, resolvents and large deviation bounds.
We conclude this chapter with an overview of the structure of the present thesis. In the second

chapter, we describe the assumptions about the random matrices necessary for our version of
the local semicircle law, in particular, the fourfold symmetry. Moreover, we present the tools
we use to establish this result. We prove in chapter 3 that the Fourier transform of a Gaussian
orthogonal ensemble is an example of a random matrix fulfilling our assumptions. The following
chapter is devoted to the proof of the local semicircle law. In the next two chapters, we verify
two tools used in the proofs of the previous chapter. We establish the resolvent identities in the
first of these chapters and the second chapter contains a proof of the fluctuation averaging in
the present situation which is a key ingredient in our approach to the semicircle law. Finally,
we finish the thesis by a collection of some well-known auxiliary results in the last chapter.

Acknowledgement: Several people supported me during the preparation of the present thesis.
Herewith, I would like to thank them.
I am grateful to Prof. László Erdős. He supervised me despite our different workplaces and

proposed this interesting topic to me. Continually, he replied to my emails with an amazing
velocity. Moreover, I appreciate the advices of Alessandro Michelangeli concerning various de-
cisions I had to make in the last time. Finally, I thank my parents for their constant support,
advice and encouragement during my entire studies.
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2 General Tools

This chapter is devoted to the setting of the local semicircle law and the tools used for its proof in
chapter 4. In the first section, we explain the symmetry of the random matrix and the technical
assumptions about its entries and introduce some notation.
The rest of the chapter consists of the presentation of the tools for the proof of the local

semicircle law. In the second section, we introduce the stochastic domination, a relation which
is used to bound the error terms, and spectral domains which are families of special subsets of
the complex plane. The third section is devoted to Large Deviation Bounds with respect to the
stochastic domination. Then we give some relations which connect resolvents and resolvents of
minors. The fifth section contains some notation for partial expectations used in our context.
The last section deals with the Fluctuation Averaging which is an important ingredient of the
proof of the local semicircle law.

2.1 Setting: Fourfold Symmetry

Let (Ω,A,P) be a probability space. For N ∈ N let (h(N)
xy ; y = −N/2, . . . , 0, x = −y, . . . , y) be a

familiy of independent complex valued random variables such that h(N)
xx is real valued for all x

and h(N)
xy is centered, i.e. E[h(N)

xy ] = 0 for y = −N/2, . . . , 0 and x = −y, . . . , y. Most of the time,
the dependence on N will be suppressed in our notation. We set

hxy ..= h̄yx, for x = −N/2, . . . , 0, y = x, . . . ,−x,
and afterwards hxy ..= h−y,−x, for x = −N/2, . . . , N/2, y = −x, . . . , N/2.

Then the matrix H(N) = (h(N)
xy )N/2x,y=−N/2 fulfills the relations

hxy = h̄yx = h−y,−x = h̄−x,−y (2.1)

for all x, y. The following matrix illustrates these relations

−N/2 x y −y −x N/2



−N/2

x hxy

y h̄xy
−y hxy

−x h̄xy

N/2

.

We call these dependences between the entries of H Fourfold Symmetry.
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2 General Tools

Correspondingly, the symmetry of (hxy)x,y with a family of independent complex valued random
variables (hxy)x≤y with real valued hxx for all x and hxy ..= h̄yx for all x > y is called Twofold
Symmetry. The latter symmetry was studied in [7]. In both cases, H is a Hermitian matrix and
has therefore only real eigenvalues.
Furthermore, we have to assume that Eh2

xy = 0 for all x 6= y and all N for technical reasons.
Note that this requirement was not necessary in [7]. For example, this assumption is fulfilled if
Im hxy and Rehxy have the same distribution for x 6= y.
Our aim is to determine the limit of the empirical spectral measure

µN ..= 1
N

N∑
i=1

δ
λ

(N)
i

for N →∞ (in an appropriate sense) where (λ(N)
i )Ni=1 are the eigenvalues of H(N) (counted with

multiplicity). Since all eigenvalues of H are real µN defines a probability distribution on R.
To expect a convergence of these measures, it is necessary to make some further mostly

technical assumptions. We define the N -dependent quantity sxy ..= E|hxy|2 and assume that∑
y sxy = 1 for all x and for all N , i.e. the symmetric matrix S = (sxy)N/2x,y=−N/2 is stochastic.

Moreover, we introduce the normalized random variables ζxy ..= s
−1/2
xy hxy (If sxy = 0 we set

ζxy ∼ N (0, 1).) which fulfill Eζxy = 0 and E|ζxy|2 = 1 and we assume that there are constants
µp for p ∈ N such that

E|ζxy|p ≤ µp (2.2)

for all x, y and all N .
We set M ..= (maxx,y sxy)−1 and assume that this N -dependent parameter satisfies

N δ ≤M ≤ N (2.3)

for some δ > 0. Note that the first estimate is an assumption on the random variables whereas
the bound M ≤ N follows from sxy ≤M−1 for all x, y and N−1 ≤ sxy for at least one pair x, y.
We will see in chapter 3 that the Fourier transform of a Gaussian orthogonal ensemble fulfills

all assumptions, i.e. it is an example of a random matrix which our results can be applied to.
It is helpful to consider the Stieltjes transform of the empirical spectral measure for deter-

mining its limit and establishing the convergence. Recall that the Stieltjes transform S(ν) of a
finite measure ν on R is defined as

S(ν)(z) =
∫
R

1
x− z

dν(x)

for z ∈ C\R. For z ∈ C\R we compute

mN (z) ..= S(µN )(z) =
∫
R

1
x− z

dµN = 1
N

N∑
i=1

1
λi − z

= 1
N

N∑
i=1
〈ei, (H − z)−1ei〉 = 1

N
tr(H − z)−1

where (ei)Ni=1 is an orthonormal eigenbasis of H corresponding to the eigenvalues (λi)Ni=1. Be-
cause the right hand side tr(H − z)−1/N does not explicitely contain the eigenvalues this com-
putation suggests to examine the Stieltjes transform of µN and thus the resolvent (H − z)−1.
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2.2 Stochastic Domination and Spectral Domains

2.2 Stochastic Domination and Spectral Domains
We will prove that mN (z) converges to the Stieltjes transform m(z) of the limiting distribution
for N → ∞ by estimating the error term |mN (z) −m(z)| from above in an appropriate sense.
This relation which implements a notion of an event with asymptotically high probability is
introduced in the following definition.

Definition 2.1 (Stochastic Domination). Let X = (X(N)(u);u ∈ U (N), N ∈ N) and Y =
(Y (N)(u);u ∈ U (N), N ∈ N) be two families of nonnegative random variables for a possibly N -
dependent parameter set U (N). We say that X is stochastically dominated by Y , uniformly in
u, if for all ε > 0 and D > 0 there is a N0(ε,D) ∈ N such that

sup
u∈U(N)

P
[
X(N)(u) > N εY (N)(u)

]
≤ N−D

for all N ≥ N0. In this case, we use the notation X ≺ Y . If X is a family consisting of complex
valued random variables and |X| ≺ Y then we write X ∈ O≺(Y ).

Note that it suffices to check the estimate in the previous definition for small ε > 0 and for
large D > 0. Suppose that the estimate holds for ε̃ ∈ (0, ε), D̃ ∈ (D,∞) and all N ≥ N0 then

P
[
X(N) > N εY (N)

]
≤ P

[
X(N) > N ε̃Y (N)

]
≤ N−D̃ ≤ N−D

for all N ≥ N0.
In this thesis the stochastic domination will be used to estimate functions of the random

variables h(N)
xy . These bounds are always understood to be uniform in the present parameters

except the parameter δ in (2.3) and the constants µp in (2.2). At the end of this section, we will
explain the usual form of the parameter set in our situation.
The following two Lemmas give simple examples of estimates with respect to the relation

defined in the previous definition which are useful for our purposes.

Lemma 2.2. We have hxy ≺ s1/2
xy ≺M−1/2 uniformly in x and y.

Proof. Fix ε > 0 and D > 0. Choose p ∈ N such that pε > D. Then there is N0 ∈ N with
µpN

−pε ≤ N−D for all N ≥ N0 and we have

P
(
|hxy| > N εs1/2

xy

)
≤ P (|ζxy| > N ε) ≤ N−pεE[|ζxy|p] ≤ µpN−pε ≤ N−D

for all N ≥ N0. In the second step, equality holds if sxy 6= 0. Otherwise, the left hand side is
zero. In the third step, Chebyshev’s inequality (7.1) was applied.

Lemma 2.3. If Ξ(N) is a family of events with asymptotically very high probability, i.e. for
every D > 0 exists N0 ∈ N such that P(Ξc) ≤ N−D for N ≥ N0 then the indicator function 1(Ξ)
of Ξ fulfills 1− 1(Ξ) ≺ 0.

Proof. Fix ε > 0 and D > 0. Then

P (1− 1(Ξ) > N ε · 0) = P(1(Ξ) = 0) = P(Ξc) ≤ N−D

for all N ≥ N0.

Note that the relation ≺ is reflexive and transitive. Moreover, the next Lemma summarizes
the behaviour of ≺ under arithmetic operations of the random variables.
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2 General Tools

Lemma 2.4. (i) Let X be a family of random variables and c > 0 then cX ≺ X.

(ii) If X(u, v) ≺ Y (u, v) uniformly in u ∈ U and v ∈ V and |V | ≤ N c for some c > 0 then∑
v∈V

X(u, v) ≺
∑
v∈V

Y (u, v)

uniformly in u ∈ U .

(iii) For X1(u) ≺ Y1(u) uniformly in u and X2(u) ≺ Y2(u) uniformly in u we have X1(u)X2(u) ≺
Y1(u)Y2(u) uniformly in u.

(iv) If X ≺ Y N ε for all ε > 0 then X ≺ Y .

(v) If X ≺ Y and α > 0 then Xα ≺ Y α.

Proof. To prove the first part, let ε > 0 and D > 0. Choose N0 ∈ N such that c < N ε for all
N ≥ N0. Then P(cX > N εX) ≤ P(X > X) = 0 ≤ N−D for all N ≥ N0.
Seondly, fix ε > 0 and D > 0. Then there is N0 ∈ N such that P(X(u, v) > N εY (u, v)) ≤

N−C−D for all u ∈ U , v ∈ V and N ≥ N0. Fix u ∈ U . Since
∑
v∈V X(u, v) >

∑
v∈V N

εY (u, v)
implies the existence of v ∈ V such that X(u, v) > N εY (u, v) we get

P
(∑
v∈V

X(u, v) >
∑
v∈V

N εY (u, v)
)
≤P (∃v ∈ V : X(u, v) > N εY (u, v))

≤
∑
v∈V

P (X(u, v) > N εY (u, v)) ≤ N−D

for all N ≥ N0. As the upper bound is independent of u the statement of (ii) follows.
For fixed ε > 0 and D > 0 we find N0 ∈ N such that P

(
X1(u) > N ε/2Y1(u)

)
≤ N−2D,

P
(
X2(u) > N ε/2Y2(u)

)
≤ N−2D and N−D ≤ 1/2 for all N ≥ N0 for all u ∈ U . Thus, we have

for u ∈ U the estimate

P (X1(u)X2(u) > N εY1(u)Y2(u)) ≤ P
(
X1(u) > N ε/2Y1(u) or X2(u) > N ε/2Y2(u)

)
≤ P

(
X1(u) > N ε/2Y1(u)

)
+ P

(
X2(u) > N ε/2Y2(u)

)
≤ 2N−2D ≤ N−D

for all N ≥ N0 and all u ∈ U . This establishes (iii).
The claim in (iv) follows from the identity P(X > N εY ) = P(X > N ε/2N ε/2Y ) and the

assumption applied to ε/2.
The identity P(Xα > N εY α) = P(X > N ε/αY ) yields claim (v).

When studying the distance |m(z)−mN (z)| for fixed N where mN is the Stieltjes transform
of µN and m the Stieltjes transform of the limiting distribution we will suppose that η = Im z ≥
M−1. This assumption is necessary since small η drastically weakens our estimates. To have
some unified notation for this requirement we introduce the next notion.

Definition 2.5. An N -dependent family

D ≡ D(N) ⊂ {z = E + i η ∈ C;E ∈ [−10, 10],M−1 ≤ η ≤ 10}

is called a spectral domain.

Since we consider M ≡ MN as a function of N we label the elements of such a family by N
as well.
The stochastic domination is usually applied to estimate functions of the entries of H or

function of the resolvent entries. Thus, the parameter set U (N) in the definition of the stochastic

12



2.3 Large Deviation Bound

domination will consist of pairs (u, i) where u is contained in a spectral domain and i is an
element of some index set. Our estimates will always be uniform in these two parameters but
may depend on the values of δ in (2.3) and the constants µp in (2.2).

2.3 Large Deviation Bound
This section provides a particularly useful result to get upper bounds on linear combinations of
random variables with respect to the stochastic domination defined in the previous section.

Theorem 2.6 (Large Deviation Bounds). Let (X(N)
i : i ∈ {1, . . . , N}, N ∈ N) and (Y (N)

i :
i ∈ {1, . . . , N}, N ∈ N) be independent families of random variables and let (a(N)

ij : i, j ∈
{1, . . . , N}, N ∈ N) and (b(N)

i : i ∈ {1, . . . , N}, N ∈ N) be constants. If all entries X(N)
i are

independent and all entries Y (N)
i are independent and there are constants µp such that

EX(N)
i = EY (N)

i = 0, E|X(N)
i |2 = E|Y (N)

i |2 = 1, E|X(N)
i |p,E|Y (N)

i |p ≤ µp (2.4)

for all i ∈ {1, . . . , N} and N, p ∈ N then∣∣∣∑
i

biXi

∣∣∣ ≺(∑
i

|bi|2
)1/2

, (2.5)

∣∣∣∣∑
i,j

aijXiYj

∣∣∣∣ ≺(∑
i,j

|aij |2
)1/2

, (2.6)

∣∣∣∣∑
i 6=j

aijXiXj

∣∣∣∣ ≺(∑
i 6=j
|aij |2

)1/2
. (2.7)

If the coefficients a(N)
ij and b(N)

i depend on an additional parameter u, then all these estimates
are uniform in u.

