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Introduction

In this thesis we discuss the connection between the mean-field limit and the semiclassical
approximation for a system of N identical quantum particles. More precisely, we look at
a system of N identical particles (of mass m = 1) interacting by means of the mean-field
potential:

U (XN) =
1

2N

N∑
l 6=j

φ(xl − xj), φ : R3 → R (I.1)

(where XN = {x1, . . . , xN}, xj ∈ R3, j = 1, . . . , N) in the limit N →∞. It is well known that
the effective (limiting) dynamics of such a system is ruled by the following nonlinear one-particle
Schrödinger equation:

i~∂tψt = −~2

2
∆ψt +

(
φ ∗ |ψt|2

)
ψt, (I.2)

where (
φ ∗ |ψt|2

)
(x) =

∫
R3

dy φ(x− y)|ψt(y)|2 (I.3)

is the effective self-consistent interaction. Equation (I.2) is known as the Hartree equation.
The rigorous derivation of (I.2) from the many-body evolution can be formulated in terms of
convergence of j-particle Reduced Density Matrices (RDM). In fact, by considering the N -
particle wave function ΨN,t = ΨN,t (XN) solution of the Schrödinger equation:

i~∂tΨN,t = −~2

2

N∑
i=1

∆xi
ΨN,t + UΨN,t, (I.4)

with U given by (I.1) and completely factorized initial datum given by:

ΨN,0(XN) =
N∏
j=1

ψ0(xj), (I.5)

it can be proven that, for fixed j (with 1 ≤ j ≤ N) the j-particle reduced density matrix,
defined as the trace class operator with kernel

ρ
(j)
N,t (Xj, Yj) =

∫
R3(N−j)

dXN−jΨN,t (Xj, XN−j) ΨN,t (Yj, XN−j) , (I.6)

converges, in the limit N →∞, to the factorized state:

ρ
(j)
t (Xj, Yj; t) =

j∏
k=1

ψt (xk)ψt (yk) , (I.7)
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where ψt(x) solves the one-particle Hartree equation (I.2) with initial datum ψ0. This feature
is usually called ”propagation of chaos”.

The previous result was originally obtained for sufficiently smooth potentials (see [2], [6],
[7]); then it has been generalized to include Coulomb interactions (see [16], [17], [18]). Fur-
thermore, some results concerning the speed of convergence of the mean-field evolution to the
Hartree dynamics (for all fixed times), have been proven more recently (see [20], [21]).

The limit N → ∞ for a classical system interacting by means of the same mean-field
interaction (I.1), can be considered as well (see [4], [5], [9], [10] for the case of smooth potential,
and [22] for more singular interactions). In fact, considering as initial state of the system a
completely factorized probability distribution FN,0 = FN,0 (XN , VN) dXNdVN in the N -particle
phase space R3N × R3N , namely:

FN,0 (XN , VN) =
N∏
j=1

f0 (xj, vj) , for some one-particle density f0, (I.8)

it is known that its evolution FN (XN , VN ; t) at time t > 0, is obtained by solving the Liouville
equation:

(∂t + VN · ∇XN
)FN(t) = ∇XN

U · ∇VN
FN(t), (I.9)

with U given by (I.1). Then, the j-particle marginal at time t > 0, defined as

F
(j)
N (Xj, Vj; t) =

∫
R3(N−j)×R3(N−j)

dXN−jdVN−jFN (Xj, XN−j, Vj, VN−j; t) , (I.10)

converges, as N →∞, to the product state:

F (j) (Xj, Vj; t) =

j∏
k=1

f (xk, vk; t) , (I.11)

where f(x, v; t) is the solution of the Vlasov equation:

(∂t + v · ∇x) f(t) = (∇xφ ∗ f(t)) · ∇vf(t), (I.12)

(the convolution above is with respect to both the variables x and v) with initial datum f0.
Equation (1.1.8) is the classical analogue of the Hartree equation (I.2).

Although the mean-field limit N →∞ is well understood for both classical and quantum
systems, there is a question which is still open, namely, does that limit hold for quantum
systems uniformly in ~, at least for systems having a reasonable classical analogue?
The proofs which are available up to now exhibit an error vanishing when N →∞ but diverging
as ~ → 0, although in [8], [24], [26], [27] some efforts in the direction of a better control of the
error term have been done.
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If one wants to deal with the classical and quantum case simultaneously, it is natural to
work in the classical phase space by using the Wigner formalism.

The one-particle Wigner function associated with the wave function ψt(x) is given by:

f~ (x, v; t) = (2π)−3

∫
R3

dy eiy·vψt

(
x+

~y
2

)
ψt

(
x− ~y

2

)
, (I.13)

and, similarly, the N -particle Wigner function associated with the wave function ΨN,t(XN) is
defined as:

W ~
N (XN , VN ; t) = (2π)−3N

∫
R3N

dYN eiYN ·VN ΨN,t

(
XN +

~YN
2

)
ΨN,t

(
XN −

~YN
2

)
. (I.14)

Then, by using that ψt(x) and ΨN,t(XN) solve equations (I.2) and (I.4) respectively, we find
the equations:

(∂t + v · ∇x) f
~(t) = T ~f~(t) (I.15)

and
(∂t + VN · ∇XN

)W ~
N(t) = T ~

NW
~
N(t), (I.16)

where T ~ and T ~
N are suitable pseudodifferential operators.

The initial data for equations (I.15) and (I.16) are

f~
0 (x, v) = (2π)−3

∫
R3

dy eiy·vψ0

(
x+

~y
2

)
ψ0

(
x− ~y

2

)
, (I.17)

and

W ~
N,0 (XN , VN) = (2π)−3N

∫
R3N

dYN eiYN ·VN ΨN,0

(
XN +

~YN
2

)
ΨN,0

(
XN −

~YN
2

)
=

N∏
j=1

f~
0 (xj, vj) , (I.18)

respectively.
One can easily rephrase the result of [7] by showing that the j-particle Wigner function

W ~
N,j (Xj, Vj; t) =

∫
R3(N−j)×R3(N−j)

dXN−jdVN−jW
~
N (Xj, XN−j, Vj, VN−j; t) (I.19)

converges, in a suitable sense, to

f~
j (Xj, Vj; t) =

j∏
k=1

f~ (xk, vk; t) for any t > 0. (I.20)
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However, the error in approximating the N -particle dynamics by the limiting one is diverging
when ~ → 0 (for example, for sufficiently small times t < t0 it is of the form

Cj

N
e

c
~ ). The reason

is that the operator T ~
N appearing in (I.16) is bounded on the space in which we can prove the

convergence of (I.19), but its norm diverges as c
~ when ~ → 0. On the other hand, the classical

counterpart of this problem has been solved, so that it seems natural to look for an asymptotic
expansion for the j-particle ”marginals” W ~

N,j, namely:

W ~
N,j (t) = W

(0)
N,j (t) + ~W (1)

N,j (t) + ~2W
(2)
N,j (t) + . . . , (I.21)

and for an analogous expansion for the j-fold product of solutions of the equation (I.15), namely:

f~
j (t) =

(
f~)⊗j (t) = f

(0)
j (t) + ~f (1)

j (t) + ~2f
(2)
j (t) + . . . (I.22)

The zeroth order term in (I.21) is expected to correspond to what we previously denoted by

F
(j)
N,t, namely, the j-particle marginals associated to the Liouville equation (I.9), while the

function f
(0)
j (t) appearing in (I.22) is expected to be the j-fold product of solutions of the

Vlasov equation (I.12)). Therefore, if at order zero in ~ we obtain the classical quantities, the

classical mean-field theory ensures that the convergence of W
(0)
N,j(t) to f

(0)
j (t) is well established

for all t and j. Then, it looks natural trying to show the convergence

W
(k)
N,j (t) → f

(k)
j (t) , as N →∞, for any k > 0. (I.23)

This is the main goal of the present research.
A complete proof of the uniformity in ~ of the limit N → ∞ would require a control of

the remainder of the expansion (I.21), but we are not able to provide it. However, in proving
(I.23) we characterize the quantum corrections to the classical mean-field limit and we prove
that they are expressed in terms of classical quantities only.

The plan of the thesis is the following.

In Chapters 1 and 2 we discuss the mean-field model both in the classical framework and
in the quantum context. First we introduce notation and technical tools that are needed to
formulate the mean-field results to which we referred previously. Then, we give an outlook of
the known results by discussing briefly the main approaches in facing the problem both for
smooth and singular interactions. Thus, we focus on the case of sufficiently regular potential
by showing in detail the proof of the validity of ”propagation of chaos” both in the classical
and in the quantum case, accenting the main differences in the methods and, primarily, the
inadequacy of the ”BBGKY hierarchy method” in facing the classical mean-field limit although
in the quantum framework it plays a crucial role. Furthermore, we highlight the non uniformity
with respect to ~ of the error in the quantum mean-field approximation and we analyze in detail
which is the estimate that, providing a bound which diverges as ~ → 0, is responsible for that.
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In Chapter 3 we introduce the Wigner formalism. We accent first of all why it is appropri-
ate in looking at the semiclassical behavior of quantum systems. Also, we point out the main
difficulties of this formalism with respect to the wave function (Schrödinger) and the density
matrix (Heisenberg) formulations introduced in Chapter 2. Moreover, we rephrase the quan-
tum mean-field result in the Wigner formalism and we note that the error in the mean-field
approximation is still not uniform with respect to ~ and diverging when ~ → 0. This ”bad”
behavior is due to the failure of the same estimate we detected in Chapter 3, suitably rephrased
in the Wigner framework. Finally, we discuss some known results concerning the connection
between mean-field limit and semiclassical approximation.

In Chapter 4 we prove our main result, namely, the convergence (I.23). More precisely, we
do the semiclassical expansion both for the N -particle mean-field system (see (I.21)) and for
the Hartree dynamics (I.22) deriving explicitly what are the equations solved by the coefficients
at each order in ~. Then, we introduce the initial datum as a suitable mixtures of coherent
states. This choice guarantees that the zeroth order coefficient of the N -particle expansion
is a factorized probability distribution. Finally, we identify the higher order N -particle terms
to be the expectation of certain derivatives of the empirical measure. Such an expectation is
with respect to the probability distribution that we previously obtained from the N -particle
zeroth order coefficient. By virtue of that, we obtain the limit N → ∞ by using the classical
mean-field results presented in Chapter 1 and appropriate properties of the derivatives of the
classical trajectories associated with the mean-field interaction.

In the last Chapter we present possible applications of our result (presented in Chapter 4)
in considering suitable mixtures of WKB states (instead of coherent ones) and in dealing with
other (related) problems.
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Chapter 1

Classical Mean-Field Limit

In this chapter we analyze the mean-field limit for a many-body classical system. More precisely,
we are looking at a system constituted by N identical particles interacting by the potential

U cl(XN) =
1

2N

N∑
k 6=l

φ(xk − xl), (1.1)

where we used the notation XN = (x1, . . . , xN) ∈ R3N for the positions of the N particles
(here and henceforth we put the superscripts ”cl” and ”Q” to distinguish between classical
and quantum quantities denoted by the same symbol). We note that U cl is given by a sum
over all interactions among pair of particles; the two-body interactions are governed by the
potential φ which we assume to be spherically symmetric (as it is in all reasonable physical
situations), namely φ(x) = φ(|x|) ∀ x ∈ R3. We set the dimension to be equal to 3 but the
results we are going to discuss hold in any dimension. Sometimes we will refer to the system
under consideration as ”mean-field system”.

We want to characterize the dynamics when the number of particles N is very big. In this
sense we speak about ”macroscopic” or ”effective” dynamics and from a mathematical point of
view that purpose is realized by taking the limit N →∞.

As a second step, it is also important to describe the dynamics of the fluctuations of the
N -particle evolution around the limiting one, but here we do not discuss in detail this topic
which is analyzed, for example, in [4].
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1.1 Setting of the problem: general features and known

results

A mean-field system is described by an N -body Hamiltonian of the form

Hcl,V
N (XN , VN) =

N∑
k=1

(
v2
k

2
+ V cl(xk)

)
+ U cl(XN), (1.1.1)

where we used the notation VN = (v1, . . . , vN) ∈ R3N to indicate the velocities of the N particles
and, for the sake simplicity, the mass of the (identical) particles is chosen equal to one. The
first part of the Hamiltonian is simply the sum of the one-body Hamiltonians associated with
the motion of each particle (the function V cl describes an external potential which acts in the
same way on all N particles), while the remaining term involving U cl describes the interaction
among the particles. For the sake of simplicity we assume that the force experienced by each
particle is only that arising from the many-body interaction, namely, the one-particle potential
V cl is assumed to be equal to zero. We can do that without loss of generality because the
results we are going to discuss can be generalized easily to the case V cl 6= 0.
Thus the Hamiltonian we consider is

Hcl
N(XN , VN) =

N∑
k=1

v2
k

2
+ U cl(XN), (1.1.2)

and we note that Hcl
N is symmetric with respect to any permutation of the labeling.

The factor 1/N in the potential U cl (see (1.1)) forces the energy per particle to remain
finite in the limit N → ∞ and this is the crucial feature in order to obtain a well-defined
but non-trivial limiting dynamics. Moreover we observe that U cl is such that the interaction
among the particles is quite weak when N is very big (the strength of the pair interaction is
of the order 1/N) but it is long range (because the pair interaction potential φ is unscaled,
thus its support remains of order one in the limit N →∞). Therefore when N becomes large
(for example, in the applications related to the gas dynamics we have N ≈ 1023) the mutual
interaction turns to be weaker and weaker but the total effect of such an interaction is not
negligible (the force experienced by a fixed particle because of the presence of all the others is
proportional to (N − 1)/N ≈ O(1)) . We will see that these two features are responsible for
the validity of ”propagation of chaos” and of the nonlinearity of the macroscopic equation we
find in the limit (see Sections 1.3 and 1.4).

The dynamics of an N -particle system associated with the Hamiltonian (1.1.2) is governed

7



by the Newton equations
ẋi = vi,

v̇i = − 1

N

N∑
k 6=i

∇xi
φ(xi − xk), i = 1, . . . , N

(1.1.3)

Thus we know that given an initial configuration ZN := (XN , VN) ∈ R3N × R3N in the N -
particle phase-space, the time-evolved configuration ZN(t) up to some t > 0 is obtained solving
(1.1.3) with initial datum ZN .

As we have already noticed, in many interesting physical situations the number N is very
big thus it is not possible (and even not particularly relevant for the applications) to know
which are the positions and the velocities of all particles at a certain time. In other words, it
is quite difficult to determine a unique initial N -particle configuration for the time-evolution
defined by (1.1.3) and, even if one was able to provide that, it would be impossible to solve
such a huge number of equations, even by using numerical methods. Nevertheless, one can
provide collective and more useful informations such as the probability to find N1 particles
(N1 ≤ N) in a region Λ1 ⊂ R3N , the probability that N2 particles (N2 ≤ N) have velocities
belonging to some Λ2 ⊂ R3N or the probability to find N3 particles (N3 ≤ N) with positions
belonging to some Λx

3 ⊂ R3N and velocities belonging to some Λv
3 ⊂ R3N . In other words,

one can give the N -particle probability distribution in the phase-space R3N ×R3N . Therefore,
denoting by FN,0(ZN)dZN such a distribution, we have that FN,0 is symmetric with respect to
any permutation of the variables, FN,0 ≥ 0 and:∫

dZNFN,0(ZN) = 1. (1.1.4)

Moreover, by computing the marginals of FN,0(ZN) with respect to the velocities VN and to
the positions XN one obtains respectively the spatial and the velocity probability density.

The time-evolved probability density FN(t) := FN(ZN ; t) is obtained by solving the Liou-
ville equation

(∂t + VN · ∇XN
)FN(t) = ∇XN

U · ∇VN
FN(t), (1.1.5)

with initial condition FN,0, where U is the potential defined in (1.1). By denoting as Φt (XN , VN)
the Hamiltonian flow associated with equations (1.1.3), it is easy to verify that the solution of
equation (1.1.5) is obtained by propagating the initial datum FN,0 through the characteristic
curves of Φt (XN , VN), namely

FN(t) = FN,0
(
Φ−t (XN , VN)

)
. (1.1.6)

Thus we are guaranteed that starting from an N -particle probability density at time t = 0, we
have a probability density for each time t > 0 and the evolution preserves also the symmetry

8



with respect to permutations of the variables (because the Hamiltonian Hcl
N is symmetric with

respect to permutations).