The intuitive idea behind the Large Deviation Bound is that these linear combinations asymp-
totically behave like the square root of their variances with very high probability. For example

E
∣∣∣∣∑
i,j

aijXiYj

∣∣∣∣2 =
∑
i,j,k,l

aijaklEXiYjXkYl =
∑
i,j

|aij |2

where we used the assumptions EXi = EYj = 0 and E|Xi|2 = E|Yj |2 = 1 in (2.4) in the last
step.
The actual proof relies on estimating high moments of the linear combinations by the Marcinkiewicz-

Zygmund inequality. This is done in Lemma B.2, B.3 and B.4 in [6]. Using Chebyshev’s in-
equality (7.1) the estimates in Theorem 2.6 can be directly deduced from these bounds on the
moments.
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2 General Tools

2.4 Resolvent Identities
Computing the Stieltjes transform of the empirical spectral measure indicates the importance
of resolvents for our approach. Therefore, we introduce a notation for them. For a Hermitian
matrix H and z ∈ C\R we denote the resolvent of H − z by

G(z) ..= (H − z)−1.

Moreover, we will need resolvents of minors of H which are denoted by the following symbol.

Definition 2.7. Let H be a Hermitian matrix. For T ⊂ {−N/2, . . . , N/2} we define the N ×N
matrix H(T) through

(H(T))ij ..= 1(i /∈ T)1(j /∈ T)hij .

For z ∈ C\R let
G

(T)
ij (z) ..= (H(T) − z)−1

ij

denote the resolvent of H(T) in z. We set

(T)∑
i

..=
∑
i;i/∈T

.

Note that the inverse G(T)
ij (z) always exists since H(T) is again a Hermitian matrix. To simplify

the notation we will sometimes suppress that the resolvent G(T) depends on the complex number
z. By abuse of notation we also write H(a1,...,an) for H(T) if T = {a1, . . . , an} and H(Tb1,...,bm) for
H(T∪{b1,...,bm}). This short notation is also applied to the resolvents G(T).
The following relation is the starting point to establish a self-consistent equation which will

be an important tool throughout the whole proof of the semicircle law.

Lemma 2.8 (Schur’s Complement Formula). For a Hermitian matrix (hxy)N/2x,y=−N/2, we have
the relation

1
Gxx

= hxx − z −
(x)∑
a,b

hxaG
(x)
ab hbx. (2.8)

Due to the fourfold symmetry (2.1) the entries G(x)
ab are not independent of the entries hxa

of H which means that the Large Deviation Bounds are not applicable. However, the following
resolvent identities can be used to replace G(x)

ab by G(x,−x)
ab at the cost of an error term.

Lemma 2.9 (Resolvent Identities). For a Hermitian matrix H = (hij)N/2i,j=−N/2 and
T ⊂ {−N/2, . . . , N/2} the following statements hold:
If i, j, k /∈ T and i, j 6= k then

G
(T)
ij = G

(Tk)
ij +

G
(T)
ik G

(T)
kj

G
(T)
kk

,
1

G
(T)
ii

= 1
G

(Tk)
ii

−
G

(T)
ik G

(T)
ki

G
(T)
ii G

(T)
ii G

(T)
kk

. (2.9)

If i, j /∈ T satisfy i 6= j then

G
(T)
ij = −G(T)

ii

(Ti)∑
k

hikG
(Ti)
kj = −G(T)

jj

(Tj)∑
k

G
(Tj)
ik hkj . (2.10)

The proofs of (2.8) and Lemma 2.9 are contained in chapter 5.
A further important tool for estimating the error terms is the relation (2.11) which is some-

times called Ward identity.
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2.5 Partial Expectation

Lemma 2.10. For a Hermitian matrix H we have∑
l

|G(T)
kl (E + i η)|2 = 1

η
ImG

(T)
kk (E + i η) (2.11)

for E ∈ R and η > 0.

Proof. We set z ..= E + i η. Then we have∑
l

|G(T)
kl (z)|2 =

∑
l

G
(T)
kl (z)G(T)

kl (z) =
(
G(T)∗G(T)

)
kk

= |(H(T) − z)−1|2kk

=1
η

(
Im (H(T) − z)−1

)
kk

= 1
η

Im (H(T) − z)−1
kk .

Here, we applied in the fourth step the functional calculus for selfadjoint operators and the
identity

1
|x− z|2

= 1
η

Im (x− z)−1

for x ∈ R and in the last step the definition of the imaginary part of a matrix.

The following Lemma gives a trivial nevertheless useful bound on the modulus of resolvent
entries and a nice connection between resolvent entries and spectral domains.

Lemma 2.11. For E ∈ R and η > 0 we have

|G(T)
ij (E + i η)| ≤ η−1 (2.12)

for all i, j and T. In particular, if D is a spectral domain we have

|G(T)
ij (z)| ≤M (2.13)

for all z ∈ D.

Proof. Let (ei)Ni=1 be the canonical orthonormal basis of CN . Let z ∈ C such that η ..= Im z > 0.
Applying the functional calculus yields

|G(T)
ij (z)| ≤ ‖G(T)(z)ej‖2 ≤ ‖G(T)(z)‖`2→`2 = dist(z, σ(H))−1 ≤ η−1

since σ(H) ⊂ R for a self-adjoint matrix H. The definition of a spectral domain η ≥ M−1 for
E + i η ∈ D implies the second estimate.

2.5 Partial Expectation
For the partial expectation with respect to the σ-algebra generated by H(x,−x) we introduce the
following notation.

Definition 2.12 (Partial Expectation). Let X be an integrable random variable. For x ∈
{−N/2, . . . , N/2} we define the random variables ExX and FxX through

ExX ..= E[X|H(x,−x)], FxX ..= X − ExX.

The random variable ExX is called the partial expectation of X with respect to x.
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2 General Tools

The symbols Ex and Fx are the analogues of Pi and Qi in [7]. There, the idea is that Pi removes
the information contained in column i and row i of H. Because of the twofold symmetry, i.e.
the hermiticity column i and row i contain the same information. This is also true for the
fourfold symmetry. However, due the fourfold symmetry column x and column −x store the
same information. By hermiticity of H this information is also included in row x and row −x.
Therefore, excluding columns x and −x and rows x and −x yields the correct counterpart of Pi.

Definition 2.13 (Independence). We say that the integrable random variable X is independent
of T ⊂ {−N/2, . . . , N/2} if X = ExX for all x ∈ T.

Observe that if Y is independent of x we have that Fx(X)Y = XY − Ex(XExY ) = Fx(XY ).
In particular,

EFx(X)Y = EFx(XY ) = E(XY )− EEx(XY ) = 0 (2.14)

where (7.3) was used in the third step.

2.6 Fluctuation Averaging
Let D be a spectral domain and Ψ a deterministic (possibly z-dependent) control parameter
which satisfies

M−1/2 ≤ Ψ ≤M−c (2.15)

for all z ∈ D and for some c > 0.
The aim of the fluctuation averaging is to estimate linear combinations of the form

∑
k tikXk

with special random variables Xk and a family of complex weights T = (tik) that satisfy

0 ≤ |tik| ≤M−1,
∑
k

|tik| ≤ 1. (2.16)

Note that the family T may be N -dependent. Examples of such weights are given by tik = sik
or tik = N−1. It will be important that T computes with S in these two cases. We will only
study the random variables Xk = Fk[(Gkk)−1], Xk = FkGkk and Xk = Gkk −m.
We define

Γ(z) ..= ‖(1−m2(z)S)−1‖`∞→`∞ (2.17)

for z ∈ D with a spectral domain D. The parameter Γ will turn out to be an important control
parameter and it appears in an upper bound in the next result.

Theorem 2.14 (Fluctuation Averaging). Let D be a spectral domain, Ψ a deterministic control
parameter satisfying (2.15) and T = (tik) a weight satisfying (2.16). If Λ ≺ Ψ then∣∣∣∣∣∑

k

tikFk
1
Gkk

∣∣∣∣∣ ≺ Ψ2,

∣∣∣∣∣∑
k

tikFkGkk

∣∣∣∣∣ ≺ Ψ2 (2.18)

uniformly in i and z ∈ D. If Λ ≺ Ψ and T commutes with S then for vk = Gkk −m we have∣∣∣∣∣∑
k

tikvk

∣∣∣∣∣ ≺ ΓΨ2 (2.19)

uniformly in i and z ∈ D.
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2.6 Fluctuation Averaging

For the first estimate in (2.18), there is the following stronger bound:

Theorem 2.15. Let D be a spectral domain, Ψ and Ψo deterministic control parameters satis-
fying (2.15) and T = (tik) a weight satisfying (2.16). If Λ ≺ Ψ and Λo ≺ Ψo then∣∣∣∣∣∑

k

tikFk
1
Gkk

∣∣∣∣∣ ≺ Ψ2
o (2.20)

uniformly in i and z ∈ D.

Theorem 2.14 and Theorem 2.15 are the counterparts of Theorem 4.6 and Theorem 4.7 in [7]
for the fourfold symmetry.
Intuitively, the stronger bounds on

∑
k tikXk compared to the trivial bound coming from the

bounds on the random variables Xk arise as cancellations occur in these linear combinations.
The origin of these cancellations is the osciallatory behaviour of the random variables Xk. The
actual proof relies on a careful estimate of high moments of

∑
k tikXk by exploiting the structure

of Xk via the resolvent identities. This is explained in more detail in chapter 6.
As its formulation reveals the fluctuation averaging is a tool to improve certain already es-

tablished bounds. For this purpose it is applied in the end of the proof of our main result to
realize the final bounds.
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3 Fourier Transform of Random Matrices

As already mentioned in the introduction one motivation to study random matrices (hxy)x,y with
the fourfold symmetry (2.1) and the constraint Eh2

xy = 0 is the fact that the Fourier tranform
of a Gaussian orthogonal ensemble has these properties. In this chapter we state some basic
definitions and prove the claims in the previous sentence.
Besides the definition of a Gaussian orthogonal ensemble we also define Gaussian unitary

ensembles which are the complex valued counterparts. We use the formulation from [12].

Definition 3.1 (Gaussian Ensembles). Let (Xi)i, (Yij)i<j and (Zij)i<j be independent families
of N(0, 1)-distributed independent random variables.

(i) We consider the (symmetric) N ×N matrix HN = (h(N)
ij )i,j with

h
(N)
ij = h

(N)
ji = 1√

2N
Yij for i < j,

h
(N)
jj = 1√

N
Xj

for N ∈ N. Then HN is said to be an element of GOEN and the sequence (HN )N∈N is
called a Gaussian orthogonal ensemble.

(ii) For N ∈ N we define the (Hermitian) N ×N matrix HN = (h(N)
ij )i,j by

h
(N)
ij = h

(N)
ji = 1√

2N
(Yij + iZij) for i < j,

h
(N)
jj = 1√

N
Xj .

The matrix HN is said to belong to GUEN and the sequence (HN )N∈N is called a Gaussian
unitary ensemble.

The adjective “orthogonal” (“unitary” respectively) in the previous definition comes from the
fact that conjugating HN with an orthogonal (unitary) N ×N matrix O yields again an element
in GOEN (GUEN ), i.e. the joint distribution of the entries of HN is invariant under conjugation
with an orthogonal (unitary) matrix. This is proved in [12].

Definition 3.2 (Fourier Transform). Let H = (hxy)x,y be a N ×N matrix. The Fourier trans-
form Ĥ is the N ×N matrix whose entries are given by

Ĥpq = 1
N

∑
x,y

hxy exp
(
−i2π

N
(px− qy)

)
.

In the next Lemma we prove that the Fourier transform of a Gaussian orthogonal ensemble
fulfills the conditions of Theorem 4.1 i.e. the local semicircle law holds for such random matrices.
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3 Fourier Transform of Random Matrices

Lemma 3.3. Let HN be an element of GOEN for an odd positive integer N and Ĥ its Fourier
transform. Then the entries Ĥpq and Ĥrs are independent if and only if

(p, q) /∈ {(r, s), (s, r), (−r,−s), (−s,−r)}.

Moreover, we have
Ĥpq = Ĥqp = Ĥ−q,−p = Ĥ−p,−q

for all p, q and
EĤ2

pq = 0

for all p 6= q.

Proof. We denote the entries of HN by hij . To prove the if-part it suffices to establish the second
statement which is a direct consequence of the fact that HN is symmetric:

Ĥqp =N−1∑
x,y

hxy exp
(
i
2π
N

(qx− py)
)

= N−1∑
x,y

hyx exp
(
−i2π

N
(py − qx)

)
= Ĥpq,

Ĥ−q,−p =N−1∑
x,y

hxy exp
(
−i2π

N
(−qx+ py)

)
= N−1∑

x,y

hyx exp
(
−i2π

N
(py − qx)

)
= Ĥpq.

Combining these two relations yields the third equality.
Since Ĥpq and Ĥrs are again jointly normally distributed and EĤpq = EĤrs = 0 it suffices to

prove that EĤpqĤrs = 0 and EĤpqĤrs = 0 in order to show that these random variables are
independent. Let (Xj)j and (Yij)i<j be independent families of independent N(0, 1)-distributed
random variables as in the definition of an element of GOEN . Then we have Eh2

ij = (2N)−1 for
i 6= j and Eh2

ii = N−1. Therefore, Ehx1y1hx2y2 = (2N)−1(δx1x2δy1y2 + δx1y2δy1x2). We get

EĤpqĤrs = 1
2N3

∑
x,y

[
exp

(
−i2π

N
(px− qy + rx− sy)

)
+ exp

(
−i2π

N
(px− qy + ry − sx)

)]

= 1
2N3

(∑
x

exp
(
−i2π

N
(p+ r)x

))(∑
y

exp
(
i
2π
N

(q + s)y
))

+ 1
2N3

(∑
x

exp
(
−i2π

N
(p− s)x

))(∑
y

exp
(
−i2π

N
(r − q)y

))
.

Note that for N = 2k+ 1 the summations are supposed to start in −k and end in k and we have

k∑
x=−k

exp
(
−i2π

N
mx

)
=
{
N, m = 0
0, m 6= 0

for m ∈ (−N,N) ∩ Z. Thus, EĤpqĤrs 6= 0 if and only if (p, q) ∈ {(−r,−s), (s, r)}. Since
EĤpqĤrs = EĤpqĤsr we have that EĤpqĤrs 6= 0 if and only if (p, q) ∈ {(−s,−r), (r, s)}. In
particular, EĤ2

pq = 0 for p 6= q.
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4 The Local Semicircle Law

In this chapter, we show the main result of this thesis, the local semicircle law. We keep the
notation and the technical assumptions of section 2.1.
As for the twofold symmetry, the distribution of the empirical spectral measure µN in the

limit N →∞ will be the semicircle law, i.e. the measure µsc with the density
√

(4− x2)+/(2π)
with respect to the Lebesgue measure on R.
The first section of this chapter contains the precise formulation of the local semicircle law.