In the classical framework observables of the N -particle system are represented by real
functions defined on the phase-space R3N × R3N . Then, if we know that the configuration of
the system at a certain time τ is ZN(τ), the value of the observable associated with a certain
function uN at time τ , is given by uN(ZN(τ)). On the other side, if what we have is the
N -particle probability distribution at a certain time τ1, namely FN(τ1), we are able to give
probabilistic predictions about the value of the observables at time τ1. More precisely, the
expectation of the observable associated with a certain function uN at time τ1, is given by

〈uN〉FN (τ1) :=

∫
dZNuN(ZN)FN(ZN ; τ1). (1.1.7)

By (1.1.3) it is clear that to guarantee existence and uniqueness of the flow Φt (XN , VN)
for each t we need to assume φ ∈ C2

b (R3)1. Therefore the first rigorous results concerning the
analysis of the limit N → ∞ for the N -particles mean-field system have been proven under
suitable smoothness assumption on the pair interaction potential φ (see for example [4] and
[10]). Nevertheless, several systems of physical interest are described by more singular poten-
tial. For example, a system of gravitating particles can be described by the potential (1.1)
where φ is the Coulomb interaction among the particles and, in that case, the factor of 1/N in
front of the potential energy can be justified by the smallness of the gravitational constant.
Mean-field systems with singular interactions are clearly hard to face because one has to
deal with a system of ODE (namely, (1.1.3)) with non regular fields. Quite recently some
progress have been done in [22] where the mean-field limit is realized by only assuming ∇xφ ≈
1/|x|α, α < 1 for the pair interaction φ. On the other side, the assumptions on the initial
datum are very strong and they are quite good for numerical purposes but not satisfying from a
statistical physics point of view (for example, ”chaotic” initial data are not admissible, namely
it is not possible to consider initially factorized N -particle distribution). The problem involving
the Coulomb potential is still open.

Here we will not discuss the ”singular case” because for our purposes we need to deal with
a smooth interaction potential and with a classical mean-field result involving ”chaotic” initial
data (see Chapter 3 and 4), thus from now on we will focus on the mean-field limit in the
”smooth case”.

In [4] and [10] it is proved that the effective single particle dynamics of a mean-field system
with smooth interaction potential (φ ∈ C2

b (R3) ) in the limit N →∞ is governed by the Vlasov

1Here and henceforth we denote by Ck
b

(
Rd
)

the space of functions on Rd with continuous and uniformly
bounded derivatives up to the order k

9



equation:
(∂t + v · ∇x) f(t) = (∇xφ ∗ f(t)) · ∇vf(t), (1.1.8)

where f(t) = f(x, v; t) for each time t ≥ 0 is a one-particle probability density and here and
in the rest of the chapter we denote by ∗ the convolution with respect to both position and
velocity. By computing the marginals of f(x, v; t) with respect to the velocity v and the position
x one finds respectively the spatial and the velocity probability density.

It is remarkable that the results proven in [4] describe both the continuum limit of the
point particle dynamics associated with the mean-field interaction, as we specified previously,
and the so called ”propagation of chaos” for the many-body mean-field system. Moreover, in
[4] it has been proven that the fluctuations of a certain class of observables (called ”intensive
observables”) converge to a gaussian stochastic process. We will not discuss this last feature,
on the contrary we will show in detail the emergence of the Vlasov dynamics as the limit of the
N -particle evolution and the proof of propagation of chaos.

1.2 The Vlasov equation

Let us consider a one-particle density f0 ∈ C1(R6) and let us look at the solution f(t) of the
Vlasov equation (1.1.8) with initial datum f0. Denoting by Φt

V (x, v) the flow associated with
the system: {

ẋ = v,

v̇ = −∇xφ ∗ f(t),
(1.2.1)

one can easily verify that f(t) is obtained by propagating f0(x, v) through the characteristic
curves of the flow Φt

V (x, v), namely

f(t) = f(x, v; t) = f0

(
Φ−t
V (x, v)

)
. (1.2.2)

Therefore in proving existence and uniqueness of the solution of (1.1.8) one has to deal with a
system of ODE with a self-consistent field (see (1.2.1)) and the smoothness of the potential φ
is not sufficient to make a standard fixed point argument to be successful. One needs a more
involved analysis and it has been done by R.L. Dobrushin in [5]. It is remarkable that the
Vlasov equation (1.1.8) makes sense even for a generic probability measure ν because ∇φ ∗ ν
is sufficiently smooth (thanks to the regularity of φ) then the proof presented in [5] ensures
existence and uniqueness of the solution in this framework. In particular, if the initial datum
is an absolutely continuous measure with respect to the Lebesgue measure in R3 × R3 with
a smooth density f0 (which is the case we discussed previously), the solution f(t) is a strong
solution whose regularity depends on that of f0 and φ ( f0 ∈ C1 (R6) and φ ∈ C2

b (R3), at least).
Furthermore, introducing the Wasserstein distance W , in [5] it has been proven the following
stability result for solutions of the Vlasov equation:

W(νt1, ν
t
2) ≤ eCtW(ν0

1 , ν
0
2) (1.2.3)
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where ν0
1 and ν0

2 are two probability measures and νt1 and νt2 are the weak solutions of the
Vlasov equation with initial data given by ν0

1 and ν0
2 respectively. The metric induced by W on

the space of probability measures on R3 ×R3 is equivalent to the weak topology of probability
measures, namely we have to look at measures tested versus functions in C0

b (R3×R3) (the space
of continuous and uniformly bounded functions). Thus by (1.2.3) it follows that∫

u(x, v)ν0
n(dxdv) →

∫
u(x, v)ν0(dxdv) as n→∞, ∀ u ∈ C0

b (R3 × R3) (1.2.4)

implies ∫
u(x, v)νtn(dxdv) →

∫
u(x, v)νt(dxdv) as n→∞, ∀ u ∈ C0

b (R3 × R3), (1.2.5)

where {ν0
n}n≥0 is a sequence of probability measures converging to some ν0 when the parameter

n goes to infinity and νtn and νt are the weak solutions of the Vlasov equation with initial
data given by ν0

n and ν0 respectively. In the sequel we will denote the weak convergence of

probability measures by the symbol
M→.

1.3 The Vlasov dynamics as the continuum limit of the

N-particle Mean-Field dynamics

Let us introduce the empirical measure associated with an N -particle configuration Z ′N

µN(z|Z ′N) =
1

N

N∑
i=1

δ (z − z′i) , (1.3.1)

where z := (x, v) is the generic point in the one-particle phase-space R3 × R3 and Z ′N =
(z′1, . . . , z

′
N) ∈ R3N × R3N . By definition µN is a measure on the one-particle phase-space but,

as it is clear by (1.3.1), it depends on all the configuration Z ′N . Then let us consider an initial
N -particle configuration ZN for equations (1.1.3) distributed according to a factorized (smooth)
N -particle measure FN,0dZN , namely

FN,0(ZN) =
N∏
i=1

f0(zi) = f⊗N0 , f0 ∈ C1(R6). (1.3.2)

We denote by µ0
N the empirical measure associated with ZN and by considering the empirical

measure µN(t) = µN(z|ZN(t)) associated with the time-evolved configuration ZN(t) (solution
of equations (1.1.3) with initial datum ZN), it is easy to verify that µN(t) is the unique (weak)

11



solution of the Vlasov equation (1.1.8) with initial datum µ0
N . In fact, by integrating versus

µN(t) versus a smooth test function u = u(x, v), we find:

(u, µN(t)) =

∫
dz µN(z|ZN(t)) =

1

N

N∑
i=1

u(zi(t)) =
1

N

N∑
i=1

u(xi(t), vi(t)). (1.3.3)

Then, we obtain

d

dt
(u, µN(t)) =

1

N

N∑
i=1

d

dt
u(xi(t), vi(t)) =

=
1

N

N∑
i=1

[∇xu(xi(t), vi(t))ẋi(t) +∇vu(xi(t), vi(t))v̇i(t)] ,

(1.3.4)

that, by virtue of (1.1.3), implies

d

dt
(u, µN(t)) =

1

N

N∑
i=1

∇xu(xi(t), vi(t))vi(t)−
1

N

N∑
i=1

∇vu(xi(t), vi(t))

(
1

N

N∑
k 6=i

∇xi
φ(xi − xk)

)
.

(1.3.5)

Following (1.3.3), the equation (1.3.5) becomes

d

dt
(u, µN(t)) = (v · ∇xu, µN(t))− ((∇φ ∗ µN(t)) · ∇vu, µN(t)) , (1.3.6)

where

(∇φ ∗ µN(t)) (x) =

∫
dydw∇xφ(x− y)

(
1

N

N∑
k=1

δ(y − xk(t))δ(w − vk(t))

)
=

=
1

N

N∑
k=1

∫
dy∇xφ(x− y)δ(y − xk(t)) =

1

N

N∑
k=1

∇xφ(x− xk(t)). (1.3.7)

Therefore, µN(t) verifies (1.3.6) for any function u sufficiently smooth and

(u, µN(t)) |t=0 =
(
u, µ0

N

)
=

1

N

N∑
i=1

u(xi, vi). (1.3.8)

In other words, µN(t) satisfies the following weak equation

∂tµN(t) + v · ∇xµN(t) = (∇xφ ∗ µN(t)) · ∇vµN(t), (1.3.9)
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with initial datum µ0
N , and we note that (1.3.9) is precisely the Vlasov equation (1.1.8).

By the Strong Law of Large Numbers (SLLN) we know that

µ0
N

M→ f0 as N →∞, a.e with respect to the product measure f⊗∞0 , (1.3.10)

therefore, by (1.3.10), by knowing that µN(t) solves the Vlasov (weak) equation (1.3.9) and by
(1.2.3), it follows that

µN(t)
M→ f(t) as N →∞, a.e with respect to the product measure f⊗∞0 , (1.3.11)

where f(t) is the (strong) solution of the Vlasov equation (1.1.8) with initial datum f0.

From now on, we will say that a configuration ZN is ”typical” with respect to the measure
f0 if the empirical measure µ0

N associated with ZN verifies

µ0
N

M→ f0 as N →∞. (1.3.12)

1.4 Hierarchies and Propagation of Chaos

In the previous paragraph we proved that the Vlasov equation arises from the continuum limit
of a system of N particles interacting by the mean-field potential (1.1). This is precisely what
convergence (1.3.11) tells us and it can be seen as a one-particle effect, namely (1.3.11) provides
the equation governing the single-particle dynamics in the limit.

Now we want to show how (1.3.11) works in order to characterize the effective dynamics
of a subsystem made by a fixed number j of particles. This is a natural approach in looking at
the macroscopic behavior of many-body systems because we want to look at the limit N →∞
and we need to deal with quantities depending on a number of variables which remains finite
in the limit.
In this perspective, for any j = 1, . . . , N we introduce the ”j-particle marginal density” (or
simply ”j-particle marginal” ) associated with an N -particle density FN(XN , VN) as

F
(j)
N (Xj, Vj) =

∫
R3(N−j)×R3(N−j)

dXN−jdVN−jFN(XN , VN), (1.4.1)

where we used the notationXj = (x1, . . . , xj), Vj = (v1, . . . , vj) ∈ R3j andXN−j = (xj+1, . . . , xN),

VN−j = (vj+1, . . . , vN) ∈ R3(N−j). Indeed, the marginal F
(j)
N is obtained by integrating FN with

respect to the ”last” N − j variables thus it is a j-particle probability density (we remind that
all quantities under consideration are symmetric with respect to permutations of the variables
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then, without loss of generality, in order to refer to any subsystem made by N − j particles we
can consider the last N − j). Clearly if j = N we have F

(N)
N = FN .

For fixed j < N , the j-particle marginal does not contain the full information about the
N -particle configuration described by FN . Knowledge of the j-particle marginal F

(j)
N , however,

is sufficient to compute the expected value of every j-particle observable in the configuration
described by the probability distribution FNdZN . In fact, if uj denotes an arbitrary continuous
and uniformly bounded function on R3j, and if uj ⊗ 1N−j denotes the function on R3N which
is associated with the N -particle observable corresponding to uj for the first j particles and to
1N−j for the last (N − j) particles, we have

〈uj ⊗ 1N−j〉FN
=

∫
dZNuj(Zj)FN(ZN) =

∫
dZjuj(Zj)F

(j)
N (Zj) = 〈uj〉F (j)

N
,

(1.4.2)

where we denoted by 〈uj ⊗ 1N−j〉FN
the expected value of the N -particle observable correspond-

ing to uj ⊗ 1N−j with respect to the distribution FNdZN and with 〈uj〉F (j)
N

the expected value

of the j-particle observable corresponding to uj with respect to F
(j)
N dZj. Thus, F

(j)
N is sufficient

to compute the expectation of arbitrary observables which depend non-trivially on at most j
particles (because of the permutation symmetry, it is not important on which particles it acts,
just that it acts at most on j particles).

We are interested in characterizing the time-evolution of the marginals F
(j)
N (t) := F

(j)
N (Zj; t)

associated with the solution FN(t) of the Liouville equation (1.1.5). By integrating the Liouville
equation versus the variables ZN−j = (XN−j, VN−j) we find the following family of equations
(one for each j = 1, . . . , N)

(
∂t + Vj · ∇Xj

)
F

(j)
N (t) = T clN,jF

(j)
N (t) +

N − j

N
Ccl
j,j+1F

(j+1)
N (t), (1.4.3)

where T clN,j is precisely the j-particle Liouville operator, namely T clN,j = ∇Xj
U cl(Xj) · ∇Vj

,
while the operator Ccl

j,j+1 maps j + 1-particle densities in j-particle ones (if j = N we find
Ccl
N,N+1 ≡ 0). The family of equations (1.4.3) is known as BBGKY hierarchy (in honor of the

authors who independently derived it: Born, Bogoliubov, Green, Kirkwood, Yvon) and it is
called ”hierarchy” because we can see that the equation for the j-particle marginal is linked to
the subsequent one by the term Ccl

j,j+1F
(j+1)
N (t). The physical meaning is clear: the variation

in time of F
(j+1)
N (t) is due to the free motion of the j particles, which is encoded in the free-

transport term Vj · ∇Xj
F

(j)
N (t), to the interaction among themselves, which is modeled by the

term T clN,jF
(j)
N (t), and to the interaction among the j-particle subsystem and the remaining N−j

particles, which is encoded in the term N−j
N
Ccl
j,j+1F

(j+1)
N (t) (the factor 1/N is precisely the factor

appearing in the potential U cl (see (1.1)) while the interaction with the last N − j particles
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can be modeled by N − j times the interaction with the j+1-th because of the symmetry with
respect to permutations of the labeling (which follows from the fact that we are dealing with
N identical particles).

Writing explicitly the action of the operators T clN,j and Ccl
j,j+1, we find:

(
T clN,jF

(j)
N

)
(Xj, Vj) =

1

N

j∑
k 6=l

∇xk
φ(xk − xl) · ∇vk

F
(j)
N (Xj, Vj), (1.4.4)

and (
Ccl
j,j+1F

(j+1)
N

)
(Xj, Vj) =

=

j∑
k=1

∫
R3×R3

dxj+1dvj+1∇xk
φ(xk − xj+1) · ∇vk

F
(j+1)
N (Xj, xj+1, Vj, vj+1). (1.4.5)

By these expressions we can argue that the operator T clN,j gives a vanishing contribution in the
limit because it is of size j2/N , while the operator Ccl

j,j+1 is of order one in the limit and the

factor (N − j)/N appearing in (1.4.3) is also of order one. Therefore denoting by F (j)(t) the

expected limit of F
(j)
N (t) when N →∞, the formal limit of the BBGKY hierarchy (1.4.3) is(

∂t + Vj · ∇Xj

)
F (j)(t) = Ccl

j,j+1F
(j+1)(t), (1.4.6)

which in the case j = 1 is equal to:

(∂t + v1 · ∇x1)F
(1)(t) =

∫
dx2dv2∇x1φ(x1 − x2) · ∇v1F

(2)(x1, x2, v1, v2; t). (1.4.7)

We observe that the Vlasov equation (1.1.8) can be rewritten as

(∂t + v · ∇x) f
t =

∫
dx2dv2∇xφ(x− x2) · ∇vf

t(x, v)f t(x2, v2). (1.4.8)

Replacing (x, v) by (x1, v1), f
t by F (1)(t) and the product f t f t by F (2) we realize that (1.4.8)

is precisely the same of (1.4.7). Thus the equation of the hierarchy (1.4.6) corresponding to
j = 1 is properly the Vlasov equation, provided that the the two-particle distribution F (2)(t)
is factorized, and for this reason (1.4.6) (which is an infinite hierarchy because j can be equal
to any positive number ) is usually called ”Vlasov hierarchy”. More precisely, by considering
(1.4.6) and by assuming the marginals {F (j)(t)}j≥1 to be factorized, namely

F (j)(t) = f(t)⊗j ∀ j, (1.4.9)

it is easy to verify that f(t) has to solve the Vlasov equation. Conversely, if we consider a time
dependent one-particle density f(t) solving the Vlasov equation and we take the j-particle
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densities F (j)(t) = f(t)⊗j, for j = 1, 2 . . . , we find that the sequence {F (j)(t)}j≥1 solves the
hierarchy (1.4.6).