Moreover, we describe the heuristic ideas underlying the proof presented in the remaining sec-
tions of this chapter.

4.1 Main Result and Heuristic Idea of the Proof

Our approach to verify the convergence of the empirical spectral measure µN in the limit N →∞
is based on studying the corresponding Stieltjes transforms. The limit will be the semicircle law
whose Stieltjes transform is denoted by

m(z) ..= 1
2π

∫
[−2,2]

√
4− x2

x− z
dx (4.1)

for z ∈ C\R. With this definition the complex valued function m(z) is the unique solution of

m(z) + 1
m(z) + z

= 0. (4.2)

such that Imm(z) > 0 for Im z > 0 (Compare Remark 4.10).
Recall that the Stieltjes transform mN of the empirical spectral measure µN of H(N) satisfies

mN (z) = tr G(z)/N .
For the definition of the spectral domain S underlying our estimates we need the positive real

numbers:

ηE ..= min
{
η; 1
Mη
≤ min

{
M−γ

Γ(z)3 ,
M−2γ

Γ(z)4Imm(z)

}
for all z ∈ [E + i η,E + i 10]

}
(4.3)

for γ ∈ (0, 1/2) and E ∈ R. Then, for γ ∈ (0, 1/2) the spectral domain S is defined as

S = S(N)(γ) ..= {E + i η; |E| ≤ 10, ηE ≤ η ≤ 10} (4.4)

which is indeed a spectral domain by Lemma 4.13.
In the next Theorem which is the main result of the present thesis we claim that the deter-

ministic parameter

Π(z) ..=
√

Imm(z)
Mη

+ 1
Mη

is an upper bound of the modulus of the off-diagonal resolvent entries and of the deviation of
the diagonal resolvent entries from m. The final proof of this statement is contained in section
4.5.
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4 The Local Semicircle Law

Theorem 4.1 (Local Semicircle Law). For γ ∈ (0, 1/2) we have

|Gij(z)− δijm(z)| ≺ Π(z) (4.5)

uniformly in i, j and z ∈ S, as well as

|mN (z)−m(z)| ≺ 1
Mη

(4.6)

uniformly in z ∈ S.

The bound in (4.6) is one order better than the naive guess motivated by (4.5) and the triangle
inequality. The main origin of this stronger estimate is the Fluctuation Averaging.
To have a shorter notation in the following arguments, we introduce the z-dependent stochastic

control parameter

Λd(z) ..= max
x
|Gxx(z)−m(z)|, Λo(z) ..= max

x 6=y
|Gxy(z)|, Λ(z) ..= max{Λo(z),Λd(z)}

measuring the deviation of the diagonal resolvent entries fromm, the modulus of the off-diagonal
resolvent entries and the maximum of all these quantities. Hence, (4.5) is equivalent to Λ(z) ≺
Π(z) uniformly in z ∈ S.
Our proof is an adaption of the proof of Theorem 5.1 in [7] which is the analogue of Theorem

4.1 for the twofold symmetry. In each of the following sections, we stress the adjustments which
were necessary for the fourfold symmetry or mark sections which are basically unchanged.
Before embarking on the proof of Theorem 4.1 we explain the idea behind the proof. The

explanations about the self-consistent equations are inspired by [4]. The central idea is to prove
that

mN (z) ≈ − 1
z +mN (z)

for large N and to conclude that mN (z) ≈ m(z) since m(z) is the unique solution of (4.2) with
Imm(z) > 0 for Im z > 0 and (4.2) is stable under small perturbations for z 6= ±2. More
generally, we establish the equation

1
Gii

= −z + Υi −
∑
k

sikGkk (4.7)

with the error term Υi. The idea how to derive this equation is explained below. In the case
sik = 1/N for all i and k, i.e. the standard Wigner case where all variances are equal, we get
the scalar (or first level) self-consistent equation

mN (z) = 1
N

∑
i

Gii ≈ −
1

z +mN (z)

by inverting and averaging (4.7) and neglecting the error terms. As sik is not constant in general
and we want to estimate Λ, i.e. single terms of the resolvent, we have to deal with (4.7). Thus,
mN approximatively fulfills (4.2) which defines the Stieltjes transform of the semicircle law.
This indicates to estimate the error term Υi for large N in order to prove the convergence of the
Stieltjes transform of the empirical spectral measure to the Stieltjes transform of the semicircle
law, i.e. to prove (4.6).

22



4.1 Main Result and Heuristic Idea of the Proof

To show (4.5), we need to estimate Λ and in particular Λd. This is done by studying the vector
(or second level) self-consistent equation

−
∑
a

sxava + Υx −m− z = 1
vx +m

(4.8)

with vx ..= Gxx −m. This relation is a direct consequence of (4.7). We invert this equation and
assume that |−

∑
a sxava + Υx| is small in order to expand the left-hand side around −m− z up

to second order. Thus, we get

vx = m2
(∑

a

sxava −Υx

)
+ εx

where we used (4.2) and denoted the error terms by εx. We introduce the vectors v = (vx)x,
E = (−m2Υx + εx)x and the matrix S = (sxy)x,y to write the previous equation (combined for
all x) in the form

v = m2Sv + E .

Solving this equation for v yields
v = (1−m2S)−1E .

Therefore, proving that Γ = ‖(1 −m2S)−1‖`∞→`∞ is bounded and that ‖E‖∞ is small implies
that

Λd = max
x
|Gxx −m| = ‖v‖∞ ≤ ‖(1−m2S)−1‖`∞→`∞‖E‖∞ = Γ‖E‖∞

is small as well. As these considerations indicate Γ will be an important control parameter in
the sequel.

The proof that the off-diagonal terms Gxy are small for the fourfold symmetry differs from
the proof for the twofold symmetry. In the latter case one uses (2.10) twice to replace Gxy by
G

(x,y)
ab and applies the Large Deviation Bound. For the fourfold symmetry the proof that Gx,−x

is small resembles this strategy but the representation has to be split further to remove the
dependences. We use the representation

Gx,−x = −GxxG(x)
−x,−x

hx,−x − (x,−x)∑
k

h2
xkG

(x,−x)
k,−k −

(x,−x)∑
k 6=l

hxkG
(x,−x)
k,−l hxl


and estimate the last two terms with the Large Deviation Bounds. The Large Deviation Bounds
are only applicable to the second summand because of the assumption Eh2

xy = 0. This technical
assumption is also needed at some further instances to make the application of the Large De-
viation Bounds possible. To bound Gxy from above for −x 6= y 6= x we use (2.9) and (2.10) to
get a similar representation where G(x,−x,y,−y) appears instead of G(x,−x). Using that Gx,−x is
small and applying the Large Deviation Bounds yield that Gxy is small as well.

Next, we explain how (4.7) is established which is done in section 4.2. The starting point is
Schur’s complement formula

1
Gxx

= hxx − z −
(x)∑
a,b

hxaG
(x)
ab hbx. (4.9)

First, we describe the computation in the case studied in [7]. For this twofold symmetry we
have E[hxaG(x)

ab hbx|H(x)] = G
(x)
ab E[hxahbx] = δabG

(x)
aa sxa. After replacing G(x)

aa by Gaa, which is
possible with an error by the resolvent identities, the third term on the right-hand side of (4.9)
becomes the desired term

∑
a sxaGaa up to some error terms.
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4 The Local Semicircle Law

Here, it is important that H(x) is independent of (hxa)a and that G(x)
ab is measureable with

respect to σ(H(x)).
However, in the present case hxa is not independent of H(x) for a 6= −x since the −x-column

and the −x-row contain the same information as the x-column and the x-row due to the four-
fold symmetry (2.1). Thus, we have to replace H(x) by H(x,−x) and consider the conditional
expectation with respect to the σ-algebra generated by the latter. To get G(x)

ab measureable with
respect to H(x,−x) we have to replace G(x)

ab by G(x,−x)
ab which is done by using a resolvent identity.

Neglecting the error terms we get

Ex
(x,−x)∑
a,b

hxaG
(x,−x)
ab hbx ≈

∑
a

sxaGaa.

Some auxiliary estimates on the resolvent entries are collected in section 4.3. Moreover, we
show that under the assumption that Λ is smaller than M−c for some c > 0 we get a stronger
bound on Λo and a bound on Υx in terms of Λ. These bounds are proved by using the resolvent
identities of Lemma 2.9, the identity (2.11) and the Large Deviation Bounds of Theorem 2.6.
We want to demonstrate on a typical expression how these tools are used to estimate the error
terms:

|
(x,−x)∑
i 6=j

hxiG
(x,−x)
ij hjx| ≺

(x,−x)∑
i 6=j

sxisjx|G(x,−x)
ij |2

1/2

≤

 1
Mη

(x,−x)∑
i

sxiImG
(x,−x)
ii

1/2

≺
√

Imm+ Λ
Mη

.

In the first step, we conditioned on G(x,−x), exploited the independence of (hxy)y and G(x,−x) and
applied the Large Deviation Bound. Next, we used the trivial bound sxy ≤ M−1 and identity
(2.11). The definition of Λ yields ImGii ≤ Imm+ Λ which holds for ImG

(x,−x)
ii with ≤ replaced

by ≺ as well. Finally, we used
∑
i sxi = 1.

In section 4.4 we show a preliminary bound on Λ. Therefore, we prove that asymptotically
there is an interval which cannot contain the value of Λ i.e. the value of Λ is either smaller
than the lower bound or bigger than the upper bound. Then we verify that for large values of
η ..= Im z for z ∈ S the parameter Λ lies below the lower bound. Since Λ depends continuously
on z the function Λ cannot cross this gap and we conclude that Λ must be smaller than the
lower bound for all z ∈ S. This lower bound is called Ψ0. The whole idea for establishing this
preliminary bound on Λ is illustrated in Figure 4.1. The self-consistent equation (4.8) plays an
important role in the proofs of these claims.
Section 4.5 contains the proof of Theorem 4.1 which uses the preparations in the previous

sections. First, we observe that a given nicely behaving bound Ψ on Λ can always be improved
i.e. Λ ≺ F (Ψ) for some function F . The key idea in the proof of this result is the fluctuation
averaging which implies

|
∑
y

sxyvy| ≺ ΓΨ2

if |vx| ≺ Ψ for all x. Using this result iteratively with the preliminary bound Ψ0 on Λ from
section 4.4 we get Λ ≺ F (k)(Ψ0) which implies the estimate (4.5). Moreover, applying the
fluctuation averaging again yields that Λ ≺ Π implies |N−1∑

i Υi| ≺ Π2. Therefore, we get

|mN (z)−m(z)| =
∣∣∣∣∣ 1
N

∑
i

vi

∣∣∣∣∣ ≺ |1−m2(z)|−1
∣∣∣∣∣ 1
N

∑
i

Υi

∣∣∣∣∣ ≺ 1
Mη

where the second step is a consequence of the self-consistent equation (4.8) and the third step
follows from the above application of the fluctuation averaging and estimates on m. This estab-
lishes (4.6).
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4.2 Self-consistent Equation

η

Λ

ηE 2

M−γ/4Γ−1

M−γ/2Γ−1

Figure 4.1: This sketch illustrates the proof of the existence of the preliminary bound Ψ0 on Λ.
For fixed E the value Λ(E+i η) is plotted as a function of η. We verify that Λ(E+i η)
cannot lie in the grey region for η ≥ ηE . For η = 2 we prove that Λ(E+i η) is smaller
than the lower border of this region. Since Λ(E + i η) is a continuous function of η
we conclude that Λ(E + i η) does not cross this border for η ≥ ηE .

The proofs of both estimates crucially rely on the self-consistent equation (4.8). Although its
importance was not obvious a priori the multiple usage of this self-consistent equation justifies
the efforts to establish it and to control the error term Υx.
In section 4.6 we collect some properties of m and several estimates on m and Γ which are

used in section 4.3 to 4.5.

4.2 Self-consistent Equation

The goal of this section is to establish a self-consistent equation which we will obtain from
manipulating Schur’s complement formula.
The fourfold symmetry causes some differences compared to section 5.1 from [7] which are

explained at the end of this section.
By applying the resolvent identity (2.9), the last term of (2.8) can be represented in the form

(x)∑
a,b

hxaG
(x)
ab hbx =hx,−xG(x)

−x,−xh−x,x +
(x,−x)∑
a

hxaG
(x)
a,−xh−x,x +

(x,−x)∑
b

hx,−xG
(x)
−x,bhbx

+
(x,−x)∑
a,b

hxaG
(x,−x)
ab hbx +

(
G

(x)
−x,−x

)−1 (x,−x)∑
a,b

hxaG
(x)
a,−xG

(x)
−x,bhbx (4.10)

Recall our notation Ex[X] ..= E[X|H(x,−x)] and Fx[X] ..= X −Ex[X] for an integrable random
variable X. Since G(x,−x)

ab is measureable with respect to H(x,−x) and the random variables hxa
and h−x,b are independent of H(x,−x) we have

Ex
[
hxaG

(x,−x)
ab hbx

]
= G

(x,−x)
ab E [hxahbx] = sxaG

(x,−x)
aa δab.
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4 The Local Semicircle Law

Thus, employing this computation yields

(x,−x)∑
a,b

Ex
[
hxaG

(x,−x)
ab hbx

]
=

(x,−x)∑
a

sxaG
(x,−x)
aa

=
∑
a

sxaGaa −
∑
a

sxa
GaxGxa
Gxx

− s−x,xG(x)
−x,−x −

(x,−x)∑
a

sxa
G

(x)
a,−xG

(x)
−x,a

G
(x)
−x,−x

where we used in the second step the resolvent identity (2.9) twice. By splitting the fourth
summand on the right-hand side of (4.10) in a part measureable with respect to H(x,−x) and
the remainder, i.e. according to Ex + Fx = 1, we get the representation

(x,−x)∑
a,b

hxaG
(x,−x)
ab hbx =

(x,−x)∑
a,b

Ex
[
hxaG

(x,−x)
ab hbx

]
+

(x,−x)∑
a,b

Fx
[
hxaG

(x,−x)
ab hbx

]
=
∑
a

sxaGaa −Ax − s−x,xG(x)
−x,−x −Bx + Zx (4.11)

where we used the abbreviations

Ax ..=
∑
a

sxa
GaxGxa
Gxx

, Bx ..=
(x,−x)∑
a

sxa
G

(x)
a,−xG

(x)
−x,a

G
(x)
−x,−x

, (4.12)

Zx ..=
(x,−x)∑
a,b

Fx
[
hxaG

(x,−x)
ab hbx

]
=

(x,−x)∑
a

(
|hxa|2 − sxa

)
G(x,−x)
aa +

(x,−x)∑
a6=b

hxaG
(x,−x)
ab hbx.