An interesting problem is that of the uniqueness of the solution of the Vlasov hierarchy
which plays an important role in facing the mean field limit when a generic (namely, non factor-
ized) initial datum is considered for the many-body dynamics (such a case is also studied in [4]).
This topic has been discussed in [8], under strong smoothness assumptions on the interaction
potential, and in [9] by assuming φ ∈ C2

b (R3). Here we will not enter into details because we
are going to show that in the present context there is no need to prove the uniqueness of the
solution of the Vlasov hierarchy in order to establish the validity of propagation of chaos. (In
the next chapter we will see that the situation in the quantum case can be very different).

First of all let us explain what we mean by ”propagation of chaos”.
As we have already specified, we consider as initial datum for the Liouville equation (1.1.5)

the factorized N -particle probability density (1.3.2). This choice means that we are assuming
that the particles are identically and independently distributed at time t = 0, or equivalently,
the particles are initially uncorrelated. This is quite reasonable from the physical point of view
and this is what is usually called ”hypotheses of molecular chaos”. Because of the interaction
among the particles, the factorization (1.3.2) is not preserved by the time evolution because
some correlations are introduced by the dynamics; in other words, the evolved N -particle
density FN(t) is not given by the product of one-particle densities, if t 6= 0. However, due to
the mean-field character of the interaction each particle interacts very weakly (we remind that
the strength of the interaction is of the order 1/N) with all other (N − 1) particles. For this
reason, we may expect that, in the limit of large N , the total interaction force experienced by
a typical particle in the system can be effectively replaced by an averaged, mean-field, force,
and therefore that factorization is approximately, and in an appropriate sense, preserved by the
time evolution. In other words, we may expect that, in a sense to be made precise,

FN(t) ≈ f(t)⊗N as N →∞ (1.4.10)

for an evolved one-particle density f(t) = f(x, v; t). This asymptotic factorization is precisely
what is called ”propagation of chaos” Assuming (1.4.10), it is simple to derive a self-consistent
equation for the time-evolution of the one-particle density f(t). In fact, (1.4.10) states that,
for every fixed time t, the N particles are independently distributed in space according to the
density ρ(x; t) =

∫
dvf(x, v; t). If this is true, the total force experienced, for example, by the
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first particle can be approximated by

1

N

∑
k≥2

∇x1φ(x1 − xk) ≈
1

N

∑
k≥2

∫
dy∇x1φ(x1 − y)ρ(y; t) =

=
N − 1

N

∫
dydw∇x1φ(x1 − y)f(y, w; t) =

N − 1

N
(∇x1φ ∗ f(t)) ≈ (∇x1φ ∗ f(t)) ,

(1.4.11)

as N →∞. It follows that, if (1.4.10) holds true, the one-particle density f(t) must satisfy the
self-consistent equation

(∂t + v · ∇x) f(t) = (∇xφ ∗ f(t)) · ∇vf(t) (1.4.12)

with initial data f(t)|t=0 = f0 given by (1.3.2). Equation (1.4.12) is precisely the Vlasov
equation and we have just presented an heuristic argument to explain how it is related to the
propagation of chaos. We observe that the Vlasov equation is a nonlinear Liouville equation
on R3 × R3. Therefore starting from the linear Liouville equation (1.1.5) on R3N × R3N , we
obtain, for the evolution of factorized densities, a nonlinear Liouville equation on R3 ×R3; the
nonlinearity in the Vlasov equation is a consequence of the many-body effects in the linear
dynamics.

The validity of propagation of chaos (namely, the precise statement concerning the asymp-
totic factorization (1.4.10)) is expressed in terms of convergence of the j-particle marginal
densities associated with the solution of the Liouville equation (1.1.5) to the j-fold product of
solutions of the Vlasov equation when N →∞. We are going to show that it is a straightfor-
ward consequence of the convergence (1.3.11) (e.g. [4]).

Let us consider the j-particle marginal F
(j)
N (t) associated with the solution FN(t) of the

Liouville equation with factorized initial datum FN,0 given by (1.3.2).

We want to look at the behavior of F
(j)
N (t) when N →∞. Denoting by EN the expectation

with respect to the initial N -particle distribution FN,0(ZN), after straightforward computations,
we obtain:

EN

[
µN (z′1|ZN(t)) . . . µN

(
z′j|ZN(t)

)]
=
N(N − 1) . . . (N − j + 1)

N j
F

(j)
N (Z ′j; t) +

+ O

(
1

N

)
,

(1.4.13)

where F
(j)
N (Z ′j; t) = F

(j)
N (Φ−t(Z ′j) = F

(j)
N (Z ′j(−t)) (see (1.1.6)). Consider now a typical sequence

ZN with respect to f0, namely such that (1.3.12) holds. By the Strong Law of Large Numbers
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(1.3.10) we know that (1.3.12) holds a.e. with respect to the product measure f⊗∞0 . Then, by
(1.3.11) and (1.4.13) we have:

lim
N→∞

EN

[
µN (z′1|ZN(t)) . . . µN

(
z′j|ZN(t)

)]
= lim

N→∞
F

(j)
N (Z ′j; t) =

j∏
k=1

f(z′k; t),

(1.4.14)

in the weak topology of probability measures, where f(z′k; t) = f(t) solves the Vlasov equation
with initial datum f0. Thus propagation of chaos holds. In the end, we found that starting
from an initial uncorrelated state (1.3.2) for the N -particle system, for times t > 0 we loose the
factorization, but it is recovered in the limit because the correlations created by the dynamics
are smaller and smaller when N →∞. On the other side, the effect of the many-body interac-
tion is ”translated” into the self-consistent force appearing in the Vlasov equation.

The convergence (1.4.14) of F
(j)
N (t) to f(t)⊗j implies that:

〈uj ⊗ 1N−j〉FN (t) = 〈uj〉F (j)
N (t)

→ 〈uj〉f(t)⊗j as N →∞,

(1.4.15)

for each uj ∈ C0
b (R3j × R3j). In other words, we are able to compute the ”macroscopic” ex-

pected value of j-particle observables.

A remarkable fact is that the validity of propagation of chaos has been proven without
using the hierarchies and this is really a big advantage because to deal with the hierarchies
(1.4.3), (1.4.6) seems to be quite difficult. A priori, one could think to prove the convergence

(1.4.15) of the marginals F
(j)
N (t) to the products f(t)⊗j, by using that the first ones solve the

BBGKY hierarchy (1.4.3) and the second ones solve the Vlasov hierarchy (1.4.6). Thus, if one
would be able to prove the convergence of solutions of the N -dependent hierarchy to the Vlasov
one, by knowing that the limiting hierarchy has factorized solutions arising from the Vlasov
equation (as we previously discussed), the final step for proving the propagation of chaos would
be to show the uniqueness of the solution of the Vlasov hierarchy over the class in which one
is able to prove convergence. As regard to the ”convergence problem” the difficulty is that the
BBGKY hierarchy involves operators which are unbounded, at least in reasonable spaces, thus
it does not seem possible to apply any compactness argument to ensure the convergence of the
solution. On the other side, concerning the ”uniqueness problem” for the limiting hierarchy
(1.4.6), the crucial point is the connection between the space in which one could show conver-
gence and those in which it would be possible to prove uniqueness. Therefore, the problem of
realizing the classical mean-field limit by dealing with the hierarchies is quite hard. On the
other side, we have just seen that it can be faced more naturally by using two crucial tools: the
Law of Large Numbers (1.3.10) and the continuity of solutions of the Vlasov equations with
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respect to the weak convergence of measures (1.2.3).

In the next chapter we will see that in the quantum case to deal with hierarchies is not
so difficult and a possible approach to realize the limit (indeed the one that has been used
more in the last years) is properly the one we have just described (convergence + uniqueness),
particularly to deal with singular pair interaction potentials.
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Chapter 2

Quantum Mean-Field Limit

This chapter is devoted to the analysis of the macroscopic properties of the dynamics of a
quantum system constituted by N identical particles interacting by a mean-field potential in
the limit N → ∞. As in the previous chapter, we set the dimension of the system equal to 3
but the main results we are going to discuss hold in any dimension.
The mean-field interaction potential is represented by the (right hand side) multiplication
operator

UQ(XN) =
1

2N

N∑
k 6=l

φ(xk − xl), (2.1)

where, as in the previous chapter, we denote by XN = (x1, . . . , xN) ∈ R3N the positions of the
N particles and we assume φ to be spherically symmetric. We want to characterize the effective
dynamics of such a system for large N .

The problem of investigating the error in the approximation of the many-body evolution
with the limiting macroscopic dynamics, which we do not discuss here, has been studied in [20]
and [21].

2.1 Setting of the problem: general features and known

results

The state of an N -particle quantum mechanical system in R3 can be described by a complex
valued wave function ΨN ∈ L2

(
R3N

)
. Physically the absolute value squared of ΨN(x1, . . . , xN)

is interpreted as the probability density for finding particle one at x1, particle two at x2, and so
on. Moreover the absolute value squared of the Fourier transform Ψ̂N(v1, . . . , vN) is interpreted
as the probability density for having particle one with velocity v1, particle two with velocity
v2, and so on (for the sake simplicity we always consider identical particles with mass m = 1
thus velocities are always equal to momenta). Because of this probabilistic interpretation, we
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will always consider wave functions ΨN with L2-norm equal to one.

In nature there exist two different types of particles; bosons and fermions. Bosonic systems
are described by wave functions which are symmetric with respect to permutations, in the sense
that

ΨN(xπ(1), . . . , xπ(N)) = ΨN(x1, . . . , xN), (2.1.1)

for every permutation π acting on 1, . . . , N . Fermionic systems, on the other hand, are described
by antisymmetric wave functions satisfying

ΨN(xπ(1), . . . , xπ(N)) = (−1)σ(π)ΨN(x1, . . . , xN), (2.1.2)

for every permutation π acting on 1, . . . , N where σ(π) = 0 if π is even (in the sense that it
can be written as the composition of an even number of transpositions) and σ(π) = 1 if it is
odd. In the sequel we will denote by L2

s

(
R3N

)
the space of bosonic wave functions (namely the

subspace of L2
(
R3N

)
consisting of all functions satisfying (2.1.1)).

Equations (2.1.1) and (2.1.2) are responsible for substantial differences between an N -
particle bosonic system and a fermionic one. Actually these features determine a different way
to look at the limit N →∞ in the mean-field context, the use of different techniques leading to
(a bit) different effective dynamics (see paragraph ”Joint limit N →∞ and ε→ 0” in Section
3.4). Furthermore, the different nature of bosons and fermions is crucial in the perspective of
looking at the connection between mean-field limit and semiclassical approximation ( as we will
observe in Section 3.4) and, at least from this point of view, bosonic systems seem to be more
difficult to treat.

Anyway, here and henceforth we consider undistinguishable quantum particles by neglect-
ing the statistics. In particular, in some cases the states we consider are indeed admissible for
bosons.

We know that the observables of an N -particle system are represented by self adjoint
operators A on L2

(
R3N

)
, then the expectation

〈A〉ΨN
=< ΨN , AΨN >=

∫
Ψ̄N(XN) (AΨN) (XN)dXN (2.1.3)

gives the value of the observable represented by A in the state described by ΨN .

The Hamiltonian of an N -particle system interacting by (2.1), assuming the mass of the
particles to be equal to one, is the standard quantization of (1.1.1), namely

HQ,V
N = −

N∑
k=1

(
ε2∆k

2
+ V Q(xk)

)
+ UQ(XN), (2.1.4)
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where we denoted by ∆k the Laplace operator acting on the variable xk, k = 1, 2, . . . , N and
here and henceforth we denote the Planck constant by ε. The potentials V Q and φ (appearing
in (2.1) are such that the Hamiltonian HQ,V

N is guaranteed to be a self-adjoint operator acting on
the Hilbert space L2

(
R3N

)
and it is invariant with respect to any permutation of the labeling

(namely, the Hamiltonian is symmetric in the exchange of particle names). The first part
of HQ,V

N is a sum of one-body operators (operators acting on one particle only); the sum of
the Laplacians is the kinetic part of the Hamiltonian. The function V Q describes an external
potential which acts in the same way on all N particles. The second part of the Hamiltonian
describes the interaction among the particles.

As in the classical case, we can assume without loss of generality that the potential ex-
perienced by each particle is only that arising from the many-body interaction, namely, the
one-particle potential V Q is assumed to be equal to zero. Thus the Hamiltonian we consider is

HQ
N = −

N∑
k=1

ε2∆k

2
+ UQ(XN). (2.1.5)

The Hamiltonian (2.1.5) is the observable associated with the energy of the N -particle system
interacting by the mean-field potential (2.1), thus the expectation〈

HQ
N

〉
ΨN

=< ΨN , H
Q
NΨN >=

∫
dXNΨ̄N(XN)

(
HQ
NΨN

)
(XN) (2.1.6)

gives the energy of the system in the state described by the wave function ΨN .

The considerations we did in the previous chapter as regard to the scaling of the potential
hold also in the quantum context. Therefore we are guaranteed that the energy per particle is
of order one for large N , as it is crucial in looking for a non-trivial and well-defined limiting
dynamics, and we realize that the basic features of the model are that the mutual interaction
among the particles is weak (again of size 1/N) and of long range type (unscaled support of φ).
Again, as a consequence of such two effects we will have propagation of chaos and nonlinearity
of the equation governing the limiting one-particle dynamics respectively (see Section 2.2).

The time evolution of a wave function ΨN ∈ L2
(
R3N

)
associated with the N -particle

system whose Hamiltonian is (2.1.5) is governed by the linear Schrödinger equation

iε∂tΨN,t = HQ
NΨN,t, (2.1.7)

and, since HQ
N is a self-adjoint operator, the time-evolution associated with the equation (2.1.7)

preserves the L2-norm of the wave function.
The solution to (2.1.7), with initial condition ΨN,t|t=0 = ΨN,0 ∈ L2

(
R3N

)
, can be written

by means of the unitary group generated by HQ
N as

ΨN,t = e−i
t
ε
HQ

N ΨN,0 for all t ∈ R. (2.1.8)
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The global well-posedness of (2.1.7) is not an issue here. The study of (2.1.7) is focused, there-
fore, on other questions concerning the qualitative and quantitative behavior of the solution
ΨN,t. Despite the linearity of the equation, these questions are usually quite hard to answer,
because in physically interesting situation the number of particles N is very large; for example,
in applications related to the study of boson stars we have N ≈ 1030. For such huge values of
N , it is of course impossible to compute the solution (2.1.7) explicitly; numerical methods are
completely useless as well (unless the interaction among the particles is switched off).

Fortunately, also from the point of view of physics, it is not so important to know the
precise solution to (2.1.7); it is much more important, for physicists performing experiments,
to have information about the macroscopic properties of the system, which describe the typical
behavior of the particles, and result from averaging over a large number of particles. Restricting
the attention to macroscopic quantities simplifies the study of the solution ΨN,t, but it still does
not make it accessible to mathematical analysis. To further simplify matters, we are going to
let the number of particles N tend to infinity. The macroscopic properties of the system,
computed in the limiting regime N → ∞, are then expected to be a good approximation for
the macroscopic properties observed in experiments, where the number of particles N is very
large, but finite (explicit bounds on the difference between the limiting behavior as N → ∞
and the behavior for large but finite N are obtained in [20] and [21]).