Therefore, the results of the equations (4.10) and (4.11) allow us to write equation (2.8) in the
form

1
Gxx

= −z −m+ Υx −
∑
a

sxava, (4.13)

with vx ..= Gxx −m and the error term Υx
..= hxx +Ax +Bx − Cx − Yx − Zx where

Cx ..=
(
|hx,−x|2 − s−x,x

)
G

(x)
−x,−x + h−x,x

(x,−x)∑
a

hxaG
(x)
a,−x + hx,−x

(x,−x)∑
b

G
(x)
−x,bhbx, (4.14)

Yx ..=
(
G

(x)
−x,−x

)−1 (x,−x)∑
a,b

hxaG
(x)
a,−xG

(x)
−x,bhbx. (4.15)

By (4.2) equation (4.13) can be transformed into the self-consistent equation

−
∑
a

sxava + Υx = 1
vx +m

− 1
m
. (4.16)

This self-consistent equation has the same form as (5.9) in [7]. However, we had to replace Pi
by Ex to deduce it and the error term Υx contains terms which did not appear in (5.8) from [7].
The term Ax is exactly the same as Ai in (5.8) of [7]. The term Zx is the analogue of Zi in [7]
for the fourfold symmetry. Whereas, Bx, Cx and Yx are completely new.
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4.3 Auxiliary Estimates

The following Lemma gives bounds on the entries G(T)
ij of the resolvent if a preliminary bound

on Λ is already known. Such a bound is described by a deterministic (possibly z-dependent)
parameter Ψ such that

cM−
1
2 ≤ Ψ ≤M−c (4.17)

for some c > 0 and all large enough N . This Lemma combines the estimates in (2.60) of [4] and
(5.12) and (B.3) of [7].

Lemma 4.2. Let D be a spectral domain and ϕ the indicator function of a (possibly z-dependent)
event. Let Ψ be a deterministic control parameter satisfying (4.17). If ϕΛ ≺ Ψ then for any
fixed finite subset T ⊂ N holds

ϕ|G(T)
ij | ≺ ϕΛo ≺ Ψ, ϕ|G(T)

ii | ≺ 1, ϕ

|G(T)
ii |
≺ 1

uniformly in z ∈ D and in i, j for i 6= j and i, j /∈ T.

Proof. The result is shown by induction on the number of elements of T. For the induction
basis |T| = 0 we observe that ϕ|Gij | ≤ ϕΛo ≺ Ψ holds by assumption for i 6= j. For the second
estimate, let ε > 0 and D > 0. If ϕ|Gii| > N ε then ϕΛ > N ε − 1 since |m| ≤ 1 by (4.48). The
existence of a positive integer N0 such that

P(ϕ|Gii| > N ε) ≤ P(ϕΛ > N δc/2Ψ) ≤ N−D

for all N ≥ N0 follows from the estimate N ε − 1 ≥ N−δc/2 ≥ N δc/2M−c which holds for all
large N and the assumption ϕΛ ≺ Ψ ≤M−c ≤ N−cδ by (2.3). Thus, ϕ|Gii| ≺ 1. Let ε > 0 and
D > 0. The assumption ϕ/|Gii| > N ε yields ϕΛ > d−N ε where d > 0 is a constant such that
d ≤ |m| (cf. (4.48)). Similarly as in the proof of the second estimate, we get

P
(

ϕ

|Gii|
> N ε

)
≤ P(ϕΛ > N δc/2Ψ) ≤ N−D

for all N ≥ N0 for some positive integer N0. This establishes the induction basis. For the
induction step assume that the estimates are proved for all T ⊂ N subsets with n elements. Let
T′ ⊂ N be a subset consisting of n + 1 elements. Then we take a k ∈ T′ and set T = T′\{k}.
For i, j /∈ T′ and i 6= j the resolvent identity (2.9) and the induction hypothesis implies

ϕ|G(T′)
ij | ≤ ϕ|G

(T)
ij |+ ϕ

|G(T)
ik G

(T)
kj |

|G(T)
kk |

≺ ϕΛo + ϕΛ2
o ≺ ϕΛo ≺ Ψ

where we used ϕΛo ≺ Ψ ≤ 1 in the third and fourth step. Similarly,

ϕ|G(T′)
ii | ≤ ϕ|G

(T)
ii |+ ϕ

|G(T)
ik G

(T)
ki |

|G(T)
kk |

≺ 1 + Ψ2 ≺ 1.

Using the resolvent identity (2.9) and expanding (1− x)−1 yields

ϕ

|G(T′)
ii |

= ϕ

|G(T)
ii |

∣∣∣∣∣1− G
(T)
ik G

(T)
ki

G
(T)
ii G

(T)
kk

∣∣∣∣∣
−1

≤ ϕ

|G(T)
ii |

+ gi ≺ 1

where gi denotes the error terms coming from the expansion. By the induction hypothesis we
have gi ≺ Ψ uniformly in i. In the last step, we applied the induction hypothesis again and used
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Ψ ≤ 1.

Using this result we can now control Λo and the different terms in Υx given a preliminary
bound on Λ. The following Lemma is the analogue of Lemma 5.2 from [7]. The new terms Bx,
Cx and Yx are estimated in (4.35), (4.21) and after (4.30). For the second part, these bounds
are found in (4.38), after (4.36) and after (4.37).
In the proof of this Lemma, we need the assumption Eh2

xy = 0 to apply the Large Deviation
Bounds in (4.27). This estimate is used in (4.29) which is in turn necessary to show the bounds
on Yx, Gx,−x and Gxy, i.e. Λo, and therefore on Ax and Bx.
Note that we define η ..= Im z for a complex number z.

Lemma 4.3. Let D be a spectral domain. Then the following statements hold

(i) Let ϕ be the indicator function of a (possibly z-dependent) event such that ϕΛ ≺M−c for
some c > 0 then

ϕ(Λo + |Ax|+ |Bx|+ |Cx|+ |Yx|+ |Zx|) ≺
√

Imm+ Λ
Mη

(4.18)

uniformly in z ∈ D.

(ii) For any N -independent η > 0 the estimate

Λ0 + |Ax|+ |Bx|+ |Cx|+ |Yx|+ |Zx| ≺M−
1
2 (4.19)

holds uniformly in z ∈ {w ∈ D : Imw = η}.

Proof. In the following proof of the first statement, Lemma 4.2 will be applied several times
with Ψ = M−c. We use the resolvent identity (2.10) to get the representation

Cx = −|hx,−x|2G(x)
−x,−x − s−x,xG

(x)
−x,−x −

Gx,−x
Gxx

h−x,x − hx,−x
G−x,x
Gxx

(4.20)

Thus, Lemma 2.2, s−x,x ≤M−1 and Lemma 4.2 yield

ϕ|Cx| ≺ 2M−1 + 2M−1/2 ≺M−1/2. (4.21)

Before proceeding, we establish the auxiliary bound

ϕImG(T)
aa ≺ Imm+ Λ (4.22)

for a fixed finite subset T ⊂ N and a /∈ T. We show this estimate by induction on the number of
elements in T. For T = ∅ we have ImGaa = Imm+ Im (Gaa −m) ≤ Imm+ Λ. The induction
step follows from the resolvent identity (2.9) and Lemma 4.2 since for a finite subset T ⊂ N and
k /∈ T we have

ϕImG(Tk)
aa ≤ ϕImG(T)

aa + ϕ

∣∣∣∣∣G
(T)
ak G

(T)
ka

G
(T)
kk

∣∣∣∣∣ ≺ Imm+ Λ + ϕΛ2
o ≺ Imm+ Λ

for a /∈ T and a 6= k where we applied the induction hypothesis in the second step.
Moreover, we remark that

M−1/2 ≺
√

Imm

Mη
≤
√

Imm+ Λ
Mη

(4.23)

where (4.50) was used in the first step.
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In the following, we will apply the Large Deviation Bounds multiple times. If not otherwise
specified we first condition on G(x,−x) and afterwards use one of the Large Deviation Bounds
of Theorem 2.6. In this case we employ the fact that the random variables (hxa)N/2a=−N/2 are
independent of G(x,−x). Now, we estimate Zx by considering its two parts separately. First, we
apply the Large Deviation Bound (2.7) with Xi = ζxi and aij = s

1/2
xi G

(x,−x)
ij s

1/2
jx to get

ϕ|
(x,−x)∑
i 6=j

hxiG
(x,−x)
ij hjx| ≺

(x,−x)∑
i 6=j

sxisjxϕ|G(x,−x)
ij |2

1/2

≤

 ϕ

Mη

(x,−x)∑
i

sxiImG
(x,−x)
ii

1/2

≺
√

Imm+ Λ
Mη

(4.24)

where we used (2.11) in the second step and (4.22) in the last step. The Large Deviation Bound
(2.5) with Xi = (|ζxi|2 − 1)(E|ζxi|4 − 1)−1/2 and ai = (E|ζxi|4 − 1)1/2sxiG

(x,−x)
ii implies

ϕ|
(x,−x)∑

i

(
|hxi|2 − sxi

)
G

(x,−x)
ii | ≺

(x,−x)∑
i

s2
xi(E|ζxi|4 − 1)ϕ|G(x,−x)

ii |2
1/2

≺(µ4 − 1)1/2M−1/2
(∑

i

sxi

)1/2

≺M−1/2 (4.25)

where we used (2.2) and Lemma 4.2 in the second step. Therefore, using (4.23) we get the
bound

ϕ|Zx| ≤ ϕ|
(x,−x)∑
i 6=j

hxiG
(x,−x)
ij hjx|+ ϕ|

(x,−x)∑
i

(
|hxi|2 − sxi

)
G

(x,−x)
ii | ≺

√
Imm+ Λ
Mη

. (4.26)

Next, we estimate ϕ|
∑(x,−x)
k,l hxkG

(x,−x)
kl hl,−x|. This sum is split into two parts which are

treated separately. Since Eh2
xy = 0 for all x, y the application of the Large Deviation Bound

(2.5) with Xk = ζ2
xk(E|ζxk|4)−1/2 and ak = sxk(E|ζxk|4)1/2G

(x,−x)
k,−k yields

ϕ|
(x,−x)∑
k

h2
xkG

(x,−x)
k,−k | ≺

(x,−x)∑
k

s2
xkE|ζxk|4ϕ|G

(x,−x)
k,−k |

2

1/2

≺µ1/2
4 M−1/2

(x,−x)∑
k

sxkM
−2c

1/2

≺M−1/2 (4.27)

where we used (2.2) and Lemma 4.2 in the second step. The application of the Large Deviation
Bound (2.7) with Xk = ζxk and akl = s

1/2
xk G

(x,−x)
k,−l s

1/2
xl implies

ϕ|
(x,−x)∑
k 6=l

hxkG
(x,−x)
k,−l hl,−x| = ϕ|

(x,−x)∑
k 6=l

hxkG
(x,−x)
k,−l hxl| ≺

(x,−x)∑
k 6=l

sxksxlϕ|G
(x,−x)
k,−l |

2

1/2

≺
√

Imm+ Λ
Mη

(4.28)
where the last step is shown exactly as in (4.24). Thus, using (4.23) we get

ϕ|
(x,−x)∑
k,l

hxkG
(x,−x)
kl hl,−x| ≤ ϕ|

(x,−x)∑
k

h2
xkG

(x,−x)
k,−k |+ ϕ|

(x,−x)∑
k 6=l

hxkG
(x,−x)
k,−l hxl| ≺

√
Imm+ Λ
Mη

. (4.29)
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4 The Local Semicircle Law

By the resolvent identity (2.10) we get the representation

Yx = G
(x)
−x,−x

(x,−x)∑
a,k

hxaG
(x,−x)
ak hk,−x

(x,−x)∑
b,l

h−x,lG
(x,−x)
lb hbx

 (4.30)

which implies ϕ|Yx| ≺ Imm+Λ
Mη ≺

√
Imm+Λ
Mη by (4.29) . We start estimating Λo by providing a

bound on ϕ|Gx,−x|. The expansion

Gx,−x = −Gxx
(x)∑
k

hxkG
(x)
k,−x = −GxxG(x)

−x,−x

hx,−x − (x,−x)∑
k,l

hxkG
(x,−x)
kl hl,−x

 (4.31)

implies

ϕ|Gx,−x| ≺M−1/2 +
√

Imm+ Λ
Mη

≺
√

Imm+ Λ
Mη

(4.32)

where we applied Lemma 2.2 and (4.29) in the first step and (4.23) in the second step .

For the generic off-diagonal entry Gxy (−x 6= y 6= x) we use the expansion

Gxy =−G(−x,−y)
xx G(x,−x,−y)

yy

hxy − (x,−x,y,−y)∑
k,l

hxkG
(x,−x,y,−y)
kl hly

+
G

(−x)
x,−yG

(−x)
−y,y

G
(−x)
−y,−y

+ Gx,−xG−x,y
G−x,−x

.

(4.33)

Conditioning on G(x,−x,y,−y) and applying the Large Deviation Bound (2.6) with Xk = ζxk,
Yl = ζly and akl = s

1/2
xk G

(x,−x,y,−y)
kl s

1/2
ly yield

ϕ|
(x,−x,y,−y)∑

k,l

hxkG
(x,−x,y,−y)
kl hly| ≺ϕ

(x,−x,y,−y)∑
k,l

sxk|G
(x,−x,y,−y)
kl |2sly

1/2

≤

(x,−x,y,−y)∑
k

sxk
ϕImG

(x,−x,y,−y)
kk

Mη

1/2

≺
√

Imm+ Λ
Mη

(4.34)

where we used (2.11) and sly ≤ M−1 in the second step and (4.22) in the last step. Using the
resolvent identity (2.10), conditioning on G(x,−x) and applying the Large Deviation Bound (2.5)
with Xk = ζxk and ak = s

1/2
xk G

(x,−x)
k,−y we get

ϕ|G(−x)
x,−y| = ϕ|G(−x)

xx

(x,−x)∑
k

hxkG
(x,−x)
k,−y | ≺ ϕ

(∑
k

sxk|G
(x,−x)
k,−y |

2
)1/2

=

ϕImG
(x,−x)
−y,−y

Mη

1/2

≺
√

Imm+ Λ
Mη

where we used (4.22) in the last step. Thus, the expansion (4.33), Lemma 2.2, (4.32) and (4.23)
imply

ϕ|Gxy| ≺M−1/2 + 3
√

Imm+ Λ
Mη

≺
√

Imm+ Λ
Mη

.