2.1.1 The density matrix formalism

To consider the limit of large N , we are going to make use of the Reduced (or Marginal) Density
Matrices (RDM) associated with an N -particle wave function ΨN ∈ L2

(
R3N

)
. First of all, we

define the density matrix ρ̂N = |ΨN >< ΨN | associated with ΨN as the orthogonal projection
onto ΨN ; we use here and henceforth the notation |ψ >< ψ| to indicate the orthogonal projec-
tion onto ψ (Dirac bracket notation). Therefore ρ̂N is a non-negative integral operator acting
from L2

(
R3N

)
to L2

(
R3N

)
with kernel given by

ρN(XN ;YN) = Ψ̄N(XN)ΨN(YN), (2.1.9)

where YN = (y1, . . . , yN) ∈ R3N . Note that, by virtue of the L2- normalization of ΨN , we have

Trρ̂N =

∫
dXNρN(XN ;XN) =

∫
dXNΨ̄N(XN)ΨN(XN) = ‖ΨN‖2

L2(R3N ) = 1. (2.1.10)

Thus ρ̂N ∈ L 1
(
L2
(
R3N

))
, where L 1

(
L2
(
R3N

))
is the Banach space (with respect to the

norm ‖·‖L 1(L2(R3N )) = Tr |·|) of the trace class operators acting on L2
(
R3N

)
. Moreover, the

positivity of ρ̂N implies ‖ρ̂N‖L 1(L2(R3N )) = Trρ̂N = 1.

It turns out that the state of a quantum mechanical system can be equivalently represented
in the wave function (Schrödinger) picture and in the density matrix (Heisenberg) formalism
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and the expectation 〈A〉ΨN
=< ΨN , AΨN > of an observable A in the state described by ΨN ,

expressed through the density matrix ρ̂N , can be written as TrAρ̂N . For example, the energy
of the mean-field system in the state described by ρ̂N is〈

HQ
N

〉
ΨN

=< ΨN , H
Q
NΨN >= TrHQ

N ρ̂N ,

(2.1.11)

HQ
N defined in (2.1.5).

The time evolution of a density matrix describing the state of the N -particle mean-field
system is governed by the linear equation

iε∂tρ̂N,t =
[
HQ
N , ρ̂N,t

]
, (2.1.12)

where
[
HQ
N , ρ̂N,t

]
denotes the commutator between HQ

N and ρ̂N,t, namely
[
HQ
N , ρ̂N,t

]
= HQ

N ρ̂N,t−
ρ̂N,tH

Q
N . Equation (2.1.12) is usually called Heisenberg equation and, by knowing that ρ̂N,t =

|ΨN,t >< ΨN,t|, it can be derived easily by the Schrödinger equation (2.1.7) solved by ΨN,t.

The self-adjointness of the Hamiltonian HQ
N , responsible for conservation of the L2-norm of the

wave function, implies that positivity and trace of the density matrix are also preserved in time.

We remind that we are looking at systems constituted by undistinguishable particles. Then
we consider density matrices ρ̂N such that their kernel ρN(x1, ..., xN ; y1..., yN) is symmetric in
the exchange of particle names, namely

ρN(xπ(1), . . . , xπ(N); yπ(1), . . . , yπ(N)) = ρN(x1, . . . , xN ; y1, . . . , yN), (2.1.13)

for every permutation π acting on 1, . . . , N . By the definition of the time-evolution (2.1.12) it
is easy to verify that this property is preserved in time.

The solution to (2.1.12), with initial condition ρ̂N,t|t=0 = ρ̂N,0, can be written by means of

the unitary group generated by HQ
N as

ρ̂N,t = e−i
t
ε
HQ

N ρ̂N,0e
i t

ε
HQ

N for all t ∈ R. (2.1.14)

The main advantage in describing the state and the dynamics of an N -particle system by
using the density matrix formalism is that it gives the possibility to investigate the properties
of subsystems made by a fixed number of variables. The way to do that is to introduce the
Reduced Density Matrices (RDM). For j = 1, . . . , N , we define the j-particle marginal density

ρ̂
(j)
N associated with ρ̂N as the partial trace of ρ̂N over the degrees of freedom of the last (N − j)

particles:
ρ̂

(j)
N = Trj+1ρ̂N (2.1.15)

24



where Trj+1 denotes the partial trace over the particles j+ 1, j+ 2, . . . , N . In other words, ρ̂
(j)
N

is defined as the non-negative trace class operator on L2 (R3j) with kernel given by

ρ
(j)
N (Xj;Yj) =

∫
dXN−jρN(Xj, XN−j;Yj, XN−j). (2.1.16)

The last equation can be considered as the definition of partial trace. As in the previous chapter,
we used the notation Xj = (x1, . . . , xj), Yj = (y1, . . . , yj) ∈ R3j and XN−j = (xj+1, . . . , xN) ∈
R3(N−j). By definition, Trρ̂

(j)
N = 1 for all N and for all j = 1, . . . , N (clearly, if j = N we find

ρ̂
(N)
N = ρ̂N) thus ρ̂

(j)
N ∈ L 1 (L2 (R3j)) for all N and for all j.

Remark 2.1.1 Note that, in the physics literature, one normally uses a different normalization
for the reduced density matrices. If the statistics are taken into account, the reduced density
matrices are defined as expectation of bosonic and fermionic fields in the framework of the
”second quantization formalism”.

For fixed j < N , the j-particle density matrix does not contain the full information about
the state described by ρ̂N . Knowledge of the j-particle marginal ρ̂

(j)
N , however, is sufficient to

compute the expectation of every j-particle observable in the state described by the density
matrix ρ̂N . In fact, if A(j) denotes an arbitrary bounded operator on L2 (R3j), and if A(j)⊗1(N−j)

denotes the operator on L2(R3N) which acts as A(j) on the first j particles, and as the identity
on the last (N − j) particles, we have

Tr
(
A(j) ⊗ 1(N−j)) ρ̂N = TrA(j)ρ̂

(j)
N . (2.1.17)

Thus, ρ̂
(j)
N is sufficient to compute the expectation of arbitrary observables which depend non-

trivially on at most j particles (because of the permutation symmetry, it is not important on
which particles it acts, just that it acts at most on j particles).

Marginal densities play an important role in the analysis of the N →∞ limit because, in
contrast to the wave function ΨN and to the density matrix ρ̂N , the j-particle marginal ρ̂

(j)
N can

have, for every fixed j ∈ N, a well-defined limit as N → ∞ (because, if we fix j ∈ N, {ρ̂(j)
N }N

defines a sequence of operators all acting on the same space L2(R3j)). In other words, ρ̂
(j)
N is a

function of a fixed number of variables (which remains finite in the limit N → ∞), while ΨN

and ρ̂N are functions of N variables thus in the limit we would have to deal with functions of
an infinite number of variables and clearly it prevents the possibility to find a well-defined limit
for them.

Mixed states

In the previous analysis we have always considered N -particle systems whose state is described
by a wave function ΨN . Such kind of states are called ”pure” states. Indeed, we say that the a
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system is in a pure state whenever we know that it is described by a uniquely determined wave
function with probability equal to one. Nevertheless, in some cases it is not possible to know
precisely (namely, with probability equal to one) which is the wave function describing the
state of a system but one only has probabilistic predictions about that. For example, one can
have a certain number (possibly infinite) k of known wave functions Ψ1

N , . . . ,Ψ
k
N ∈ L2

(
R3N

)
and a sequence of non-negative numbers λ1, . . . , λk such that it is known that the state can be
described by Ψ1

N with probability equal to λ1, by Ψ2
N with probability equal to λ2 and so on...,

namely, denoting by ΨN,mix the wave function associated with the system under consideration,
we have:

ΨN,mix(XN) =
k∑
s=1

λsΨ
s
N(XN). (2.1.18)

Clearly, λs ≤ 1 for s = 1, . . . , k and
∑

s λs = 1. Furthermore, ‖Ψs
N‖L2(R3N ) = 1 for any s in order

to have ‖ΨN,mix‖L2(R3N ) = 1. These kind of states are called ”mixed” states (or equivalently,

one can say that the state defined in (2.1.18) is a ”mixture” of pure states) and clearly a mixed
state reduces to a pure state if λs̄ = 1 for some s̄ and λs = 0 for s 6= s̄.

We note that one of the advantages of the density matrix formalism is that it encodes both
the case of pure states and the case of mixtures. In fact, by defining the density matrix

ρ̂N,mix =
k∑
s=1

λsρ̂
s
N =

k∑
s=1

λs|Ψs
N >< Ψs

N | (2.1.19)

associated with the mixed state described by (2.1.18), we have ρ̂N,mix ∈ L 1
(
L2
(
R3N

))
and

‖ρ̂N,mix‖L 1(L2(R3N )) = 1. Then the analysis done previously by starting from a pure state can
be generalized straightforward to the case of mixtures.

Furthermore, there are also states that are made by a ”continuum” mixture of pure states.
Indeed, if the parameter s in (2.1.18) is a continuum variable (for example, in the initial state
considered in Section 4.5 we have s = (x0, v0) ∈ R6) and we know that s ∈ Λ, the kernel ρN,mix
of a mixed state ρ̂N,mix is of the form

ρN,mix(XN ;YN) =

∫
Λ

ds gN(s)ρsN(XN ;YN) =

∫
Λ

ds gN(s)Ψ
s

N(XN)Ψs
N(YN), (2.1.20)

where gNds is probability distribution on Λ. Clearly, all considerations we did for ”discrete”
mixtures hold also in that case.

2.1.2 The limit N →∞
We will discuss several known results about the study of the limiting dynamics when N →∞
for a mean-field system and we will see that what has been established, by using different
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techniques and various formalisms, is that the effective single-particle dynamics is governed by
a cubic nonlinear Schrödinger equation

iε∂tψt = −ε
2

2
∆ψt +

(
φ ∗ |ψt|2

)
ψt (2.1.21)

which is known as Hartree equation. Clearly, in that case the symbol ”∗” denotes the convolu-
tion with respect to the spatial variable, namely(

φ ∗ |ψt|2
)
(x) =

∫
dy φ(x− y)|ψt(y)|2. (2.1.22)

The first rigorous results establishing a relation between the many body Schrödinger evolu-
tion and the nonlinear Hartree dynamics were obtained by K. Hepp in [2](for smooth interaction
potentials) and then generalized by J. Ginibre and G. Velo to singular potentials in [6]. These
works were inspired by techniques used in quantum field theory. We will not discuss this
method because we want to focus on other techniques which are more related to the topic we
are going to face in the next chapters (the connection between mean-field limit and semiclassical
approximation).

The first proof of the emergence of the Hartree dynamics by using the RDM formalism
(”RDM-convergence”) was obtained by H. Spohn in [7], for bounded potentials (see Theorem
2.3.1 in Section 2.3). The method introduced by Spohn was then extended to singular potentials:
in [17], L. Erdős and H. T. Yau faced the RDM- convergence for a Coulomb potential φ(x) =
1/|x|; partial results for this kind of interaction were also obtained by C. Bardos, F. Golse and
N. Mauser in [16] (note that recently a new proof in the case of a Coulomb interaction has been
proposed by J. Fröhlich, A. Knowles, and S. Schwarz in [28]).

A different approach to the proof of the rigorous derivation of the Hartree equation from a
mean-field bosonic system has been proposed by Fröhlich, Schwarz and Graffi in [26]. By using
the Wigner formalism (see Chapter 3) they can consider the mean-field limit uniformly in the
Planck constant ε (up to an exponential error depending on time); this allows them to combine
the semiclassical limit and the mean field limit by assuming restrictive assumptions on the pair
interaction potential (we will come back on this result in Chapter 3). It is also interesting
to remark that the mean-field limit can be interpreted as a Egorov-type theorem; this was
observed in [27] for sufficiently smooth potentials and in [28] for the Coulomb interaction.

2.2 Quantum BBGKY hierarchy and its formal limit as

N →∞
We have already remarked that, for any j = 1, . . . , N , the marginal densities ρ̂

(j)
N,t associated

with the solution ρ̂N,t of the equation (2.1.12), are crucial tools in studying the mean-field
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limit because they can have, for every fixed j, a well-defined limit as N → ∞. Thus, we are
interested in their time-evolution as N →∞.

By taking the partial trace over the degrees of freedom of the last N − j particles in
the Heisenberg equation (2.1.12) we find the following family of equations (one for each j =
1, . . . , N)

iε∂tρ̂
(j)
N,t =

j∑
k=1

[
−ε

2

2
∆k, ρ̂

(j)
N,t

]
+ TQN,j ρ̂

(j)
N,t +

N − j

N
CQ
j,j+1ρ̂

(j)
N,t, (2.2.1)

where the operator TQN,j acts on L 1 (L2
s (R3j)) while the operator CQ

j,j+1 maps j+1-particle den-

sities in j-particle ones (if j = N we find CQ
N,N+1 ≡ 0). The family of equations (2.2.1) is called

BBGKY hierarchy in analogy to the classical case and, again, it is called ”hierarchy” because
we can see that the equation for the j-particle marginal density is linked to the subsequent one
by the term CQ

j,j+1ρ̂
(j)
N,t. The physical meaning is the same we discussed in the classical case: the

variation in time of ρ̂
(j)
N,t is due to the free motion of the j particles, to their interaction among

themselves and to the interaction among the j-particle subsystem and the remaining N − j
particles. The first effect is modeled by the l.h.s and by the first term in the r.h.s of (2.2.1),

the second one is encoded in TQN,j ρ̂
(j)
N,t), while the interaction between the j-particle subsystem

and the remaining N − j particles is modeled by N−j
N
CQ
j,j+1ρ̂

(j)
N,t. The factor 1/N in front of

CQ
j,j+1ρ̂

(j)
N,t arises from the scaling of the potential UQ (see (2.1) while the factor N − j is due

to the symmetry with respect to permutations of the labeling (we remind that we are dealing
with N identical particles): indeed, the interaction of the j particles under consideration with
the last N − j can be modeled by N − j times the interaction with the j + 1-th particle.

Writing explicitly the action of the operators TQN,j and CQ
j,j+1, we find:

TQN,j ρ̂
(j)
N,t =

1

2N

j∑
k 6=l

[
φ(xk − xl), ρ̂

(j)
N,t

]
, (2.2.2)

and

CQ
j,j+1ρ̂

(j)
N,t =

j∑
k=1

Trj+1

{[
φ(xk − xj+1), ρ̂

(j+1)
N,t

]}
. (2.2.3)

By (2.2.2) we can argue that the operator TQN,j gives a vanishing contribution in the limit

because it is of size j2/N , while the operator CQ
j,j+1 is of order one in the limit and the factor

(N − j)/N appearing in (2.2.1) is also of order one. Therefore denoting by ρ̂
(j)
t the expected

limit of ρ̂
(j)
N,t when N →∞, the formal limit of the BBGKY hierarchy (2.2.1) is

iε∂tρ̂
(j)
t =

j∑
k=1

[
−ε

2

2
∆k, ρ̂

(j)
t

]
+ CQ

j,j+1ρ̂
(j+1)
t , (2.2.4)
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which in the case j = 1 is equal to:

iε∂tρ̂
(1)
t =

[
−ε

2

2
∆1, ρ̂

(1)
t

]
+ Tr2

{[
φ(x1 − x2), ρ̂

(2)
t

]}
. (2.2.5)

We observe that the Hartree equation (2.1.21) in the density matrix formalism (”Heisenberg
form”) is

iε∂tρ̂t =

[
−ε

2

2
∆, ρ̂t

]
+ Tr2 {[φ(x− x2), ρ̂t ⊗ ρ̂t]} . (2.2.6)

Replacing x by x1, ρ̂t by ρ̂
(1)
t and the product ρ̂t⊗ρ̂t by ρ̂

(2)
t we realize that (2.2.6) is precisely the

same of (2.2.5). Thus the equation of the hierarchy (2.2.4) corresponding to j = 1 is properly

the Hartree equation, provided that the the two-particle density ρ̂
(2)
t is factorized, and for this

reason (2.2.4) is usually called ”Hartree hierarchy”. More precisely, by considering (2.2.4) and

by assuming the reduced density matrices ρ̂
(j)
t , j = 1, 2, . . . , to be factorized, namely

ρ̂
(j)
t = ρ̂⊗jt ∀ j, (2.2.7)

it is easy to verify that ρ̂t has to solve the Hartree equation. Conversely, if we consider a time de-
pendent one-particle density ρ̂t solving the Hartree equation (2.2.6) and we take the j-particles

densities ρ̂
(j)
t = ρ̂⊗jt , j = 1, 2 . . . , we find that the sequence {ρ̂(j)

t }j≥1 solves the hierarchy (2.2.4).

An interesting problem is that of the uniqueness of the solution of the Hartree hierarchy.
The situation in the quantum case is quite different from that of the classical one. In fact,
as we will see in the next section, the Hartree hierarchy is much more controllable than the
Vlasov one because the operators involved are bounded with respect to the norms appropriate
to study the convergence of the sequence of reduced density matrices to the solution of the
limiting hierarchy. Thus, it is possible to follow the approach we described briefly at the end of
the previous chapter (convergence + uniqueness) in order to prove ”propagation of chaos” in
the quantum context, namely, asymptotic factorization of the dynamics (in the sense specified
in the forthcoming paragraph). Nonetheless, the proof of uniqueness of the solution of the
quantum limiting hierarchy is very far to be a trivial stuff. Indeed, in the case of bounded
interaction the problem is quite easy to face and, in particular, by following the strategy of
[7] (originally introduced by O. Lanford for the derivation (for short times) of the Boltzmann
equation from the hard-sphere dynamics (see [3])) it is possible to prove ”at the same time”
convergence and uniqueness (see Theorem 2.3.1). On the contrary, in case of more singular
interactions (as the Coulomb one), the proof of propagation of chaos consists really of two
steps: proving the convergence of solutions of the BBGKY hierarchy to the Hartree hierarchy
and showing the uniqueness of the solution of such a hierarchy (which implies factorization
of the limiting j-particle density matrices because, as we have already remarked, the Hartree
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hierarchy admits factorized solutions as (2.2.7)). In the Coulomb case, the ”uniqueness’ problem
is quite hard to deal with because of the singularity of the interaction (see [17]).

Anyway, we will come back later on the rigorous proof of propagation of chaos, analyzing
in detail the case of bounded potentials. Moreover we will discuss briefly the Coulomb case,
accenting which are the main new tools with respect to the bounded case, why there is need
of them and in which way they make the proof harder requiring a more refined analysis of the
limiting hierarchy.

Now let us clarify what we mean by ”propagation of chaos” in the quantum framework.
Let us consider as initial datum for the Schrödinger equation (2.1.7) a factorized N -particle

wave function
ΨN,0 = ψ⊗N0 , for some ψ0 ∈ L2

(
R3
)
. (2.2.8)

This assumption, rephrased in the density matrix formalism, leads to consider the following
factorized N -particle density matrix

ρ̂N,0 = |ΨN,0 >< ΨN,0| = ρ̂⊗N0 , with ρ̂0 = |ψ0 >< ψ0|, (2.2.9)

as initial datum for the Heisenberg equation (2.1.12). As in the classical context, (2.2.8) (or
equivalently (2.2.9)) is called ”hypotheses of molecular chaos” because we are assuming that
the particles are initially uncorrelated. Furthermore, they are all in the same (one-particle)
state at time t = 0 and clearly ΨN,0 ∈ L2

s

(
R3N

)
. Thus, (2.2.8) is an admissible state for bosons

(while for fermions it is prevented by the Pauli exclusion principle). The physical motivation
for studying the evolution of factorized wave functions is that states close to the ground state of
HQ
N (the eigenvector associated with the lowest eigenvalue), which are the most accessible and

thus the most interesting states, can be approximately described by wave functions like (2.2.8)
(some of the results which we are going to discuss in the following sections do not require strict
factorization as in (2.2.8); instead asymptotic factorization of the initial wave function in the
sense of L 1-convergence of the RDM to the j-fold product of one-particle densities would be
sufficient (see Theorem 2.3.1 and the discussion below)).

Because of the interaction among the particles, the factorization (2.2.8) (or equivalently
(2.2.9)) is not preserved by the time evolution; in other words, the evolved N -particle wave func-
tion ΨN,t is not given by the product of one-particle wave functions, if t 6= 0. All considerations
done in the classical case concerning the mean-field (weak) character of the interaction hold,
then we may expect that, in the limit of large N , the total interaction potential experienced by
a typical particle in the system can be effectively replaced by an averaged, mean-field, potential,
and therefore that factorization is approximately, and in an appropriate sense, preserved by the
time evolution. In other words, we may expect that, in a sense to be made precise,

ΨN,t ≈ ψ⊗Nt as N →∞ (2.2.10)
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or

ρ̂N,t ≈ ρ̂⊗Nt as N →∞, with ρ̂N,t = |ΨN,t >< ΨN,t|, ρ̂t = |ψt >< ψt| (2.2.11)

for an evolved one-particle wave function ψt. This asymptotic factorization is precisely what
is called ”propagation of chaos”. Assuming (2.2.10), it is simple to derive a self-consistent
equation for the time-evolution of the wave function ψt. In fact, (2.2.10) states that, for every
fixed time t, the N bosons are independently distributed in space according to the density
|ψt(x)|2. If this is true, the total potential experienced, for example, by the first particle can
be approximated by

1

N

∑
k≥2

φ(x1 − xk) ≈
1

N

∑
k≥2

∫
dyφ(x1 − y)|ψt(y)|2 =

N − 1

N

(
φ ∗ |ψt|2

)
≈
(
φ ∗ |ψt|2

)
,

(2.2.12)

as N →∞. It follows that, if (2.2.10) holds true, the one-particle wave function ψt must satisfy
the self-consistent equation

iε∂tψt = −ε
2

2
∆ψt +

(
φ ∗ |ψt|2

)
ψt (2.2.13)

with initial datum ψ0 given by (2.2.8). Equation (2.2.13) is precisely the Hartree equation and
we have just presented an heuristic argument to explain how it is related to the propagation of
chaos. We observe that the Hartree equation is a nonlinear Schrödinger equation on R3 × R3.
Therefore starting from the linear Schrödinger equation (2.1.7) on R3N × R3N , we obtain, for
the evolution of factorized densities, a nonlinear Schrödinger equation on R3 ×R3; the nonlin-
earity in the Hartree equation is a consequence of the many-body effects in the linear dynamics.

The validity of propagation of chaos (namely, the precise statement concerning the asymp-
totic factorization (2.2.10) or (2.2.11)) is expressed in terms convergence in L 1 (L2(R3j)) of the
j-particle marginal densities associated with the solution of the Heisenberg equation (2.1.12)
to the j-fold product of solutions of the Hartree equation when N →∞, namely∥∥∥ρ̂(j)

N,t − ρ̂⊗jt

∥∥∥
L 1(L2(R3j))

→ 0, as N →∞, (2.2.14)

ρ̂t ∈ L 1 (L2 (R3)) solving the Hartree equation (in the ”Heisenberg form”) (2.2.6) with initial
datum ρ̂0 given by (2.2.11). Clearly, ρ̂t = |ψt >< ψt|, ψt solving the Hartree equation (2.2.13)
with initial datum ψ0 given by (2.2.10).

We have already remarked that, for fixed j < N , the j-particle RDM ρ̂
(j)
N,t does not contain

the full information about theN -particle system described by ρ̂N,t. Nonetheless, ρ̂
(j)
N,t is sufficient
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to compute the expectation of arbitrary observables of the form Aj ⊗ 1N−j which depend non-
trivially on at most j particles (because of the permutation symmetry, it is not important on
which particles it acts, just that it acts at most on j particles).

Therefore the convergence (2.2.14) implies that:

〈Aj ⊗ 1N−j〉ΨN,t
= Tr (Aj ⊗ 1N−j) ρ̂N,t = TrAj ρ̂

(j)
N,t → TrAj ρ̂

⊗j
t = 〈Aj〉ψ⊗j

t
as N →∞,

(2.2.15)

for each bounded operator Aj acting on L2 (R3j). In other words, (2.2.14) allows to know the
”macroscopic” expected value of j-particle observables for an N -particle system interacting by
a men-field potential.

2.3 Mean-Field limit for bounded potentials

We consider, in this section, the dynamics generated by the mean field Hamiltonian (2.1.5)
under the assumption that the interaction potential is a bounded operator. We will assume,
in other words, that φ ∈ L∞ (R3) (recall that the operator norm of the multiplication operator
φ(xk − xl) is given by the L∞-norm of the function φ ).

In the sequel we will use the notation φkl := φ(xk − xl).

Theorem 2.3.1 [Spohn 1980] Let the pair interaction potential φ be in L∞ (R3) and the
initial state of the system be described by a factorized N-particle wave function ΨN,0 ∈ L2

s

(
R3N

)
,

namely
ΨN,0 = ψ⊗N0 , for some ψ0 ∈ L2

(
R3
)

: ‖ψ0‖L2(R3) = 1. (2.3.1)

This implies that the initial N-particle density matrix ρ̂N,0 ∈ L 1
(
L2
(
R3N

))
is given by

ρ̂N,0 = |ΨN,0 >< ΨN,0| = ρ̂⊗N0 , ρ̂0 = |ψ0 >< ψ0|. (2.3.2)

Then, for any fixed j,∥∥∥ρ̂(j)
N,t − ρ̂⊗jt

∥∥∥
L 1(L2(R3j))

−→ 0, as N →∞, (2.3.3)

where ρ̂
(j)
N,t solves the BBGKY hierarchy (2.2.1) with initial datum ρ̂⊗j0 and ρ̂t ∈ L 1 (L2 (R3))

is the solution of the Hartree equation (in the ”Heisenberg form”)

iε∂tρ̂t =

[
−ε

2

2
∆, ρ̂t

]
+ Tr2{[φ(x− x2), ρ̂t ⊗ ρ̂t]}, (2.3.4)

with initial datum ρ̂0. In terms of wave functions, we find that ρ̂t = |ψt >< ψt|, ψt solving the
Hartree equation (2.1.21) with initial datum ψ0.
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Proof
Let ρ̂(N) ∈ L 1

(
L2
(
R3N

))
be a trace class operator with kernel ρ(N) invariant under permuta-

tions of the labeling. For fixed j, let ρ̂
(N)
j ∈ L 1 (L2 (R3j)) be

ρ̂
(N)
j = Trj+1ρ̂

(N). (2.3.5)

Then, by considering the time-evolution ρ̂(N)(t) = e−
i
ε
HQ

N tρ̂(N)e
i
ε
HQ

N t, HQ
N defined in (2.1.5),

it is also invariant under permutations of the labeling and the j-particle trace class operator
ρ̂

(N)
j (t) = Trj+1ρ̂

(N)(t) satisfies the differential equation

iε∂tρ̂
(N)
j (t) =

[
j∑

k=1

(
−ε

2

2
∆k

)
+

1

2N

j∑
k 6=l

φkl, ρ̂
(N)
j (t)

]
+

+

(
N − j

N

) j∑
k=1

Trj+1

{[
φkj+1, ρ̂

(N)
j+1(t)

]}
. (2.3.6)

This is what we previously called BBGKY hierarchy (see (2.2.1)) as it can be seen by using the
”compact” notation

∂tρ̂
(N)
j (t) = − i

ε

[
j∑

k=1

(
−ε

2

2
∆k

)
, ρ̂

(N)
j (t)

]
− i

ε
TQN,j ρ̂

(N)
j (t)− i

ε

(
N − j

N

)
CQ
j,j+1ρ̂

(N)
j+1(t),

(2.3.7)

TQN,j and CQ
j,j+1 as in (2.2.2) and (2.2.3) respectively.

Let S
(N)
j (t) is the flow associated with the equation:

∂tρ̂
(N)
j (t) = − i

ε

[
HQ
N,j, ρ̂

(N)
j (t)

]
, (2.3.8)

with

HQ
N,j :=

j∑
k=1

(
−ε

2

2
∆k

)
+ TQN,j. (2.3.9)

Thus, S
(N)
j (t)ρ̂j = e−

i
ε
HQ

N,jtρ̂je
i
ε
HQ

N,jt, for any ρ̂j ∈ L 1 (L2 (R3j)). By the Duhamel formula, the
solution of (2.3.7) can be written as

ρ̂
(N)
j (t) = S

(N)
j (t)ρ̂

(N)
j +

(
N − j

N

)(
− i
ε

)∫ t

0

dt1 S
(N)
j (t− t1)C

Q
j,j+1ρ̂

(N)
j+1(t1). (2.3.10)
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Iterating the integral equation (2.3.10), we obtain the series

ρ̂
(N)
j (t) = S

(N)
j (t)ρ̂

(N)
j +

+

N−j∑
n=1

∫
0≤tn≤···≤t1≤t

dtn . . . dt1 S
(N)
j (t− t1)

(
N − j

N

)(
− i
ε

)
CQ
j,j+1 . . .

. . .

(
N − j − n+ 1

N

)(
− i
ε

)
CQ
j+n−1,j+n S

(N)
j+n(tn)ρ̂

(N)
j+n. (2.3.11)

Let ‖·‖j denote the trace norm in L 1 (L2 (R3j)). Since S
(N)
j (t) preserves the ‖·‖j norm

(because HQ
N,j is a self-adjoint operator on L2 (R3j)), by the expression (2.2.3) for CQ

j,j+1, it is
easy to verify that the n-th term of the series (2.3.11) is bounded by

tn

n!
j(j + 1) . . . (j + n− 1)

(
2 ‖φ‖L∞

ε

)n ∥∥∥ρ̂(N)
j+n

∥∥∥
j+n

. (2.3.12)

If one assumes

P1)
∥∥∥ρ̂(N)

j

∥∥∥
j
≤ aj for any j, (2.3.13)

then the series (2.3.11) converges in trace norm for |t| ≤ t0 with t0 <
ε

4‖φ‖L∞a
.

For any ρ̂j ∈ L 1 (L2 (R3j)), let Sj(t)ρ̂j = e−
i
ε
Hjtρ̂je

i
ε
Hjt, where Hj =

∑j
k=1

(
− ε2

2
∆k

)
is the

j-particle free Hamiltonian. We note that∥∥∥TQN,j ρ̂(N)
j

∥∥∥ ≤ j(j − 1)

2N
‖[φ, ρ̂(N)

j ]‖j ≤
j(j − 1)

N
‖φ‖L∞

∥∥∥ρ̂(N)
j

∥∥∥
j
,

(2.3.14)

then by Property P1) we find∥∥∥TQN,j∥∥∥ ≤ j(j − 1)

N
‖φ‖L∞ a

j → 0 as N →∞, (2.3.15)

where ‖·‖ is the operator norm on L 1 (L2 (R3j)).
We note that, for any ρ̂j ∈ L 1 (L2 (R3j)),∥∥∥S(N)

j (t)ρ̂j − Sj(t)ρ̂j

∥∥∥
j

≤ 1

ε

∫ t

0

dτ
∥∥∥Sj(t− τ)TQN,j ρ̂j(τ)

∥∥∥
j
≤

≤ 1

ε

∫ t

0

dτ
∥∥∥TQN,j ρ̂j(τ)∥∥∥

j
, (2.3.16)
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where we use that Sj(t) preserves the trace norm. Then, from (2.3.15), it follows that

lim
N→∞

∥∥∥S(N)
j (t)− Sj(t)

∥∥∥ = 0. (2.3.17)

If one assumes

P2) lim
N→∞

∥∥∥ρ̂(N)
j − ρ̂j

∥∥∥
j
= 0, (2.3.18)

for some ρ̂j ∈ L 1 (L2 (R3j)), then by (2.3.11) and (2.3.17), it follows that ρ̂
(N)
j (t) converges as

N →∞ in trace norm to

ρ̂j(t) =
+∞∑
n=0

∫
0≤tn≤···≤t1≤t

dtn . . . dt1 Sj(t− t1)

(
− i
ε

)
CQ
j,j+1 . . .

. . .