Therefore, ϕ|Gxy| ≺
√

Imm+Λ
Mη for all y 6= x, i.e. ϕΛo ≺

√
Imm+Λ
Mη . Lemma 4.2 and the previous

estimate on Λo imply

ϕ|Ax| ≤
∑
a

sxaϕ|Gax|ϕ|Gxa|
ϕ

|Gxx|
≺ ϕΛ2

o ≺
√

Imm+ Λ
Mη

.
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Similarly, the estimate on Λo yields

ϕ|Bx| ≤
(x,−x)∑
a

sxaϕ
|G(x)

a,−x||G
(x)
−x,a|

|G(x)
−x,−x|

≺ ϕΛ2
o ≺

√
Imm+ Λ
Mη

(4.35)

where we used Lemma 4.2 in the second step. This concludes the proof of (4.18) as |hxx| ≺M−1/2

by Lemma 2.2.

We are now showing the second statement. In order to prove (4.19), we mainly proceed as
in the proof of (4.18). However, instead of using the bounds of Lemma (4.2) we estimate the
resolvent entries applying (2.12).

This estimate yields |Zx| ≺M−1/2 for constant η by following the same steps as in the proof
of (4.26) but using (2.12) instead of Lemma 4.2. Before estimating Cx we prove an auxiliary
bound. Applying the Cauchy-Schwarz inequality, |hxy| ≺ s1/2

xy , (2.11) and (2.12) we get

|
(T)∑
a

hxaG
(T′)
ab | ≤

(∑
a

|hxa|2
)1/2(∑

a

|G(T′)
ab |

2
)1/2

≺
(∑

a

sxa

)1/2 (
η−1ImG

(T′)
bb

)1/2
≤ η−1.

(4.36)
This bound applied to the second and third term in the definition of Cx (4.14) and Lemma 2.2
imply |Cx| ≺ M−1/2 for constant η. Using (2.12) and proceeding as in the proof of (4.29) we
get

|
(x,−x)∑
i,j

hxiG
(x,−x)
ij hj,−x| ≺M−1/2. (4.37)

Thus, by (4.30) we have |Yx| ≺M−1 for constant η. The bound

|G(x)
a,−x|

|G(x)
−x,−x|

= |
(x,−x)∑
k

G
(x,−x)
ak hk,−x| ≺

(∑
k

sak|G
(x,−x)
ak |2

)1/2

≤
(

ImG
(x,−x)
aa

Mη

)1/2

≺M−1/2

which follows from the Large Deviation Bound (2.5) with Xk = ζk,−x and ak = s
1/2
k,−xG

(x,−x)
ak ,

(2.11) and (2.12) yields

|Bx| ≤
(x,−x)∑
a

sxa
|G(x)

a,−x|

|G(x)
−x,−x|

|G(x)
−x,a| ≺M−1/2 (4.38)

where (2.12) was applied in the second step.

Before estimating Ax for constant η we consider Λo. Applying (2.12), Lemma 2.2 and (4.37)
to the expansion (4.31) implies |Gx,−x| ≺ M−1/2 . We use (4.33) to estimate the generic off-
diagonal term, i.e. to prove |Gxy| ≺ M−1/2 for −y 6= x 6= y. A similar argument as in (4.34)
where instead of Lemma 4.2 the estimate (2.12) is used and Lemma 2.2 yield that the first term
in (4.33) is of order O≺(M−1/2). Expanding Gx,−x as in (4.31) with the roles of x and −x
reversed implies |Gx,−x/G−x,−x| ≺M−1/2 for constant η . Because of

G
(−x)
−y,y

G
(−x)
−y,−y

= −G(−x,−y)
yy

h−y,y − (−x,y,−y)∑
a,b

h−y,aG
(−x,y,−y)
ab hby


we get |G(−x)

−y,y/G
(−x)
−y,−y| ≺M−1/2 by Lemma 2.2, (2.12) and proceeding similarly to the proof of

(4.37) . Combining these three bounds and using the expansion (4.33) yield |Gxy| ≺ M−1/2.
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Hence, Λo ≺M−1/2. Finally, we get

|Ax| ≤ |sxxGxx|+
(x)∑
a

sxa|Gax||
(x)∑
b

hxbG
(x)
ba | ≺M

−1 +
(x)∑
a

sxaM
−1/2η−1 ≺M−1/2

where in the second step we used sxx ≤ M−1, Λo ≺ M−1/2 and (4.36). This finishes the proof
of the Lemma.

4.4 Preliminary Bound on Λ

This section is devoted to the proof of the following first preliminary bound on Λ. Its content is
the basically unchanged section 5.3 of [7].

Proposition 4.4. We have Λ ≺M−γ/3Γ−1 uniformly in S.

To show this result, we need two preparatory Lemmas. First, we prove that either Λ >
M−γ/4Γ−1 or Λ ≤M−γ/2Γ−1 with very high probability. Then, we verify in the second Lemma
that Λ fulfills the second bound for large η. Finally, we employ the continuity of Λ as a function
of z and the connectedness of S to conclude that Λ cannot cross the gap between the two
estimates above. The whole idea of this argument is illustrated in Figure 4.1.

Lemma 4.5. We have the estimate 1(Λ ≤M−γ/4Γ−1)Λ ≺M−γ/2Γ−1 uniformly in S.

Proof. The definition ϕ ..= 1(Λ ≤M−γ/4Γ−1) yields

ϕΛ ≤M−γ/4Γ−1 ≤ CM−γ/4

by (4.56). Therefore, (4.18) holds. In order to estimate Λd we use the expansion

ϕ

vx +m
= ϕ

( 1
m
−m−2vx + gx

)
which holds because of |vx| ≤ CM−γ/4 on {ϕ = 1} and the first bound in (4.48). The error term
gx fulfills gx ∈ O≺(Λ2) uniformly in z and x. Inserting the expansion into (4.16) implies

ϕ(−
∑
a

sxava + Υx) = ϕ(−m−2vx + gx)

which is equivalent to
ϕ(vx −m2∑

a

sxava) = ϕm2(gx −Υx). (4.39)

Introducing v = (vx)N/2x=−N/2, S = (sxa)N/2x,a=−N/2 and V = m2(gx−Υx)N/2x=−N/2 we can write these
equations in the form

ϕ(1−m2S)v = ϕV.

Inverting (1−m2S) yields

ϕΛd = ϕ‖v‖`∞ = ϕ‖(1−m2S)−1V‖`∞ ≤ ϕΓ(z)‖V‖`∞ .

Since trivially gx ∈ O≺(Λ2) and ϕ|Υx| ≺
√

Imm+Λ
Mη by (4.18) we have

ϕΛd ≺ ϕΓ(z)
(

Λ2 +
√

Imm+ Λ
Mη

)
.
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Due to (4.18) and (4.56) the following estimate holds

ϕΛo ≺ ϕ
√

Imm+ Λ
Mη

≺ ϕΓ(z)
(

Λ2 +
√

Imm+ Λ
Mη

)
.

Altogether,

ϕΛ ≺ ϕΓ(z)
(

Λ2 +
√

Imm+ Λ
Mη

)
.

Thus, the definition of ϕ implies

ϕΓ(z)Λ2 ≤ ϕM−γ/2Γ−1 ≤M−γ/2Γ−1

and

ϕΓ(z)
√

Imm+ Λ
Mη

≤ Γ
√
ϕImm

Mη
+ Γ

√
ϕΛ
Mη
≤ Γ

√
ϕImm

Mη
+ Γ

√
Γ−1

Mη
≤ 2M−γ/2Γ−1

where in the first step (7.4), in the second step the definition of ϕ and in the third step the
definition of S was used. Therefore, we conclude that

ϕΛ ≺ ϕΓ(z)
(

Λ2 +
√

Imm+ Λ
Mη

)
≺M−γ/2Γ−1

which is the estimate we claimed.

Lemma 4.6. We have Λ ≺M−1/2 uniformly in z ∈ [−10, 10] + 2i.

Proof. We use the bounds |G(T)
ij | ≤ 1/η = 1/2 from (2.12) and |m| ≤ 1/η = 1/2 from (4.49). In

particular, they imply |vx| = |Gxx −m| ≤ 1 and |m−1| ≥ 2. The self-consistent equation (4.16)
can be rewritten in the form

vx = m(
∑
k sxkvk −Υx)

m−1 −
∑
k sxkvk + Υx

. (4.40)

Using |m−1| ≥ 2 and |vx| ≤ 1 yields∣∣∣∣∣m−1 −
∑
k

sxkvk + Υx

∣∣∣∣∣ ≥ |m−1| −
∑
k

sxk|vk| − |Υx| ≥ 1− |Υx|.

Therefore, (4.40) implies

Λd = max
x
|vx| ≤

Λd + maxx|Υx|
2− 2 maxx|Υx|

= 1
2Λd + g

where we used |m| ≤ 1/2 in the second step and expanded (1 − x)−1 in the last step. The
function g is the error term coming from this expansion. As |vx| ≤ 1 and thus Λd ≤ 1 we have
g ∈ O≺(maxx|Υx|) = O≺(M−1/2) by (4.19). Hence, Λd ≺ M−1/2. This estimate together with
Λo ≺M−1/2 by (4.19) establishes the assertion of the Lemma.
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4 The Local Semicircle Law

Proof of Proposition 4.4. We fix D > 14. Then by Lemma 4.5 there is a positive integer N0 ≡
N0(γ,D) (independent of z) such that

P
(
M−γ/2Γ(z)−1 ≤ Λ(z) ≤M−γ/4Γ(z)−1

)
≤ N−D

for all z ∈ S and for all N ≥ N0. As γ/3 ≤ γ/2 we have

P
(
M−γ/3Γ(z)−1 ≤ Λ(z) ≤M−γ/4Γ(z)−1

)
≤ N−D

for all z ∈ S and for all N ≥ N0.
Set d ..=

√
2N−6 and consider

L ..={(−10 + kd, ld), (10, ld), (−10 + kd, ηkd−10), (−10 + kd, 10);
0 ≤ k ≤ 10

√
2N6, 0 ≤ l ≤ 5

√
2N6} ∪ {(10, η10), (10, 10)}.

Then, ∆ ..= L ∩ S ⊂ S with |∆| ≤ N14. Furthermore, for every z ∈ S there is a w ∈ ∆ with
|z − w| ≤ N−6. The above estimate implies

P
(
∃w ∈ ∆: M−γ/3Γ(w)−1 ≤ Λ(w) ≤M−γ/4Γ(w)−1

)
≤ P

 ⋃
w∈∆

{
M−γ/3Γ(w)−1 ≤ Λ(w) ≤M−γ/4Γ(w)−1

} ≤ N−D+14

for every N ≥ N0.
Next, we want to extend this estimate to S. To this end, we use a continuity argument to

show

A ..=
{
∃z ∈ S : 2M−γ/3Γ(z)−1 < Λ(z) < 2−1M−γ/4Γ(z)−1

}
⊂ B ..=

{
∃w ∈ ∆: M−γ/3Γ(w)−1 ≤ Λ(w) ≤M−γ/4Γ(w)−1

}
.

Assume that there is a z ∈ S such that the property defining A is fulfilled. By the definition of
∆ we may choose w ∈ ∆ such that |z−w| ≤ N−6. We prove that w satisfies the condition in the
definition of B. Since S is a spectral domain by Lemma 4.13 Lemma 4.14 implies that Λ and
Γ are Lipschitz continuous with Lipschitz constant at most 2M2, 2c−2M4 respectively. Thus,
there is a N1 ∈ N (independent of z and w) such that 3/2Γ(w)−1 ≥ Γ(z)−1 ≥ 3/4Γ(w)−1 for all
N ≥ N1 since c ≤ Γ by (4.56). By possibly increasing N1 we can assume that Mγ/4−3 ≤ c3/8
and Mγ/3−3 ≤ c3/4 for all N ≥ N1. Hence, the second bound in (4.57) and M−1 ≤ η imply

M−γ/3Γ(w)−1 ≤ Λ(w) ≤M−γ/4Γ(w)−1

for N ≥ N1. In the following, we assume N0 ≥ N1.
Thus, we have P(A) ≤ P(B) ≤ N−D+14 for every N ≥ N0. Thus, Ξ ..= Ac fulfills P(Ξ) ≥ 1−

N−D+14 and for every z ∈ S either 1(Ξ)Λ(z) < 2M−γ/3Γ(z)−1 or Λ(z) > 1(Ξ)2−1M−γ/4Γ(z)−1

hold. The inclusion [−10 + i 10, 10 + i 10] ⊂ S yields the connectedness of S. This fact and the
continuity of Λ and Γ imply that either

1(Ξ)Λ(z) < 2M−γ/3Γ(z)−1 for every z ∈ S

or
Λ(z) > 1(Ξ)2−1M−γ/4Γ(z)−1 for every z ∈ S.
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4.5 Iteration Step and Proof of the main Result

Finally, we exclude the second case by applying Lemma 4.6. We assume that this case holds
and fix a z ∈ S with Im z = 2. Then, we have

2−1M−γ/4Γ(z)−1 ≥M−γ/4c ≥M ε−1/2

for ε ..= (2− γ)/8 and every sufficiently large N due to the second estimate in (4.57) and η = 2.
Hence,

P
(
Λ(z) < 2−1M−γ/4Γ(z)−1

)
≥ P

(
Λ(z) < M ε−1/2

)
≥ P

(
Λ(z) < N εM−1/2

)
≥ 1−N−E

by Lemma 4.6 for every sufficiently large N and every E > 0.
Therefore, P

(
Λ(z) < 2−1M−γ/4Γ(z)−1

)
≥ 1/2 for every sufficiently large N . However, this

contradicts P(Ξ) ≥ 1−N−D+14. This finishes the proof.

4.5 Iteration Step and Proof of the main Result
In the whole section which is the analogue of section 5.3 in [7], let Ψ be a deterministic control
parameter satisfying

cM−1/2 ≤ Ψ ≤M−γ/3Γ−1. (4.41)

Note that Ψ satisfies (4.17) if it fulfills (4.41) due to (4.56). Moreover, we have

M−γ/3Γ−1 ≥ (Mη)−1/3 ≥
( Imm(z)

Mη

)1/3
≥ cM−1/3 ≥ cM−1/2

where we used the definition of S in the first step, Imm(z) ≤ 1 by (4.48) in the second step and
(4.50) in the third step. Thus, the upper bound in (4.41) is bigger than the lower bound.
Now, we are proving that a given bound on Λ in terms of a deterministic control parameter

can be iteratively improved by applying the fluctuation averaging mechanism. The analogue of
the following result is Proposition 5.6 in [7] whose proof is basically the same.