(
− i
ε

)
CQ
j+n−1,j+n Sj+n(tn)ρ̂j+n, (2.3.19)

for |t| ≤ t0. We note that the n-th term of the above series in bounded in trace norm by
(2.3.12), then for short times |t| ≤ t0 we are ensures that (2.3.19) converges in trace norm.

Let ρ̂(N) be a density matrix. Then
∥∥∥ρ̂(N)

j (t)
∥∥∥
j

=
∥∥∥ρ̂(N)

j

∥∥∥
j

by preservation of positivity and

trace. Therefore, if for the initial state the bound P1) is satisfied, it remains valid for all times,

and the argument just given can be iterated to prove convergence of ρ̂
(N)
j (t) to ρ̂j(t) as N →∞

for all times. Furthermore, ρ̂j(t) is uniquely determined for all times because by iteration we
prove that (2.3.19) converges in trace norm for all times.

One checks that for the particular initial state ρ̂N,0 in (2.3.2) the conditions P1) and P2) are

satisfied with a = 1 and ρ̂j = ρ̂⊗j0 . Therefore, we can claim that the solution ρ
(j)
N,t of the BBGKY

hierarchy (2.3.7) with initial datum ρ̂⊗j0 converges in trace norm to the unique j-particle density
matrix ρ̂j(t) identified by the series (2.3.19) with ρ̂j+n = ρ̂⊗j+n0 ∀ n. Differentiating (2.3.19)
with respect to t, one obtains the limiting hierarchy of equations

iε∂tρ̂j(t) =

[
j∑

k=1

(
−ε

2

2
∆k

)
, ρ̂j(t)

]
+ CQ

j,j+1 ρ̂j+1(t), (2.3.20)

whose unique trace class solution is ρ̂j(t) with initial datum ρ̂⊗j0 . Moreover, (2.3.20) preserves
the factorization property for all t according to the Hartree equation (in the Heisenberg form)
(2.3.4). This ensures the validity of propagation of chaos, namely ρ̂j(t) = ρ̂⊗jt , ρ̂t solving the non-
linear Heisenberg equation (2.3.4) with initial datum ρ̂0 = |ψ0 >< ψ0|. Then, ρ̂t = |ψt >< ψt|,
ψt solving the Hartree equation (2.1.21) with initial datum ψ0.

�
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Remark 2.3.1 :
By looking at the the proof above it is clear that in order to let Theorem 2.3.1 to hold

there is no need of strict factorization of the initial datum as in (2.3.2). Instead asymptotic
factorization in the sense of

lim
N→∞

∥∥∥ρ̂(j)
N,0 − ρ̂⊗j0

∥∥∥
j
= 0 (2.3.21)

would be sufficient. We remind that (2.3.21) is a reasonable ”physical” condition because states
close to the ground state of HQ

N , which are the most accessible and thus the most interesting
states, can be approximately described by factorized wave functions, and then, by factorized
density matrices.

Remark 2.3.2 :
In proving the convergence of the series (2.3.11) to (2.3.19) the crucial tools have been the

boundedness of the operator TQN,j : L 1 (L2 (R3j)) → L 1 (L2 (R3j)) (see (2.3.14)) and property

P1) for the RDM. In particular, the bound (2.3.15) on the operator norm of TQN,j provides the
rate of convergence to the Hartree dynamics by means of (2.3.16). Then, by observing that the
estimate obtained in (2.3.16) is not uniform with respect to ε and it fails when ε→ 0, it follows
that the error in approximating the N -particle dynamics with the limiting one is diverging
when ε→ 0 (for short times it is of the form

Cj

N
eCt/ε).

In the next sections we will discuss some other results concerning the mean-field limit
starting from factorized initial datum as in (2.3.1), both for bounded interactions and for the
Coulomb potential and we will see that considerations done in Remark 2.3.2 still hold. This
means that all results concerning the mean-field limit exhibit an error in approximating the N -
particle dynamics by the limiting one which is not uniform with respect to ε and diverging when
ε→ 0. This is a quite surprising feature because it seems that, roughly speaking, the accuracy
of the approximation depends on ”how much” the system can be considered quantum or not
and, except for fermionic systems, there are no reasonable motivations for that. In fact, we will
see in Chapter 3 that in the fermionic case it is quite natural to look at a joint limit: N →∞
and ε→ 0 as in [8] and [19]. On the contrary, in looking at systems of undistiguishable particles
or even bosonic systems the fact that the mean-field limit and the semiclassical approximation
seems to be so strictly connected is an open problem (except for specific scalings of the potential
as in [24]). Furthermore, in the classical case (see Chapter 1) everything works, so it is quite
natural to ask if, at least for systems having a reasonable quantum analogue, it is possible
to realize the limit N → ∞ uniformly with respect to ε. This is the main motivation of our
research and in the next section we will focus on that topic, discussing some known results and
presenting what we did in this perspective.
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2.3.1 An alternative approach

From the proof of Theorem 2.3.1 presented above, we notice that the expansion of the BBGKY
hierarchy in (2.3.11) is much more involved than the corresponding expansion (2.3.19) of the
infinite hierarchy (2.3.20). It turns out that it is possible to avoid the expansion of the BBGKY
hierarchy making use of a simple compactness argument; this will be especially important when
dealing with singular potentials. In the following we explain the main steps of this alternative
proof to Theorem 2.3.1. Then, in the next section, we will illustrate how to extend it to
potentials with a Coulomb singularity. The idea, which was first presented in [16], [17], [18],

consists in characterizing the limit of the RDM ρ̂
(j)
N,t as the unique solution to the infinite

hierarchy of equations (2.3.20); combined with the compactness, this information provides a
proof of Theorem 2.3.1.
More precisely, the proof is divided into three main steps:

i) First of all, one shows the compactness of the sequence {ρ̂(j)
N,t}Nj=1 with respect to an

appropriate weak topology.
ii) Then, one proves that an arbitrary limit point {ρ̂(j)

∞,t}j≥1 of the sequence {ρ̂(j)
N,t}Nj=1 is a

solution to the infinite hierarchy (2.3.20) (one proves, in other words, the convergence to the
infinite hierarchy).

iii) Finally, one shows the uniqueness of the solution to the infinite hierarchy (2.3.20).

We have already observed that the factorized family {ρ̂⊗jt }j≥1 is a solution of the infinite
hierarchy with factorized initial datum ρ̂⊗j0 . In particular, if ρ̂0 = |ψ0 >< ψ0|, as in the present
case, we find that ρ̂t = |ψt >< ψt|, ψt solving the Hartree equation (2.1.21). Then, by proving
that the solution of the infinite hierarchy is unique, we are guaranteed that it is factorized
according to the solution of the Hartree equation.

Therefore, by ii), it follows immediately that ρ̂
(j)
N,t → ρ̂⊗jt = (|ψt >< ψt|)⊗j as N →∞ (at

first only in the weak topology with respect to which we have compactness; since the limit is
an orthogonal rank one projection, it is however simple to check that weak convergence implies
strong convergence, in the sense (2.3.3)). Next, we discuss these three main steps (compactness,
convergence, and uniqueness) in some more details in order to show that, even following this
approach, the estimates that ensure the convergence are not uniform with respect to ε and they
fail if ε→ 0.

Compactness: By knowing that, for any j and N ,
∥∥∥ρ̂(j)

N,t

∥∥∥
L 1

= 1 for fixed t, thanks to

standard abstract and compactness results of functional analysis we prove that the sequence
ΓN,t = {ρ̂(j)

N,t}Nj=1 is compact with respect to a suitable topology. More precisely, for an arbitrary
fixed T > 0, we denote by C ([0, T ],L 1 (L2(R3j))) the space of functions of t ∈ [0, T ] with
values in L 1 (L2(R3j)) which are continuous in time with respect to a suitable metric ηj on
L 1 (L2(R3j)) (it can be constructed explicitly in such a way that the topology generated by ηj
is equivalent to the weak*-topology of L 1 (L2(R3j))). By ηj we can easily define a metric η̂j
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on C ([0, T ],L 1 (L2(R3j))) and we consider the topology τprod on
⊕

j≥1 C ([0, T ],L 1 (L2(R3j)))

given by the product of the topologies generated by the metrics η̂j on C ([0, T ],L 1 (L2(R3j))).
The topology τprod is precisely the topology with respect to which we prove compactness of the
sequence {ΓN,t}N∈N and this is equivalent to the following

Proposition 2.3.1 Fix an arbitrary time T > 0. For every sequence {Mm}m∈N there exists a

subsequence {Nm}m∈N ⊂ {Mm}m∈N and a limit point Γ∞,t = {ρ̂(j)
∞,t}j≥1 for ΓNm,t = {ρ̂(j)

N,t}
Nm
j=1

such that

ρ̂
(j)
∞,t ≥ 0, Trρ̂

(j)
∞,t ≤ 1, ∀ j ≥ 1, (2.3.22)

ρ̂
(j)
∞,t (for any j) is symmetric with respect to permutations of the labeling.

Let Kj ≡ K (L2(R3j)) be the space of compact operators on L2(R3j), equipped with the
operator norm. The claim of Proposition 2.3.1 is equivalent to the affirm that, passing to a
subsequence,

For every fixed j ≥ 1 and for every fixed compact operator J (j) ∈ Kj,

Tr J (j)
(
ρ̂

(j)
N,t − ρ̂

(j)
∞,t

)
→ 0 as N →∞ (2.3.23)

uniformly in t for t ∈ [0, T ].

Convergence: The second main step consists in characterizing the limit points of the

(compact) sequence ΓN,t = {ρ̂(j)
N,t}Nj=1 as solutions to the infinite hierarchy of equations (2.3.20)

with initial datum ρ̂⊗j0 , ρ̂0 = |ψ0 >< ψ0|.

Proposition 2.3.2 Suppose that φ ∈ L∞(R3) such that φ(x) → 0 as |x| → ∞. Assume

moreover that Γ∞,t = {ρ̂(j)
∞,t}j≥1 ∈

⊕
j≥1 C ([0, T ],L 1 (L2(R3j))) is a limit point of the sequence

ΓN,t = {ρ̂(j)
N,t}Nj=1 in the sense (2.3.23). Then

ρ̂
(j)
∞,t = Sj(t)ρ̂

(j)
∞,0 +

(
− i
ε

)∫ t

0

dt1 Sj(t− t1)C
Q
j,j+1 ρ̂

(j+1)
∞,t1 . (2.3.24)

for all j ≥ 1, with ρ̂
(j)
∞,0 = ρ̂

(j)
N,0 = ρ̂⊗j0 . Here Sj(t) is the flow associated with the j-particle free

dynamics and CQ
j,j+1 is defined as in (2.2.3). Therefore equation (2.3.24) evaluated for all j ≥ 1

gives rise precisely to a solution of the Hartree hierarchy (2.3.20) with factorized initial datum.
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Note that in Proposition 2.3.2 we assume the potential to vanish at infinity. This condition,
which was not required in Theorem 2.3.1, is not essential but it simplifies the proof and it is
also satisfied by the Coulomb interaction for which the derivation of the Hartree equation has
been proven (e.g. [17]) by following the present strategy (together with crucial technical tools
that are necessary to deal with the singularity of the potential ).

Proof
Passing to a subsequence we can assume that ΓN,t → Γ∞,t as N → ∞, in the sense (2.3.23);

this implies immediately that ρ̂
(j)
∞,0 = ρ̂

(j)
N,0 = ρ̂⊗j0 . To prove (2.3.24), on the other hand, it is

enough to show that for every fixed j ≥ 1, and for every fixed J (j) from a dense subset of Kj,

TrJ (j)ρ̂
(j)
∞,t = TrJ (j)Sj(t)ρ̂

(j)
∞,0 +

(
− i
ε

)∫ t

0

dt1 TrJ (j)Sj(t− t1)C
Q
j,j+1 ρ̂

(j+1)
∞,t1 . (2.3.25)

To demonstrate (2.3.25), we start from the BBGKY hierarchy (2.3.7) which leads to

TrJ (j)ρ̂
(j)
N,t = TrJ (j)Sj(t)ρ̂

(j)
N,0 +− i

ε

∫ t

0

dt1 TrJ (j)Sj(t− t1)T
Q
N,j ρ̂

(j)
N,t1

+(
− i
ε

)
(N − j)

N

∫ t

0

dt1 TrJ (j)Sj(t− t1)C
Q
j,j+1 ρ̂

(j+1)
N,t1

. (2.3.26)

Since, by assumption, the l.h.s. and the first term on the r.h.s. of the last equation converge,
as N → ∞, to the l.h.s. and, respectively, to the first term on the r.h.s. of (2.3.25) (for every
compact operator J (j)), (2.3.24) follows if we can prove that

− i
ε

∫ t

0

dt1 TrJ (j)Sj(t− t1)T
Q
N,j ρ̂

(j)
N,t1

→ 0 (2.3.27)

and that(
− i
ε

)
(N − j)

N

∫ t

0

dt1 TrJ (j)Sj(t− t1)C
Q
j,j+1 ρ̂

(j+1)
N,t1

→
(
− i
ε

)∫ t

0

dt1 TrJ (j)Sj(t− t1)C
Q
j,j+1 ρ̂

(j+1)
∞,t1

(2.3.28)

as N →∞. Eq. (2.3.27) follows because, by the expression (2.2.2) of TQN,j, we have∣∣∣∣ iεTrJ (j)Sj(t− t1)T
Q
N,j ρ̂

(j)
N,t1

∣∣∣∣ ≤ 1

ε2N

j∑
k 6=l

∣∣∣TrJ (j)Sj(t− t1)
[
φ(xk − xl), ρ̂

(j)
N,t1

]∣∣∣ ≤
≤ j2

εN

∥∥J (j)
∥∥ ‖φ‖ Tr ∣∣∣ρ̂(j)

N,t1

∣∣∣ =
j2

εN

∥∥J (j)
∥∥ ‖φ‖ → 0 (2.3.29)
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because the product
∥∥J (j)

∥∥ ‖φ‖ is finite and uniformly bounded with respect to N (
∥∥J (j)

∥∥ and

‖φ‖ being the operator norms of J (j) and of the multiplication operator φ). To prove (2.3.28)
one can use a similar argument, combined with the observation that, by the expression (2.2.3)
of CQ

j,j+1,

i

ε
TrJ (j)Sj(t− t1)C

Q
j,j+1

(
ρ̂

(j+1)
N,t1

− ρ̂
(j+1)
∞,t1

)
=

=
i

ε

∑
1≤k≤j

Tr
[(
J (j)Sj(t− t1)

)
, φ(xk − xj+1)

] (
ρ̂

(j+1)
N,t1

− ρ̂
(j+1)
∞,t1

)
→ 0,

(2.3.30)

as N → ∞. This does not follow directly from the assumption that ΓN,t → Γ∞,t in the sense
(2.3.23) because the operator

[(
J (j)Sj(t− t1)

)
, φ(xk − xj+1)

]
is not compact on L2(R3(j+1)).

Instead it is necessary to apply an approximation argument which is made simpler by the as-
sumption that φ(x) → 0 as |x| → ∞ (that is the reason for which we did it). The details of
this approximation argument can be found, for example, in [23].

�

Uniqueness: to conclude the proof of Theorem 2.3.1, we still have to prove the uniqueness
of the solution to the infinite (Hartree) hierarchy (2.3.24).

Proposition 2.3.3 Fix Γ∞,0 = {ρ̂(j)
∞,0}j≥1 ∈

⊕
j≥1 L 1 (L2(R3)). Then there exists at most

one solution Γ∞,t = {ρ̂(j)
∞,t}j≥1 ∈

⊕
j≥1 C ([0, T ],L 1 (L2(R3))) to the infinite (Hartree) hierarchy

(2.3.24) such that ρ̂
(j)
∞,t|t=0 = ρ̂

(j)
∞,0 and Tr

∣∣∣ρ̂(j)
∞,t

∣∣∣ ≤ 1 for all j ≥ 1 and all t ∈ [0, T ].

Proof
The proof is exactly the same we did in proving Theorem 2.3.1. Indeed, we write the solution
of the Hartree hierarchy by iterating the Duhamel formula (2.3.24) and we observe that the
series we obtain is uniformly bounded in trace norm by a geometric series converging for short
times t < t0 (see (2.3.19)). This proves uniqueness locally in time. Then, by noting that t0
does not depend on the initial condition (except for the trace norm of ρ̂∞,0 which is clearly
preserved in time) but only on the L∞-norm of the interaction potential φ, we can iterate the
same argument, obtaining uniqueness for all times.