Proposition 4.7. Let Ψ be a deterministic control parameter satisfying (4.41) and fix ε ∈
(0, γ/3). If Λ ≺ Ψ then Λ ≺ F (Ψ) with

F (Ψ) ..= M−εΨ +
√

Imm

Mη
+ M ε

Mη
.

Proof. Because of Ψ ≤ CM−γ/3 by (4.56) we may apply (4.18) with ϕ = 1. This yields

Λo + |Υx| ≺
√

Imm+ Λ
Mη

≺
√

Imm+ Ψ
Mη

. (4.42)

Next, we want to estimate Λd. Therefore, we consider the event E ..= {Λ(z) ≤ M−γ/4} and
show that E has asymptotically a high probability. Fix D > 0. Due to (4.41), (2.3) and Λ ≺ Ψ
there is ε̃ > 0 such that the inequalities

P(Ec) ≤ P(Λ > N ε̃Ψ) ≤ N−D

hold for all N ≥ N0. Thus, Lemma 2.3 implies 1− ψ ≺ 0 for ψ ..= 1(E). Now, (4.39) yields

ψ|vx| ≤ Cψ|
∑
y

sxyvy|+ Cψ|Υx|+ Cψ|gx|.
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4 The Local Semicircle Law

Thus, we get

ψ|vx| ≺ ΓΨ2 +
√

Imm+ Ψ
Mη

uniformly in x and z where we applied the fluctuation averaging (2.19) with tik = sik and (4.56)
to the first term, (4.42) to the second term and used |gx| ≺ Λ2 ≺ Ψ2 uniformly in x and (4.56)
to estimate the third term. As 1− ψ ≺ 0 we get

Λd = ψΛd + (1− ψ)Λd ≺ ΓΨ2 +
√

Imm+ Ψ
Mη

.

Combining this estimate with (4.42) yields

Λ ≺ ΓΨ2 +
√

Imm+ Ψ
Mη

≺M−εΨ +
√

Imm

Mη
+ M ε

Mη
+M−εΨ ≺M−εΨ +

√
Imm

Mη
+ M ε

Mη
.

In the second step, we used that Ψ ≤M−γ/3Γ−1 implies ΓΨ2 ≤M−εΨ, (7.4) and

Ψ
Mη
≤ M2ε

2(Mη)2 + 1
2M

−2εΨ2

which is a consequence of Young’s inequality (7.5). This concludes the proof.

The following Lemma corresponds to Lemma 5.7 in [7]. Due to the fourfold symmetry the
error term Υx contains the additional terms Bx, sx,−xExG(x)

−x,−x and ExYx compared to the
twofold symmetry.
The proof of (4.44) in the next Lemma requires Eh2

xy = 0 in order to apply the Large Deviation
Bounds.
For the average of a vector w = (wi)i with N entries we use the notation

[w] = 1
N

∑
i

wi.

Lemma 4.8. If Ψ is a deterministic control parameter such that Λ ≺ Ψ then we have [Υ] ∈
O≺(Ψ2).

Proof. By Schur’s complement formula (2.8) and the definition of Υx we have

Υx = Ax +Bx − sx,−xExG(x)
−x,−x − ExYx + Fx

1
Gxx

. (4.43)

The fluctuation averaging (2.18) with tik = 1/N yields [FxG−1
xx ] ∈ O≺(Ψ2). Obviously, we have

|Ax| ≺ Ψ2 and |Bx| ≺ Ψ2 by Lemma 4.2. Since S is a spectral domain by Lemma 4.13 the
estimate (2.12) implies E|G(x)

−x,−x|p ≤ Np. Therefore, Lemma 6.1 is applicable which implies
together with Lemma 4.2 and s−x,x ≤ M−1 that |sx,−xExG(x)

−x,−x| ≺ Ψ2 since Ψ ≤ CM−γ/3 by
(4.41) and (4.56). Using (4.27) and the first two steps in (4.28) with ϕ = 1 we get

|
(x,−x)∑
k,l

hxkG
(x,−x)
kl hl,−x| ≺M−1/2 + Ψ ≺ Ψ (4.44)

since Ψ satisfies (4.41). Thus, the representation of Yx in (4.30) and applying Lemma 4.2 yields
|Yx| ≺ Ψ2. Hence, Lemma 6.1 whose requirement on the moments of |Yx| is fulfilled because of
(2.2) and (2.13) implies |ExYx| ≺ Ψ2 and |[Υ]| ≺ Ψ2 follows from (4.43).
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In order to prove the main result we apply Proposition 4.7 iteratively starting with the bound
in Proposition 4.4. The following proof of Theorem 4.1 essentially agrees with the proof of
Theorem 5.1 in [7].
Proof of Theorem 4.1. First, we proof that if Ψ is a deterministic control parameter which fulfills
(4.41) then F (Ψ) satisfies (4.41) as well. Due to (4.50) we have F (Ψ) ≥

√
cM−1/2. As Ψ ≤

M−γ/3Γ−1 we have M−εΨ ≤M−γ/3−εΓ−1. By definition of S we have√
Imm

Mη
≤M−γΓ−2 ≤M−γ/3−εΓ−1

for large N . Moreover, the definition of S yields M ε(Mη)−1 ≤ c−2M ε−γ ≤ M−γ/3−εΓ−1 for
large N . Thus, F (Ψ) ≤M−γ/3−εΓ−1 for all large N and F (Ψ) fulfills (4.41).
Obviously, the deterministic control parameter Ψ0 ..= M−γ/3Γ−1 satisfies (4.41). Proposition

4.4 states the validity of Λ ≺ Ψ0. With the recursive definition Ψk+1 ..= F (Ψk) we get the
estimate Λ ≺ Ψk for all k ∈ N which follows from Proposition 4.7 by induction. Moreover, we
have the explicite formula

Ψk = M−kεM−γ/3Γ−1 +
(
k−1∑
i=0

M−iε
)√

Imm

Mη
+ 1
Mη

 k−2∑
i=−1

M−iε

 .
The estimate M−kεM−γ/3Γ−1 ≺

√
Imm
Mη for k ..= dε−1e which is a consequence of (4.56) and

(4.50) and the above representation of Ψk imply

Λ ≺
√

Imm

Mη
+ M ε

Mη
≤
√

Imm

Mη
+ N ε

Mη

for all ε > 0. Therefore, we conclude by Lemma 2.4 (iv) that

Λ ≺
√

Imm

Mη
+ 1
Mη

= Π(z)

which is the bound claimed in (4.5).
Next, we show (4.6). We set ψ ..= 1(Λ ≤M−γ/4). Averaging equation (4.39) implies

ψm2 (−[v] + [Υ]) = −ψ[v] + g

where g ..= N−1∑
x gx ∈ O≺(ψΛ2). Since Π satisfies (4.41) and Λ ≺ Π it follows from (4.42)

with Ψ = Π that

|Υx| ≺
√

Imm+ Π
Mη

≺
√

Imm

Mη
+ 1
Mη

+ Π ≺ Π

where we applied (7.4) and Young’s inequality (7.5) in the second step and the definition of Π
in the last step. Thus, Lemma 4.8 implies |[Υ]| ≺ Π2. Therefore, we get

|1−m2||[v]| = ψ|1−m2||[v]|+ (1− ψ)|1−m2||[v]| ≺ |[Υ]|+ |g| ≺ Π2

since we have 1− ψ ≺ 0 as in the proof of Proposition 4.7. We conclude

|[v]| ≺ Π2

|1−m2|
≤
( Imm

|1−m2|
+ 1
|1−m2|Mη

) 2
Mη
≤
(
C + Γ

Mη

) 2
Mη
≤ C

Mη

where we used Young’s inequality (7.5) in the second step and (4.51) and (4.55) in the third
step. In the last step the definition of S and Γ−2 ≤ c by (4.56) was applied.
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4 The Local Semicircle Law

4.6 Properties of m and Γ

In this section, we collect some properties of m and Γ which were used in the previous sections
and prove these results.

Recall that m is the Stieltjes transform of the semicircle law, i.e.

m(z) = 1
2π

∫
[−2,2]

√
4− x2

x− z
dx

for z ∈ C\R. In the next Lemma we establish an explicit representation of m(z) for z ∈ C with
Im z > 0. Since m(z) = m(z) this determines m(z) for all z ∈ C\R.

Lemma 4.9. For z ∈ C with Im z > 0 we have

m(z) = −z +
√
z2 − 4

2 .

Before embarking on the proof we explain our convention concerning the square root of a
complex number. We define the square root

√
w of a complex number which is not real to be

the unique solution of z2 − w = 0 with positive imaginary part, explicitely

√
w = sign(Imw) |w|+ w√

2(|w|+ Rew)
. (4.45)

Moreover, for its real and imaginary part, respectively, we have

Re
√
w = 1√

2
sign(Imw)

√
|w|+ Rew = Imw√

2(|w| − Rew)
, (4.46)

Im
√
w = |Imw|√

2(|w|+ Rew)
= 1√

2

√
|w| − Rew. (4.47)

The proof we give here follows [2]. The main idea is to convert the integral into a contour
integral in the complex plane and apply the residue theorem. An alternative proof which is
based on representing (x − z)−1 in the integrand as a power series, interchanging summation
and integration and computing the moments of the semicircle law µsc is given in [12].

Proof. Using the substitution x = 2 cos t we get

m(z) = 2
π

∫ π

0

sin2 t

2 cos t− zdt.

The substitution ϕ = 2π − t implies∫ π

0

sin2 t

2 cos t− zdt =
∫ 2π

π

sin2 ϕ

2 cosϕ− zdϕ.
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Thus, we have

m(z) = 1
π

∫ 2π

0

sin2 ϕ

2 cosϕ− zdϕ

= 1
π

∫ 2π

0

1
2 eiϕ+e−iϕ

2 − z

(
eiϕ − e−iϕ

2i

)2

dϕ

=− 1
4πi

∫
S1

(ζ − ζ−1)2

ζ + ζ−1 − z
ζ−1dζ

=− 1
4πi

∫
S1

(ζ2 − 1)2

ζ2(ζ2 − zζ + 1)dζ.

We will apply the residue theorem to the last integral. We set

f(ζ) = − (ζ2 − 1)2

4πiζ2(ζ2 − zζ + 1) .

The poles of f are ζ0 = 0, ζ+ = (z +
√
z2 − 4)/2 and ζ− = (z −

√
z2 − 4)/2. As Re

√
z2 − 4 and

Re z have the same sign and Im
√
z2 − 4 and Im z are nonnegative we get |Re ζ+| > |Re ζ−| and

|Im ζ+| > |Im ζ−|. Thus, |ζ+| > |ζ−| which implies together with ζ+ζ− = 1 that 0, ζ− ∈ D1(0)
and ζ+ /∈ D1(0) where D1(0) ..= {w ∈ C; |w| < 1}. At these poles the residues are

Res(f, 0) = − z

4πi, and Res(f, ζ−) = − (ζ− − 1)2

4πiζ2
−(ζ− − ζ+)

= −
ζ2
−(ζ− − ζ+)2

4πiζ2
−(ζ− − ζ+)

=
√
z2 − 4
4πi .

Hence,

m(z) = 2πi(Res(f, 0) + Res(f, ζ−)) = −z +
√
z2 − 4

2 .

Remark 4.10. Lemma 4.9 implies that m(z)2 + zm(z) + 1 = 0 which is equivalent to (4.2).
Together with Imm(z) ≥ cη for some c > 0 by (4.50) this yields that m(z) is the unique solution
of (4.2) with Imm(z) > 0 for Im z > 0.

In the following we denote

R ..=
{
E + iη;E ∈ [−10, 10], η ∈ (0, 10]

}
.

The following Lemma contains some basic estimates on m.

Lemma 4.11. There are constants c > 0 and C > 0 such that for z ∈ R we have

c ≤ |m(z)| ≤ 1− cη, (4.48)
|m(z)| ≤ η−1, (4.49)

Imm(z) ≥ cη, (4.50)
Imm(z) ≤ C|1−m2(z)|. (4.51)

Moreover, we have
|m(z)−m(w)| ≤ (Im z)−1(Imw)−1|z − w| (4.52)

for z, w ∈ C with Im z, Imw > 0.

Note that decreasing c in any of the above estimates does not affect the validity of these
bounds. Therefore, we can prove each inequality with a different constant c and we finally take
c to be the minimum of these constants.
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Proof. We start with proving (4.50). Since |(x − z)−1| = ((x − E)2 + η2)−1/2 ≤ η−1 and the
semicircle law defines a probability measure we have

|m(z)| ≤ 1
2π

∫
[−2,2]

√
4− x2

|x− z|
dx ≤ η−1.

Note that there is a d > 0 such that (x − E)2 + η2 ≤ d for x ∈ [−2, 2], E ∈ [−10, 10] and
η ∈ (0, 10]. Thus,

Imm(z) ≥ d−1η

2π

∫
[−2,2]

√
4− x2dx = d−1η.

Taking the imaginary part of (4.2) we get Imm(z) = |m(z)+z|−2(Imm(z)+η) = |m(z)|2(Imm(z)+
η) where we employed (4.2) also in the second step. Equivalently,

(1− |m(z)|2)Imm(z) = |m(z)|2η. (4.53)

This equation yields 1 − |m(z)|2 ≥ 0 since Imm(z) > 0 for z ∈ R by (4.50). Thus, |m(z)| ≤ 1
for all z ∈ R and there is D > 0 such that |m(z) + z| ≤ D for all z ∈ R. This implies

|m(z)| = 1
|m(z) + z|

≥ D−1 =.. c

for all z ∈ R where we used (4.2) in the first step. This shows the first bound in (4.48).
Moreover, (4.53) implies

1− |m(z)|2 ≥ (1− |m(z)|2)Imm(z) = |m(z)|2η ≥ c2η

for all z ∈ R where we used Imm(z) ≤ |m(z)| ≤ 1 in the first step and the first estimate in
(4.48) in the last step. Thus, |m(z)|2 ≤ 1 − c2η ≤ (1 − ηc2/2)2 which shows the second bound
in (4.48).
Using temporarily the notation x ..= Rem(z) and y ..= Imm(z) we have

|1−m2(z)|2 = (1− x2 + y2)2 + (2xy)2 = (1− x2)2 + 2x2y2 + y4 + 2y2 ≥ 2y2 = 2(Imm(z))2.

This yields together with Imm(z) > 0 by (4.50) the estimate |1 −m2(z)| ≥
√

2Imm(z) which
establishes (4.51).
The last claim follows from

|(x− z)−1 − (x− w)−1| ≤ (Im z)−1(Imw)−1|z − w| (4.54)

and the fact that the semicircle law defines a probability measure.

An important parameter of our system is the quantity

Γ(z) ..= ‖(1−m2(z)S)−1‖`∞→`∞

for z ∈ C with Im z > 0. Some useful bounds on Γ are collected in the following Lemma.

Lemma 4.12. There is a constant c > 0 such that

Γ(z) ≥ |1−m2(z)|−1, (4.55)
Γ(z) ≥ 1/2, (4.56)

cη ≤ Γ(z) ≤ c−1η−1 (4.57)

for all z ∈ R.
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Proof. First, note that
‖S‖`∞→`∞ = max

x

∑
y

|Sxy| = 1. (4.58)

Consider the vector e ..= (1, . . . , 1) ∈ CN . Then Se = e. In particular, (1 − m2(z)S)−1e =
(1−m2(z))−1e. This implies (4.55). Combining this with |m(z)|2 ≤ 1 yields

Γ(z) = ‖(1−m2(z)S)−1‖ ≥ (1 + |m(z)|2)−1 ≥ 1/2.

Similarly, since ‖m2(z)S‖ < 1 by the second estimate in (4.48) and (4.58) we get by applying
the Neumann series

Γ(z) = ‖(1−m2(z)S)−1‖ ≤ (1− |m(z)|2)−1 ≤ c−1η−1

where we used |m(z)|2 ≤ (1 − cη)2 ≤ 1 − cη in the third step. As σ(A−1) = σ(A)−1 for an
invertible A we have

‖(1−m2(z)S)−1‖ ≥ r
(
(1−m2(z)S)−1

)
= inf

λ∈σ(S)
|1−m2(z)λ| ≥ 1− |m(z)|2 ≥ 1− (1− cη) = cη

where r
(
(1−m2(z)S)−1) denotes the spectral radius of (1−m2(z)S)−1. We used ‖S‖`∞→`∞ = 1

in the third step and |m(z)| ≤ (1− cη)2 ≤ 1− cη in the fourth step.

Now, we can show that S is a spectral domain which is a consequence of the first relation in
the definition of ηE and the estimate (4.56).

Lemma 4.13. The family S of subsets of C defined in (4.4) is a spectral domain.

Proof. Let z ∈ C and η ..= Im z. Then η ≥ ηE where ηE was defined in (4.3). Thus,

1
Mη
≤ M−γ

Γ(z)3 ≤ 8M−γ ≤ 1.

Here, we used (4.3) in the first step and (4.56) in the second step. The last estimate holds for all
large N because of (2.3). This implies η ≥M−1 for all large N , i.e. S is a spectral domain.

Lemma 4.14. For every spectral domain D, the maps Λ and Γ are Lipschitz-continuous on D
with

|Λ(z)− Λ(w)| ≤ 2M2|z − w|,
|Γ(z)− Γ(w)| ≤ 2c−2M4|z − w|

for z, w ∈ D.

Proof. We have Λ(z) = ‖G(z)−m(z)1‖max where ‖·‖max denotes the matrix norm of elementwise
maximum. Thus,

|Λ(z)− Λ(w)| ≤ ‖G(z)−m(z)1−G(w) +m(w)1‖max ≤ ‖G(z)−G(w)‖max + |m(z)−m(w)|.

On the other hand, we have

‖G(z)−G(w)‖`2→`2 = ‖(· − z)−1 − (· − w)−1‖σ(H) ≤ (Im z)−1(Imw)−1|z − w|.

where we applied the functional calculus in the first step and the estimate (4.54) in the second
step.
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Because of ‖A‖max ≤ ‖A‖`2→`2 and (4.52) we get

|Λ(z)− Λ(w)| ≤ 2M2|z − w|

since Im z ≥M−1 for z ∈ D by the defining property of a spectral domain.
For the second claim we use the resolvent identity (1 − A)−1 − (1 − B)−1 = (1 − A)−1(A −

B)(1 − B)−1 for 1 ∈ ρ(A) and 1 ∈ ρ(B). The inverse triangular inequality and this resolvent
identity imply

|Γ(z)− Γ(w)| ≤‖(1−m2(z)S)−1(m2(z)−m2(w))S(1−m2(w)S)−1‖`∞→`∞
≤Γ(z)|m2(z)−m2(w)|Γ(w) ≤ 2c−2M4|z − w|

where we used the submultiplicativity of ‖·‖`∞→`∞ and ‖S‖`∞→`∞ = 1 in the second step and
the second bound in (4.57) and in (4.48) and M−1 ≤ ηE in the last step.
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5 Proof of the Resolvent Identities
The aim of this chapter is the verification of Schur’s complement formula (2.8) and the resolvent
identities given in Lemma 2.9. The approach we are pursuing here is guided by [10]. The proofs
are based on the following auxiliary Lemma which is pure linear algebra.
Its formulation requires the following notation: For A ∈ Cn×n and T ⊂ {1, . . . , n} we define

A[T] ∈ Cl×l with l ..= n− |T| through

(A[T])ij ..= Aij

for i, j ∈ {1, . . . , n}\T. Note that A[T] is the minor of A arising by removing the rows and
columns with index in T and keep the numbering of the rows and columns. The difference to
H(T) defined in Definition 2.7 is that the rows and columns are removed and not solely replaced
by zeros.

Lemma 5.1. Let A ∈ Cn×n, B ∈ Cm×n and C ∈ Cm×m be matrices such that C is invertible.
Set

D ..=
(
A B∗

B C

)
∈ C(m+n)×(m+n)

and
D̂ ..= A−B∗C−1B ∈ Cn×n.

If D is invertible then D̂ is invertible with

(D−1)ij = (D̂−1)ij

for i, j ∈ {1, . . . , n}. Furthermore, if D[T] is invertible then D̂[T] is invertible for T ⊂ {1, . . . , n}
and

((D[T])−1)ij = ((D̂[T])−1)ij
for i, j ∈ {1, . . . , n}\T.

Proof. First, we want to verify that it suffices to prove the first claim. Therefore, we write

D[T] =
(
A[T] (B̃)∗
B̃ C

)

where B̃ ∈ C(m−l)×n (l ..= |T|) is the matrix B with the columns with index in T removed. Since

(B∗C−1B)ij =
∑
k,l

B∗ik(C−1)klBlj =
∑
k,l

(B̃)∗ik(C−1)klB̃lj

for i, j /∈ T we have (B∗C−1B)[T] = (B̃)∗C−1B̃. Thus, the second claim follows from the first
by replacing D with D[T].
In order to prove the first claim we write D−1 in block form:

D−1 =
(
S T
U V

)

where S ∈ Cn×n, T,U ∈ Cm×n and V ∈ Cm×m.
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5 Proof of the Resolvent Identities

In block form the identities DD−1 = D−1D = 1 have the following form:

DD−1 =
(
AS +B∗U AT +B∗V
BS + CU BT + CV

)
=
(

1 0
0 1

)
, (5.1)

D−1D =
(
SA+ TB SB∗ + TC
UA+ V B UB∗ + V C

)
=
(

1 0
0 1

)
. (5.2)

Using the relations from the upper left block and the lower left block in (5.1) and the definition
of D̂ yields D̂S = 1. Similarly, the relations from the upper left block and the lower left block
in (5.2) and the definition of D̂ imply SD̂ = 1. Thus, D̂ is invertible and (D̂)−1 = S =
((D−1)ij)ni,j=1.

A direct consequence of the previous Lemma is Schur’s complement formula which we prove
next.

Proof of (2.8). By replacing H by UHU conjugated with a unitary matrix U interchanging e1
and ei we may without loss of generality assume that i = 1.
To show (2.8) in the case i = 1 we apply Lemma 5.1 with n = 1, m = N − 1 and A = h11− z,

B = (hi1)Ni=2 and C = H [1] − z. Since D̂ ∈ C1×1 we get

G11 =
(
(H − z)−1

)
11

=

h11 − z −
(1)∑
k,l

h1k((H [1] − z)−1)klhl1

−1

=

h11 − z −
(1)∑
k,l

h1kG
(1)
kl hl1

−1

.

In the third step, we used

(H(1) − z)−1 =
(
z−1 0
0 (H [1] − z)−1

)
.

Lemma 2.9 follows from Lemma 5.1 by explicitely inverting 2 × 2- and 3 × 3-matrices as we
will see next.

Proof of Lemma 2.9. First, we show that

G
(T)
ii −G

(kT)
ii = G

(T)
ik G

(T)
ki

(
G

(T)
kk

)−1
(5.3)

for i 6= k, i, k /∈ T. By replacing H by H(T) and possibly interchanging the rows and columns of
H it suffices to prove this identity for T = ∅, i = 1 and k = 2.
In this situation, we apply Lemma 5.1 with n = 2, m = N − 2 and D = H − z. We set

H̃∗ =
(
h13 . . . h1N
h23 . . . h2N

)
.

Then Lemma 5.1 yields

Grs =(D̂−1)rs for r, s ∈ {1, 2}, (5.4)

G
(2)
11 =((D̂(2))−1)11 = 1

h11 − z − (H̃∗(H [1,2] − z)−1H̃)11
(5.5)

where we used D̂2 ∈ C1×1 in the second line.
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Since D̂ ∈ C2×2 we use (
a b
c d

)−1

= 1
ad− bc

(
d −b
−c a

)

to compute the inverse of D̂. Note that the determinat of the matrix being inverted is ad− bc.
Using this formula, (5.4) and (5.5) we get

G11 −G(2)
11 =

(
h12 − z − (H̃∗(H [1,2] − z)−1H̃)12

) (
h21 − z − (H̃∗(H [1,2] − z)−1H̃)21

)
det(D̂)

(
h11 − z − (H̃∗(H [1,2] − z)−1H̃)11

)
=

(
−h12 + z + (H̃∗(H [1,2] − z)−1H̃)12

) (
−h21 + z + (H̃∗(H [1,2] − z)−1H̃)21

)
det(D̂)

(
h11 − z − (H̃∗(H [1,2] − z)−1H̃)11

)
=G12G21

G22
.

This verifies (5.3) and thus the first identity in (2.9) for i = j which trivially implies the second
identity.
Next, we establish (2.9) for i 6= j, i.e.

G
(T)
ij −G

(kT)
ij = G

(T)
ik G

(T)
kj

(
G

(T)
kk

)−1
(5.6)

for i 6= j 6= k 6= i and i, j, k /∈ T. As befroe we may assume that T = ∅ and i = 1, j = 2 and
k = 3. We apply Lemma 5.1 with n = 3, m = N − 3 and D = H − z. Thus, D̂ ∈ C3×3 and

Grs = (D̂−1)rs for r, s ∈ {1, 2, 3},
G

(3)
rs = ((D̂(3))−1)rs for r, s ∈ {1, 2}.

To invert D̂(3) we use above formula for the inverse of a 2 × 2 matrix. The inverse of A =a b c
d e f
g h i

 is given by

A−1 = 1
detA

ei− fh ch− bi bf − ce
fg − di ai− cg cd− af
dh− eg bg − ah ae− bd


with detA = aei+ bfg+ cdh− afh− bdi− ceg. Using this formula we can calculate the inverse
of the 3× 3 matrix D̂. These formulas for the inverses of D̂(3) and D̂ and a similar computation
as in the proof of (5.3) yields (5.6).
Finally, we establish (2.10). We only prove the first identity, the second is proved completely

analogously. Since (H(T) − z)G(T) = 1 we have

−G(T)
ii

(Ti)∑
k

hikG
(Ti)
kj = −G(T)

ii

(Ti)∑
k

hikG
(T)
kj +

(Ti)∑
k

hikG
(T)
ki G

(T)
ij = G

(T)
ii hiiG

(T)
ij +(1−hiiG(T)

ii )G(T)
ij = G

(T)
ij

where we used (2.9) in the first step. This implies (2.10).

The proof of (2.10) is taken from [5].
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6 Proof of the Fluctuation Averaging

In this chapter, we verify the fluctuation averaging, i.e. Theorem 2.14 and Theorem 2.15. To
this end, we transfer the proof of the fluctuation averaging given in [7] to our setting, i.e. to
random matrices with the fourfold symmetry.
We start with several preparatory lemmas. The following result is the analogue of Lemma

B.1 in [7].

Lemma 6.1. Let Ψ be a deterministic control parameter satisfying Ψ ≥ N−C and let X(u)
be nonnegative random variables such that for every p ∈ N there exists a constant cp with
E[X(u)p] ≤ N cp for all large N . If X(u) ≺ Ψ uniformly in u then

ExX(u)n ≺ Ψn

FxX(u)n ≺ Ψn

EX(u)n ≺ Ψn

uniformly in u and in x.

Before embarking on the proof we want to stress that Ψ ≥ N−C is in particular fulfilled by
deterministic control parameters satisfying (4.17) due to (2.3). Moreover, the last estimate is
deterministic since EXn ≺ Ψn means by the definition of ≺ that for every ε > 0 there is N0 ∈ N
such that EXn ≤ N εΨn for all N ≥ N0.

Proof. We check directly that the definition of ≺ is fulfilled. Since X ≺ Ψ implies Xn ≺ Ψn by
Lemma 2.4 (v) it suffices to prove the claim for n = 1. Let F ⊂ A be a sub-σ-algebra. Fix ε > 0
and D > 0. For p ∈ N we have

P(E[X|F ] > N εΨ) ≤N−pεΨ−pE[(E[X|F ])p] ≤ N−pεΨ−pE[Xp]
=N−pεΨ−p(E[Xp1(X ≤ N ε/2Ψ)] + E[Xp1(X > N ε/2Ψ)])

≤N−pε/2 +N−pε+Cp
√
EX2p

√
P(X > N ε/2Ψ)

≤N−pε/2 +N−pε+Cp+c2p/2−D̃/2 ≤ 2N−2D ≤ N−D

where we applied (7.1) in the first step, (7.2) and (7.3) in the second step, Ψ ≥ N−C in
the fourth step and chose p > 4Dε−1, D̃ > 4D + 2(C − ε)p + c2p and N0 ∈ N such that
P(X > N ε/2Ψ) ≤ N−D̃ for N ≥ N0 in the sixth step. There is N1 ∈ N which is independent of
u and F such that N1 ≥ N0 the last inequality holds for all N ≥ N1.
Choosing F = {∅,Ω} yields the last estimate, and the first estimate follows from taking
F = σ(H(x,−x)). The last conclusion together with the assumption X(u) ≺ Ψ implies

|FxX(u)| ≤ |X(u)|+ |ExX(u)| ≺ Ψ

uniformly in u and x.