�

We realize that the estimate ensuring the convergence is (2.3.29) and, as in the proof of
Theorem 2.3.1 presented in the previous paragraph, we note that it is due to the boundness of
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the operator TQN,j : L 1 (L2 (R3j)) → L 1 (L2 (R3j)). Indeed, its norm is bounded by C/N , thus
vanishing when N →∞. Nevertheless, by looking at (2.3.29) we see that there is a factor 1/ε
in front of TQN,j, thus we obtain a bound of order 1/ε which is diverging if ε → 0. Therefore,
even by using this approach, it is clear that considerations done previously as regard to the
uniformity of the mean-field approximation with respect to ε, still hold.

We conclude this paragraph by observing that in estimating the operator norm of TQN,j on

L 1 (L2 (R3j)) we have to deal with 1
ε
Tr
[
φ, ρ̂

(j)
N,t

]
and we find a uniform bound with respect to

N , but diverging in ε, by using that in any Hilbert space H:

Tr [A,B] ≤ 2 ‖A‖ Tr |B| , ∀ A ∈ L∞ (H) , B ∈ L 1 (H) , (2.3.31)

where L∞ (H) is the space of bounded operators onH (‖·‖ being the operator norm in L∞ (H))
and L 1 (H) is the space of trace class operators onH equipped with the norm Tr |·|. Essentially
the crucial question in looking for an estimate of the error in the mean-field approximation
(for bounded or even smooth potentials) which is uniform (or at least ”better diverging”)
with respect to ε is: can we improve (2.3.31) by taking into account further properties of the
operators A and B we have to deal with, possibly considering suitable ”semiclassical” initial
data?

2.3.2 Mean-field limit for the Coulomb potential

The result presented in [17] concerning the mean-field limit in the case of Coulomb interaction,
φ = 1/|x|, is formulated as in Theorem 2.3.1, except for the fact that the initial one particle
wave function ψ0 is assumed to be in H1(R3) (the Sobolev space W 1,2(R3) of functions il L2(R3)
whose derivatives are also in L2 (R3)) and that the theorem holds for dimensions d ≥ 2. Even
the general strategy of the proof is the same we outlined in the previous paragraph. First
one proves the compactness of the sequence of marginal ΓN,t = {ρ̂(j)

N,t}Nj=1 with respect to an
appropriate weak topology (the product topology τprod previously introduced), then one shows

that an arbitrary limit point Γ∞,t = {ρ̂(j)
∞,t}j≥1 of the sequence ΓN,t = {ρ̂(j)

N,t}Nj=1 is a solution to
the infinite hierarchy of equations

ρ̂
(j)
∞,t = Sj(t)ρ̂

j
0 +

(
− i
ε

)∫ t

0

dt1 Sj(t− t1)C
Q
j,j+1 ρ̂

(j+1)
∞,t1 . (2.3.32)

where Sj is the free evolution defined in Section 2.3, and the collision map CQ
j,j+1 is now given

by

CQ
j,j+1ρ̂

(j)
N,t = λ

j∑
k=1

Trj+1

{[
1

|xk − xj+1|
, ρ̂

(j+1)
N,t

]}
, (2.3.33)

where λ is a coupling constant that can be positive (as in the most interesting physical case:
the attractive Coulomb interaction) or not (repulsive case). Finally, one proves the uniqueness
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of the solution to (2.3.32). Although the proof of the compactness and of the convergence also
require several changes with respect to what we discussed in the previous paragraph, the main
difficulty one has to face when the bounded potential is replaced by the Coulomb interaction is
the proof of the uniqueness of the solution to the infinite hierarchy. The key idea introduced by
Erdős and Yau in [17] was to restrict the class of densities for which uniqueness must be proven.

In Theorem 2.3.1, uniqueness is proven in the class of densities with Tr|ρ̂(j)
t | ≤ 1 for all j ≥ 1,

and all t ∈ [0, T ] (but the same argument works under the weaker assumption Tr|ρ̂(j)
t | ≤ Cj,

for some constant C < +∞). In cite [17], in the case of a Coulomb potential the uniqueness of

(2.3.32) has been proven in the (smaller) class of densities Γt = {ρ̂(j)
t }j≥1 satisfying the a-priori

bound

Tr
∣∣∣(1−∆1)

1/2 . . . (1−∆j)
1/2 ρ̂

(j)
t (1−∆j)

1/2 . . . (1−∆1)
1/2
∣∣∣ ≤ Cj (2.3.34)

for all j ≥ 1 and for all t ∈ [0, T ]. There is, of course, a price to pay in order to restrict the
proof of the uniqueness to this class of densities. In fact, to apply this uniqueness result to
prove the convergence of the RDM to the j-fold product of solutions of the Hartree equation,
one has to show that an arbitrary limit point Γ∞,t = {ρ̂(j)

∞,t}j≥1 of the sequence of densities

ΓN,t = {ρ̂(j)
N,t}Nj=1 associated with ρ̂N,t satisfies the a-priori bound (2.3.34). Due to the Coulomb

singularity, this is actually not so simple and requires an additional approximation argument
and suitable energy estimates.

Anyway, even if in the Coulomb case strong technical tools are needed in proving the mean-
field result (much more with respect to the bounded interaction case), it is not difficult to realize
that the estimates ensuring the convergence are not uniform with respect to ε and they fail if
ε→ 0. To see this, for concreteness in the case d = 3, we observe that the Coulomb potential is
controlled in three dimensions by the Laplacian (by virtue of an operator inequality of Hardy
type). This is the reason for considering the class of density matrices such that (2.3.34) holds.

Roughly speaking, by (2.3.34) it follows that, considering the operator 1
|xi−xk|

ρ̂
(j)
N,t (appearing

both in the BBGKY and in the Hartree hierarchy) multiplied in a suitable way by some op-
erators (C − ∆k)

1/2 (C > 1) and taking the trace, one obtains estimates which are uniform
with respect to N . Such estimates are crucial in proving the uniqueness of the solution of the
Hartree hierarchy and even the convergence of the BBGKY hierarchy to the limiting one. In
particular, they provide the rate of convergence to the Hartree dynamics in terms of the number
of particles N and indipendently of ε. Nevertheless, by looking at the explicit computations,
we find a factor 1/ε in front of the interaction potential, thus we have again diverging estimates
when ε→ 0.

From now on, we will focus on the case of smooth pair interaction potential, primarily,
because in this case both the quantum and the classical mean-field limit have been rigorously
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established, therefore it is quite reasonable to look at that situation in investigating the connec-
tion between mean-field limit and semiclassical approximation (which we are going to discuss
in Chapter 3 and 4). On the other side, we will see that for our purposes we need to deal with
a smooth potential (see Chapter 4).
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Chapter 3

Mean-field limit VS Semiclassical
Approximation

In this chapter we discuss the problem of ”connecting” mean-field limit and semiclassical ap-
proximation which, as we saw previously, emerges quite naturally from the analysis of the
quantum mean-field limit results. If one wants to deal with the classical and quantum case
simultaneously, it is natural to work in the classical phase space by using the so called ”Wigner
formalism”.

3.1 The Wigner formulation

By the Heisenberg uncertainty principle, it follows that it is not possible to determine simul-
taneously the position and the momentum of a quantum particle, thus the concept of classical
phase space density does not generalize directly to quantum mechanics. Nevertheless one can
define a substitute for it, namely the Wigner transform. For any wave function ψ ∈ L2

(
Rd
)

we define the Wigner transform of ψ as

f εψ (x, v) = (2π)−d
∫

Rd

dy eiy·vψ
(
x+

εy

2

)
ψ
(
x− εy

2

)
, (3.1.1)

and we still interpret it as ”quantum phase space density” (see [1] ). It is easy to check that f εψ
is always real but in general is not positive (thus it cannot be the density of a positive measure
- in coincidence with the Heisenberg principle). However, its marginals reconstruct the position
and momentum space densities, as the following formulas can be easily checked:∫

f εψ(x, v)dv = |ψ(x)|2,
∫
f εψ(x, v)dx = |ψ̂(v)|2 (3.1.2)

ψ̂(v) being the Fourier transform of ψ, namely, by integrating versus the velocity variable we
obtain the quantum spatial probability density and by integrating with respect to the position
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variable we find the velocity (or momentum) probability density. In particular∫
f εψ(x, v)dvdx = 1 (3.1.3)

for normalized wave functions. More generally, if J(x, v) is a classical phase space observable,
the scalar product 〈

J, f εψ
〉

=

∫
J(x, v)f εψ(x, v)dvdx (3.1.4)

can be interpreted as the expected value of J in state described by ψ. Recall that ”honest”
quantum mechanical observables are self-adjoint operators O on L2(Rd) and their expected
value is given by

〈O〉ψ =

∫
ψ̄(x) (Oψ) (x)dx (3.1.5)

For a large class of observables there is a natural relation between observables O and their
phase space representations (called symbols) that are functions on the phase space like J(x, v).
For example, if J depends only on x or only on v, then the corresponding operator is just the
standard quantization, i.e. ∫

J(x)f εψ(x, v)dxdv = 〈ψ, Jψ〉 (3.1.6)

where J is a multiplication operator on the right hand side,∫
J(v)f εψ(x, v)dxdv = 〈ψ, J(−iε∇)ψ〉 (3.1.7)

and similar relations hold for the Weyl quantization of any symbol J(x, v). We also remark
that the map ψ → f εψ is invertible, i.e. one can fully reconstruct the wave function from its
Wigner transform. On the other hand, not every real function of two variables (x, v) is the
Wigner transform of some wave function.

The correspondence between wave functions and their Wigner transform can be easily
rephrased for density matrices. Indeed, if ρ̂ = |ψ >< ψ| for some ψ ∈ L2

(
Rd
)
, then formula

(3.1.1) can be rewritten as

f ερ (x, v) = (2π)−d
∫

R3

dy eiy·vρ
(
x+

εy

2
, x− εy

2

)
, (3.1.8)

where ρ(x, y) = ψ̄(x)ψ(y) is the integral kernel of ρ̂. Furthermore, formula (3.1.8) holds for any
density matrix ρ̂ ∈ L 1

(
L2
(
Rd
))

, even for those which are associated with mixed states and
(3.1.3) holds because of positivity and trace norm normalization of the density matrix. Vice
versa, starting from a quantum system whose state is described by a Wigner function f ε (x, v),
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it is possible to compute the corresponding density matrix (actually, its integral kernel) by the
Weyl quantization rule

ρfε (x, y) = (2π)−d
∫

Rd

dv ei
v
ε
·(x−y)f ε

(
x+ y

2
, v

)
. (3.1.9)

Therefore the Wigner transform and the Weyl quantization rule provide an invertible map
ρ̂↔ f ερ between density matrices and Wigner functions and it is simple to check that

‖ρ‖L2(Rd×Rd) =
∥∥f ερ∥∥L2(Rd×Rd)

. (3.1.10)

This is particularly meaningful because for any density matrix ρ̂ we have

ρ̂ ≥ 0, ρ̂ ∈ L 1
(
L2
(
Rd
))
, with ‖ρ̂‖L 1(L2(Rd)) = 1 ⇒ ‖ρ̂‖L 2(L2(Rd)) ≤ 1, (3.1.11)

where L 2
(
L2
(
Rd
))

is the Hilbert space of Hilbert-Schmidt operators on L2
(
Rd
)

and for any
operator Γ ∈ L 2

(
L2
(
Rd
))

with kernel γ = γ(x, y) we find

‖Γ‖L 2(L2(Rd)) = ‖γ‖L2(Rd×Rd) . (3.1.12)

Therefore by (3.1.11), (3.1.12) and by (3.1.10) it follows that

‖ρ‖L2(Rd×Rd) ≤ 1 ∀ density matrix ρ̂ ⇒ ‖f ε‖L2(Rd×Rd) ≤ 1 ∀ Wigner function f

(3.1.13)
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Remark 3.1.1 By (3.1.9) it follows that one can fully reconstruct a density matrix from its
Wigner transform but, in general, by knowing the Wigner function associated with the state
of a quantum system it is not possible to reconstruct such a state in the wave function picture.
More precisely, if we know that the system is in a pure state and we know that it is described
by a certain Wigner function f ε, we can reconstruct the density matrix ρ̂ which will be given
by ρ̂ = |ψ >< ψ| for some L2-function ψ. On the contrary, if the system is in a mixed state, by
knowing the Wigner function we can only reconstruct the density matrix but there is no way
to know which are the wave functions ”composing” it.

Remark 3.1.2 The correspondence between density matrices and Wigner functions is quite
useful but one has to be careful in using that. In fact, by considering a density matrix ρ̂ one can
compute its Wigner transform f ερ and it will be for sure a real function on the classical phase
space with the properties specified above. On the contrary, a real function on the classical
phase space does not correspond necessarily to an admissible quantum state, namely, it is not
necessarily the Wigner transform of a density matrix.

Let us consider a density matrix ρ̂0 ∈ L 1
(
L2
(
Rd
))

representing the initial state of a
system whose Hamiltonian H is

H = −ε
2

2
∆x + U(x) (3.1.14)

and the potential U is such that H is a self-adjoint operator on L2
(
Rd
)
. We know that the

time evolution for the density matrix ρ̂0 is determined by

iε∂tρ̂
t = [H, ρ̂t], (3.1.15)

and it is easy to check that it preserves the Hilbert-Schmidt norm of ρ̂0, namely the L2-norm
of the kernel ρ0. Thus, by looking at the initial Wigner function f ερ0(x, v) (x, v ∈ Rd) and at

the time-evolved f εt (x, v) = f ερt(x, v), the L2-norm has to be also preserved in time (by (3.1.10).
We can verify this property by looking at the equation solved by f εt . By applying the Wigner
transform defined in (3.1.1) to (3.1.15), we find the equation

(∂t + v · ∇x) f
ε
t = T εf εt , (3.1.16)

where

(T εf εt ) (x, v) = i

∫ 1/2

−1/2

dλ

∫
dkÛ(k)ei k·x (k · ∇v) f

ε
t (x, v + ελk), (3.1.17)

and we denoted by Û the Fourier transforms of U , namely:

Û(k) =

∫
Rd

dx e−i k·xU(x). (3.1.18)
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By noting that both v ·∇x and T ε are skewsymmetric operators and reminding that f εt (x, v) ∈ R
for any t, we find

1

2

d

dt
‖f εt ‖

2
L2(Rd×Rd) = (f εt , ∂tf

ε
t ) = (f εt ,−v · ∇xf

ε
t ) + (f εt , T

εf εt ) = 0,

(3.1.19)

namely the L2-norm is conserved. It can be also proved that Hs-estimates hold for (3.1.16)
(Hs(R3N ×R3N) being the Sobolev space W s,2(R3N ×R3N)) by assuming the potential φ to be
sufficiently smooth (see for example [25]) in the sense that the Hs-norm of the time evolved
Wigner function is controlled by the Hs-norm of the initial datum, up to a constant depending
on time (but finite for any time interval) and of a suitable norm of the potential.

Equation (3.1.16) looks like a classical kinetic equation but the crucial facts are that f εt is
not a probability density in the phase space Rd×Rd and we have to deal with a pseudodifferential
operator instead of a differential one as it is usual in kinetic theory. It is immediate to check
that ∫

dx

∫
dv f εt (x, v) =

∫
dxρεt(x) = 1 ∀ t > 0, (3.1.20)

with

ρεt(x) =

∫
dv f εt (x, v), ρεt ≥ 0 ∀ t, ρεt(x)dx := spatial probability distribution, (3.1.21)

and (3.1.20) follows from conservation of ”mass” and from the fact that, because of the trace
norm normalization of ρ̂0, we have

∫
dx
∫

dv f ερ0(x, v) = Trρ̂0 = 1.

3.2 The Mean-Field system in the Wigner formalism

The Wigner formalism introduced in the previous section is an alternative way of describing the
state and the dynamics of a quantum system and it is precisely equivalent to the density matrix
(or Heisenberg) description, and, for pure states, to the wave function (or Schrödinger) picture.
As we have observed, the advantage in using the Wigner formalism in looking at semiclassical
approximation of quantum systems is that Wigner functions ”live” on the classical phase space
and for suitable ”semiclassical” quantum states the Wigner functions can have a well defined
limit when ε→ 0 (see for example [13]).