The previous Lemma will be applied to resolvent entries. Its applicability follows from the
next statement which corresponds to Lemma B.2 in [7].
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6 Proof of the Fluctuation Averaging

Lemma 6.2. Let D be a spectral domain, and let Ψo and Ψ be deterministic control parameters
satisfying (4.17) such that Λ ≺ Ψ and Λo ≺ Ψo. For a fixed finite subset T ⊂ N, i 6= j and
i, j /∈ T we have

|G(T)
ij | ≺ Ψo,

∣∣∣∣ 1
G

(T)
ii

∣∣∣∣ ≺ 1. (6.1)

Furthermore, |G(T)
ij | ≤M and for every n ∈ N and ε > 0 there is N0 ∈ N such that

E|G(T)
ii |
−n ≤ N ε (6.2)

for all N ≥ N0.

Proof. The bounds in (6.1) follow from Lemma 4.2 with ϕ = 1 since |G(T)
ij | ≺ Λo ≺ Ψo. The

estimates |G(T)
ij | ≤ η−1 ≤M have already been proved in (2.12) and (2.13).

In order to prove (6.2) we use Lemma 6.1 and check its assumptions: Applying Schur’s
complement formula (2.8) to G(T)

ii and using the triangle inequality we get

(E|G(T)
ii |
−p)1/p ≤(E|hii|p)1/p + |z|+

(Ti)∑
a,b

(E|hia|p|G(Ti)
ab |

p|hbi|p)1/p

≤µ1/p
p M−1/2 + |z|+M

(Ti)∑
a,b

(E|hia|2pE|hbi|2p)1/(2p)

≤µ1/p
p M−1/2 + |z|+ µ

1/(2p)
2p N2

where we used (2.2), Lemma 2.2, (2.13) and the Cauchy-Schwarz inequality in the second step
and sia, sib ≤M−1 and (2.3) in the third step. Thus, E|G(T)

ii |−p ≤ N2p+1 for all N large enough.
Since |G(T)

ii |−1 ≺ 1 by (6.1) Lemma 6.1 with Ψ = 1 yields (6.2).

The following Lemma which replaces (B.5) in [7] gives an auxiliary bound for estimating high
moments of |

∑
k tikFkG

−1
kk |. In its proof we use the assumption Eh2

xy = 0 in the first estimate in
(6.5) which is needed in (6.6).

Lemma 6.3. Let D be a spectral domain. Suppose Λ ≺ Ψ and Λo ≺ Ψo for some deterministic
control parameters Ψ and Ψo which satisfy (4.17). Then for fixed p ∈ N we have∣∣∣∣Fx (G(T)

xx

)−1
∣∣∣∣ ≺ Ψo (6.3)

uniformly in T ⊂ N, |T| ≤ p, x /∈ T ∪ −T and z ∈ D.

Proof. Since x,−x /∈ T we get as in the proof of (4.10) by using the resolvent identity (2.9) that

(Tx)∑
a,b

hxaG
(Tx)
ab hbx =C(T)

x +
(Tx,−x)∑
a,b

hxaG
(Tx,−x)
ab hbx +

(
G

(Tx)
−x,−x

)−1 (Tx,−x)∑
a,b

hxaG
(Tx)
a,−xG

(Tx)
−x,bhbx (6.4)

where we used the definition

C(T)
x

..= hx,−xG
(Tx)
−x,−xh−x,x +

(Tx,−x)∑
a

hxaG
(Tx)
a,−xh−x,x +

(Tx,−x)∑
b

hx,−xG
(Tx)
−x,bhbx.

The same argument as in the proof of Lemma 6.2 shows that the assumptions of Lemma 6.1 are
fulfilled for each term of the expansion in (6.4).
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Similar to the proof of (4.21) we get |C(T)
x | ≺M−1/2 ≤ Ψo since Ψo satisfies (4.17). Using the

first step in (4.24) and the argument in (4.25) we get

|Fx
(Tx,−x)∑
a,b

hxaG
(Tx,−x)
ab hbx| ≤|

(Tx,−x)∑
a6=b

hxaG
(Tx,−x)
ab hbx|+ |

(Tx,−x)∑
a

(
|hxa|2 − sxa

)
G(Tx,−x)
aa |

≺Ψo +M−1/2 ≺ Ψo

where we used that Ψo fulfills (4.17). Adapting the proof of (4.29) we get

|
(x,−x)∑
k,l

hxkG
(x,−x)
kl hl,−x| ≺M−1/2 + Ψo ≺ Ψo. (6.5)

Hence, as |G(Tx)
−x,−x| ≺ 1 by Lemma 4.2 we get

|
(
G

(Tx)
−x,−x

)−1 (Tx,−x)∑
a,b

hxaG
(Tx)
a,−xG

(Tx)
−x,bhbx| ≺ Ψ2

o ≺ Ψo (6.6)

using a similar representation as in (4.30). By Lemma 6.1 these estimates imply

|Fx
(Tx)∑
a,b

hxaG
(Tx)
ab hbx| ≺ Ψo.

Thus, we get the claim by applying Schur’s complement formula (2.8) to G(T)
xx and observing

that |Fx(hxx − z)| = |hxx| ≺M−1/2 ≤ Ψo as hxx is independent of H(x,−x) and Ehxx = 0.

Next, we prove Theorem 2.15 by describing the changes needed to transfer the proof of The-
orem 4.7 on pages 48 to 53 in [7] to its version for the fourfold symmetry.
First, we use Lemma 6.3 instead of (B.5). Moreover, we have to change some notions intro-

duced in the proof of Theorem 4.7. In the middle of page 49, an equivalence relation on the
set {1, . . . , p} is introduced which has to be substituted by the following equivalence relation.
Starting with k ..= (k1, . . . , kp) ∈ {−N/2, . . . , N/2}p and r, s ∈ {1, . . . , p} we define r ∼ s if
and only if kr = ks or kr = −ks. As in [7] the summation over all k is regrouped with respect
to this equivalence relation and the notion of “lone” labels has to be understood with respect
to this equivalence relation. We use the same notation kL for the set of summation indices
corresponding to lone labels. Differing from the definition in [7] we call a resolvent entry G(T)

xy

with x, y /∈ T maximally expanded if kL ∪ −kL ⊂ T ∪ {x, y}. Correspondingly, we denote by A
the set of monomials in the off-diagonal entries G(T)

xy with T ⊂ kL ∪ −kL, x 6= y and x, y ∈ k\T
(considering k as a subset of {−N/2, . . . , N/2}) and the inverses of diagonal entries 1/G(T)

xx with
T ⊂ kL ∪ −kL and x ∈ k\T. With these alterations the algorithm can be applied as in [7]. In
the proof of (B.15) the assertion (∗) has to be replaced by

(∗) For each s ∈ L there exists r = τ(s) ∈ {1, . . . , p}\{s} such that the monomial Arσr

contains a resolvent entry with lower index ks or −ks.
To prove this claim, we suppose by contradiction that there is s ∈ L such that Arσr

does not
contain ks and −ks as lower index for all r ∈ {1, . . . , p}\{s}. Without loss of generality we
assume s = 1. This implies that each resolvent entry in Arσr

contains k1 and −k1 as upper index
since Arσr

is maximally expanded for all r ∈ {2, . . . , p}. Therefore, Arσr
is independent of k1 as

defined in Definition 2.13. Using (2.14) and proceeding as in [7] concludes the proof of (∗).
Following verbatim the remaining steps in the proof of Theorem 4.7 in [7] establishes the

assertion of Theorem 2.15.
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6 Proof of the Fluctuation Averaging

Now, we deduce Theorem 2.14 from Theorem 2.15. As we use (6.5) of (6.12) in the following
proof of (2.19) this result also makes use of the assumption Eh2

xy = 0.

Proof of Theorem 2.14. The first estimate in (2.18) follows from Theorem 2.15 directly by set-
ting Ψo

..= Ψ and using Λo ≤ Λ ≺ Ψo.
To verify the second estimate in (2.18) we need the auxiliary estimate

|G(T)
xx −m| ≺ Λ

which can be proved by induction in the same way as (4.22). This bound implies

|FxG(T)
xx | = |Fx

(
G(T)
xx −m

)
| ≺ Ψ (6.7)

by Lemma 6.1 since |G(T)
xx −m| ≤ M + 1. Now, following the proof of Theorem 2.15 verbatim

with Ψo
..= Ψ and replacing the usage of Lemma 6.3 by (6.7) yield the second estimate in (2.18).

Next, we establish (2.19). We manipulate Schur’s complement formula (2.8) using (4.2) to
get

1
Gxx

= 1
m

+ hxx −

 (x)∑
k,l

hxkG
(x)
kl hlx −m

 . (6.8)

Using Lemma 4.2 and the first estimate in (4.48) we get∣∣∣∣ 1
Gxx

− 1
m

∣∣∣∣ =
∣∣∣∣Gxx −mGxxm

∣∣∣∣ ≺ |Gxx −m| ≺ Ψ

Thus, |hxx −
(∑(x)

k,l hxkG
(x)
kl hlx −m

)
| ≺ Ψ as well. Therefore, we can expand the inverse of the

right-hand side of (6.8) around 1/m which yields

vx = Gxx −m = m2

−hxx +
(x)∑
k,l

hxkG
(x)
kl hlx −m

+ gx (6.9)

with error terms gx such that |gx| ≺ Ψ2 uniformly in x. By (4.10), (4.11), (4.14) and (4.15) we
have the representation

(x)∑
k,l

hxkG
(x)
kl hlx =

∑
a

sxaGaa −Ax −Bx − s−x,xG(x)
−x,−x + Zx + Yx + Cx + s−x,xG

(x)
−x,−x. (6.10)

Using (6.9) we want to prove that

Exvx = m2∑
a

sxava + fx (6.11)

where |fx| ≺ Ψ2 uniformly in x. From (4.11) we get that the sum of the first four summands
on the right-hand side of (6.10) is H(x,−x)-measureable. Therefore, it suffices to show that all
summands except the first on the right-hand side of (6.10) are bounded by Ψ2 uniformly in x.
For Ax and Bx this follows directly from their definitions in (4.12). Since Zx = FxXx for some
random variable Xx we get ExZx = 0. The representation (4.20) for Cx and Lemma 4.2 yield

|Cx| ≺M−1 +M−1/2Ψ ≺ Ψ2

by (4.17).
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The bound (6.6) with T = ∅ gives

|Yx| ≺M−1 ≺ Ψ2 (6.12)

uniformly in x . This finishes the proof of (6.11).
Therefore, since Ex + Fx = 1 we have

wa ..=
∑
x

taxvx =
∑
x

taxExvx +
∑
x

taxFxvx = m2∑
x,y

taxsxyvy + Fa

=m2∑
x,y

saxtxyvy + Fa = m2∑
x

saxwx + Fa (6.13)

where we used (6.11) with the notation Fa ..=
∑
x tax(fx + Fxvx) in the third step and in the

fourth step that T and S commute. Note that |Fa| ≺ Ψ2 uniformly in a as |
∑
x taxFxvx| =

|
∑
x taxFxGxx| ≺ Ψ2 by the second estimate in (2.18). Introducing the vectors w ..= (wa)N/2a=−N/2

and F ..= (Fa)N/2a=−N/2 and writing (6.13) in matrix form we get

w = m2Sw + F.

Inverting the last equation yields

w = (1−m2S)−1F.

Recalling definition (2.17) and applying ‖·‖∞ to the last equation we have

‖w‖∞ ≤ Γ‖F‖∞ ≺ ΓΨ2

since |Fa| ≺ Ψ2 uniformly in a is equivalent to ‖F‖∞ ≺ Ψ2. This proves (2.19).
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7 Further Tools

In this chapter, we collect some well-known results used in the previous arguments. Thus, we
hope to avoid any confusion which may be caused by citing a result just by a name.

7.1 Tools from Probability Theory
This section contains some results from probability theory, namely Chebyshev’s inequality and
some properties of the partial expectation.
Let (Ω,A,P) be a probability space.

Lemma 7.1 (Chebyshev’s inequality). If X is a nonegative random variable and δ > 0 then

P(X > δ) ≤ δ−pE[Xp] (7.1)

for all p ∈ N.

Proof. Using the monotonicity of the integral we get

δpP(X > δ) = δpE[1{X>δ}] ≤ E[Xp].

Let X ∈ L 1(Ω,A,P) and let F ⊂ A be a sub-σ-algebra. If there is a Y : Ω→ R such that Y
is F-measureable and that

E[X1A] = E[Y 1A]

for all A ∈ F then Y is called partial expectation of X with respect to F . Since Y always exists
and is almost surely unique we define E[X|F ] ..= Y . Note that the partial expectation is linear
in X and that E[X|F ] = E[X] almost surely if F = {∅,Ω}. Moreover, E[XZ|F ] = XE[Z|F ]
almost surely if X is F-measureable and Z ∈ L 1(Ω,A,P) such that XZ is integrable. Further
properties of the partial expectation and proofs of the properties we stated can be found in [3].

Lemma 7.2 (Jensen’s inequality for partial expectation). Let F ⊂ A be a sub-σ-algebra, I ⊂ R
an interval, ϕ : I → R a convex function and X ∈ L 1(Ω,A,P) such that X(ω) ∈ I for all ω ∈ Ω.
Then we have

ϕ(E[X|F ]) ≤ E[ϕ(X)|F ]. (7.2)

This result is proved in Theorem 5.1.3 of [3].
Moreover, the partial expectation has the following property. If X ∈ L 1(Ω,A,P) and G ⊂
F ⊂ A are sub-σ-algebras then

E[E[X|G]|F ] = E[E[X|F ]|G] = E[X|G] (7.3)

almost surely [3].
The next proposition is a useful consequence of this property.

Proposition 7.3. Let X,Y ∈ L 1(Ω,A,P) with XY ∈ L 1(Ω,A,P) and let F ⊂ A be a sub-σ-
algebra. If σ(X) and σ(Y,F) are independent, then

E[XY |F ] = E[X]E[Y |F ].

53



7 Further Tools

Proof. Using standard properties of the partial expectation we get

E[XY |F ] = E[E[XY |σ(Y,F)]|F ] = E[Y E[X|σ(Y,F)]|F ] = E[X]E[Y |F ].

7.2 Inequalities
Here, we state two simple inequalities for real numbers which have been frequently used in the
foregoing proofs of several estimates.
Using the monotonicity of the square root function, we get

√
a+ b ≤

√
a+ 2

√
a
√
b+ b =

√
a+
√
b (7.4)

for a, b ≥ 0 where we used a binomial formula in the third step.
Similarly, 0 ≤ (a− b)2/2 yields Young’s inequality

ab ≤ a2/2 + b2/2 (7.5)

for a, b ∈ R.
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