Thus, in the perspective of looking at the semiclassical limit, we rephrase the quantum
mean-field model discussed in Chapter 2 by using the Wigner formulation.
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By applying the Wigner transform (3.1.8) to the Heisenberg equation (2.1.12) we find

(∂t + VN · ∇XN
)W ε

N(t) = T εNW
ε
N(t), (3.2.1)

where W ε
N(t) := W ε

N(XN , VN ; t) is the Wigner function describing the state of the system
(namely, the Wigner transform of the density matrix ρ̂N,t),

XN = (x1, . . . , xN) ∈ R3N , VN = (v1, . . . , vN) ∈ R3N ,

and the pair ZN := (XN , VN) denotes the generic point in the classical N -particle phase space.
Moreover,

(T εNW
ε
N) (ZN) =

i

(2π)3N

∫ 1/2

−1/2

dλ

∫
dKN Û

Q(KN)eiKN ·VN (KN · ∇VN
)W ε

N(XN , VN + λεKN),

(3.2.2)

where KN = (k1, . . . , kN) ∈ R3N , UQ is the (mean-field) interaction potential (2.1), and ÛQ is
the Fourier transform of UQ, namely:

ÛQ(k) =

∫
R3N

dXN e−i KN ·XN UQ(XN). (3.2.3)

We note that (3.2.1) is the analogue of the classical Liouville equation (1.1.5) and, roughly
speaking, by setting ”ε = 0” in (3.2.2) we obtain precisely the Liouville operator appearing in
(1.1.5). From now on, we will refer to (3.2.1) as ”N -particle Wigner-Liouville equation”.

We remind that we are dealing with undistinguishable particles, then we consider N -
particle Wigner functions WN which are invariant in the exchange of particle names, namely

WN(xπ(1), . . . , xπ(N), vπ(1), . . . , vπ(N)) = WN(x1, . . . , xN , v1, . . . , vN), (3.2.4)

for every permutation π acting on 1, . . . , N . It is easy to verify that this property is preserved
by the evolution (3.2.1).

3.2.1 The Wigner BBGKY hierarchy

For any fixed j we introduce the j-particle ”marginals”:

W ε
N,j(t) := W ε

N,j(Xj, Vj; t) =

∫
R3(N−j)×R3(N−j)

dXN−jdVN−jW
ε
N(Xj, XN−j, Vj, VN−j; t). (3.2.5)

It is easy to check that {W ε
N,j(t)}Nj=1 are precisely the Wigner transforms of the RDM {ρ̂(j)

N,t}Nj=1.
Furthermore, by integrating the Wigner-Liouville equation (3.2.1) with respect to the last N−j
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variables we find the following sequence of equations:(
∂t + Vj · ∇Xj

)
W ε
N,j(t) = T εN,jW

ε
N,j(t) +

(
N − j

N

)
Cε
j,j+1W

ε
N,j+1(t), j = 1, 2, . . . , N,

(3.2.6)

with W ε
N,N(t) = W ε

N(t) and Cε
N,N+1 ≡ 0,

which is precisely the BBGKY hierarchy (2.2.1) rephrased in the Wigner formalism and it can
be seen as the quantum analogue of the classical BBGKY hierarchy (1.4.3).
The operator T εj (for a fixed j), describing the interaction of the first j particles, is given by(

T εN,jW
ε
N,j

)
(Xj, Vj) =

=
i(2π)−3N

N

j∑
l 6=r

∫ 1/2

−1/2

dλ

∫
R3

dk φ̂(k)eik·(xl−xr)(k · ∇vl
)W ε

N,j(Xj, Vl−1, vl + λεk, Vj−l),

(3.2.7)

while the collision operator Cε
j,j+1 is(

Cε
j,j+1W

ε
N,j+1

)
(Xj, Vj) =

= i(2π)−3N

j∑
l=1

∫ 1/2

−1/2

dλ

∫
R3

dk φ̂(k)

∫
R3×R3

dxj+1dvj+1 e
ik·(xl−xj+1)

(k · ∇vl
)W ε

N,j+1(Xj, xj+1, Vl−1, vl + λεk, Vj−l, vj+1),

(3.2.8)

and in (3.2.7) and (3.2.8) we denoted by φ̂ the Fourier transform of the pair interaction potential
φ, namely:

φ̂(k) =

∫
R3

dx e−i k·xφ(x). (3.2.9)

By using (iteratively) the Duhamel formula, the solution W ε
N,j(t) of the equations (3.2.6)

with initial datum W ε
N,j(0) can be written as

W ε
N,j(t) = Φ

(N)
j (t)W ε

N,j(0) +

+

N−j∑
n=1

∫
0≤tn≤···≤t1≤t

dtn . . . dt1 Φ
(N)
j (t− t1)

(
N − j

N

)
Cε
j,j+1 . . .

. . .

(
N − j − n+ 1

N

)
Cε
j+n−1,j+n Φ

(N)
j+n(tn)W

ε
N,j+n(0). (3.2.10)

where Φ
(N)
j is the flow associated with the j-particle operator −Vj · ∇Xj

+ T εN,j.
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3.3 The Hartree dynamics in the Wigner formalism

This section is devoted to the description of the Hartree dynamics discussed in Chapter 2 in
terms of the Wigner formalism.

By applying the Wigner transform (3.1.8) to the Hartree equation (in the Heisenberg form)
(2.2.6) we find

(∂t + v · ∇x) f
ε(t) = T εfεf ε(t), (3.3.1)

where f ε(t) := f ε(x, v; t) is the Wigner function describing the state of the system (namely, the
Wigner transform of the density matrix ρ̂t solving the Hartree equation (2.2.6)).

For any fixed g, the operator T εg acts as follows:

T εg f
ε(x, v) = (2π)−3i

∫ 1/2

−1/2

dλ

∫
R3

dkφ̂(k)ρ̂g(k)e
i k·x(k · ∇v)f

ε(x, v + ελk), (3.3.2)

where

ρg(x) =

∫
R3

dv g(x, v), (3.3.3)

and ρ̂g is the Fourier transform of ρg, namely:

ρ̂g(k) =

∫
R3

dx e−i k·xρg(x). (3.3.4)

We observe that equation (3.3.1) is nonlinear (as we can see by (3.3.2) replacing g with
f ε ) because it arises from a nonlinear Heisenberg equation. Thus in the following we will
refer to (3.3.1) as ”(Hartree) nonlinear Wigner-Liouville equation”. Furthermore, we note that
(3.3.1) is the analogue of the classical Vlasov equation (1.1.8) and, roughly speaking, by setting
”ε = 0” in (3.3.2) we obtain precisely the Vlasov operator appearing in (1.1.8).

By the analysis we did in the previous section, we know that the linear equation (3.1.16)
preserves the L2-norm (see (3.1.19)). The same holds for the nonlinear equation (3.3.1) and,
by assuming the potential to be sufficiently smooth, it can be proved that the Hs-norm is
controlled for any s > 0. Indeed we have the following

Proposition 3.3.1 Let f ε(t) be the solution of the nonlinear Wigner-Liouville equation (3.3.1)
whit initial datum f ε0 ∈ Hs (R3 × R3) with s ∈ N. Assuming the potential φ to satisfy∫

dk φ̂(k)|k|n < +∞ ∀ n = 1, 2, . . . , s (3.3.5)

we find that

‖f ε(t)‖Hs(R3×R3) ≤ eCt ‖f ε0‖Hs(R3×R3) , (3.3.6)

where C is a positive constant depending on s and on φ but not on ε. For s = 0 we have C = 0
and (3.3) becomes an equality (conservation of the L2-norm).
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Proof
For any multi index α = {α1, α2, α3}, we use the standard notation

Dα
x =

∂|α|

∂α1x1∂α2x2∂α3x3

, (3.3.7)

where |α| = α1 + α2 + α3. Analogously we set

Dα
v =

∂|α|

∂α1v1∂α2v2∂α3v3

. (3.3.8)

It is well known that Hs (R3 × R3) equipped with the scalar product

(f, g)s =
∑
α,β∈N:
|α|+|β|≤s

(
Dα
vD

β
xf,D

α
vD

β
xg
)
L2(R3×R3)

(3.3.9)

is an Hilbert space and the corresponding norm is ‖g‖s := ‖g‖Hs(R3×R3) =
√

(g, g)s. In order to

estimate ‖f ε(t)‖s, we compute the time derivative ∂tD
α
vD

β
xf

ε(t) with |α|+ |β| ≤ s. By (3.3.1)
we find:

∂tD
α
vD

β
xf

ε(t) = Dα
vD

β
x

(
−v · ∇x + T εfε

)
f ε(t) =

(
−v · ∇x + T εfε

)
Dα
vD

β
xf

ε(t) +

+
∑
α′<α:
|α′|=1

Cα,α′D
α′

v v · ∇xD
α−α′
v Dβ

xf
ε(t) +

+
∑
β′<β:
|β′|≥1

i Cβ,β′

(2π)3

∫ 1/2

−1/2

dλ

∫
dk φ̂(k)ρ̂ε(k; t)Dβ′

x e
i k·x (k · ∇v)D

α
vD

β−β′
x f ε(x, v + ελk; t)

(3.3.10)

where Cα,α′ , Cβ,β′ are suitable combinatorial coefficients, α′ < α, β′ < β mean α′j < αj, β
′
j < βj

(for j = 1, 2, 3) respectively and finally α− α′ = {αj − α′j}3
j=1, β − β′ = {βj − β′j}3

j=1.
We observe now that, by virtue of the antisymmetry of the operators v · ∇x and T εg (for

any function g), we have

(h, v · ∇xh)L2(R3×R3) =
(
h, T εgh

)
L2(R3×R3)

= 0, (3.3.11)

for any g and for each h smooth enough. Moreover, reminding that f ε(t) ∈ R for all t, if s > 0,
for any α, β : 0 < |α|+ |β| ≤ s, we find:

1

2

d

dt

(
Dα
vD

β
xf

ε(t), Dα
vD

β
xf

ε(t)
)
L2(R3×R3)

=
(
Dα
vD

β
xf

ε(t), ∂tD
α
vD

β
xf

ε(t)
)
L2(R3×R3)

,

(3.3.12)

52



which for s = 0 (namely |α| = |β| = 0) becomes:

1

2

d

dt
(f ε(t), f ε(t))L2(R3×R3) = (f ε(t), ∂tf

ε(t))L2(R3×R3) . (3.3.13)

Inserting (3.3.10) in the right hand side of (3.3.13), by virtue of (3.3.11) we find:

1

2

d

dt
(f ε(t), f ε(t))L2(R3×R3) =

d

dt
‖f ε(t)‖L2(R3×R3) = 0, (3.3.14)

namely, the L2-norm is conserved.
On the contrary, for s > 0, we insert (3.3.10) in the right hand side of (3.3.12). We find

the term involving Dα
vD

β
xf

ε(t) does not give any contribution by virtue of (3.3.11). Thus, by
using the shorthand notation (·, ·)L2(R3×R3) = (·, ·)L2 , we obtain

1

2

d

dt

(
Dα
vD

β
xf

ε(t), Dα
vD

β
xf

ε(t)
)
L2 =

∑
α′<α:
|α′|=1

Cα,α′
(
Dα
vD

β
xf

ε(t), Dα′

v v · ∇xD
α−α′
v Dβ

xf
ε(t)
)
L2

+

+
∑
β′<β:
|β′|≥1

i Cβ,β′

(2π)3

∫ 1/2

−1/2

dλ

∫
dk φ̂(k)ρ̂ε(k; t)

(
Dα
vD

β
xf

ε(t), Dβ′

x e
i k·x (k · ∇v)D

α
vD

β−β′
x f ε(x, v + ελk; t)

)
L2
.

(3.3.15)

We note that the first term on the right hand side of (3.3.15) is absent when |α| = 0. On
the contrary, if |α| ≥ 1, by using the Schwartz inequality we obtain:(

Dα
vD

β
xf

ε(t), Dα′

v v · ∇xD
α−α′
v Dβ

xf
ε(t)
)
L2
≤ C ‖f ε(t)‖2

s (3.3.16)

because |α| − |α′| + |β| + 1 = |α| + |β| ≤ s. Analogously, we find that the second term in the
right hand side of (3.3.15) is estimated by∫

dk φ̂(k)ρ̂ε(k; t)|k|β′+1
∥∥Dα

vD
β
xf

ε(t)
∥∥
L2

∥∥∥∇vD
α
vD

β−β′
x f ε(t)

∥∥∥
L2
≤

≤
∫

dk φ̂(k)ρ̂ε(k; t)|k|β′+1 ‖f ε(t)‖2
s , (3.3.17)

where we used that |α|+ 1 + |β| − |β′| ≤ s. Now we remind that ρε(x; t) is the spatial density
associated with the Wigner function f ε(t), namely ρε(x; t) ≥ 0 for all x and t,

ρε(x; t) =

∫
dvf ε(x, v; t), (3.3.18)
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then the L1-norm of ρε(t)|t=0 is preserved by the evolution and it is equal to one. Thus, the
Fourier transform ρ̂ε(t) is in L∞(R3 × R3) for all t and we find:∫

dk φ̂(k)ρ̂ε(k; t)|k|β′+1 ≤ ‖ρ̂ε(t)‖L∞(R3×R3)

∫
dk φ̂(k)|k|β′+1 < +∞, (3.3.19)

by virtue of the assumption (3.3.5) on the pair interaction potential φ (we remind that 1 ≤
|β′| < |β| ≤ s). Finally, by (3.3.15), (3.3.16), (3.3.17) and (3.3.19) , it follows that:

1

2

d

dt

∑
α,β:

|α|+|β|≤s

(
Dα
vD

β
xf

ε(t), Dα
vD

β
xf

ε(t)
)
L2 =

1

2

d

dt
‖f ε(t)‖2

s ≤ C ‖f ε(t)‖2
s , ∀ t(3.3.20)

C depending on φ and s but not on ε. We conclude straightforward by observing that inequality
(3.3.20) is equivalent to (3.3.6).

�

3.3.1 The Wigner infinite hierarchy

Let us consider the sequence {f εj (t)}j≥1, where f εj (t) = f εj (Xj, Vj; t) is given by:

f εj (Xj, Vj; t) =

j∏
k=1

f ε(xk, vk; t) = (f ε)⊗j (Xj, Vj; t) (3.3.21)

and f ε(t) is the solution of the nonlinear Wigner-Liouville equation (3.3.1). By differentiating
in time (3.3.21) we easily deduce the following (infinite) hierarchy of equations:(

∂t + Vj · ∇Xj

)
f εj (t) = Cε

j,j+1f
ε
j+1(t), (3.3.22)

where the operator Cε
j,j+1 is the same of (3.2.8). This is precisely the Hartree hierarchy (2.2.4)

rephrased in the Wigner formalism and it can be seen as the quantum analogue of the Vlasov
hierarchy (1.4.6). Here we derived the Hartree hierarchy by considering the j-particle Wigner
function (3.3.21) which is a product of solution of the nonlinear Wigner-Liouville equation
(3.3.1). Conversely, as we observed in Chapter 2 for the Heisenberg formalism, by starting
from the hierarchy (3.3.22) and assuming the solution to be factorized according to a one-
particle time dependent Wigner function f ε(t), it turns out that f ε(t) has to solve equation
(3.3.1).
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By using (iteratively) the Duhamel formula, the solution f εj (t) of the equations (3.3.22)
with initial datum f εj (0) can be written as

W ε
N,j(t) = Φj(t)f

ε
j (0) +

+

N−j∑
n=1

∫
0≤tn≤···≤t1≤t

dtn . . . dt1 Φj(t− t1)C
ε
j,j+1 . . . C

ε
j+n−1,j+n Φj+n(tn)f

ε
j+n(0).

(3.3.23)

where Φj is the flow associated with the j-particle operator −Vj · ∇Xj
, namely it is the free

j-particle flow

Φj(t)f
ε
j (Xj, Vj) = f εj (Xj − Vjt, Vj). (3.3.24)

3.4 The Limit N →∞
By the analysis done in the previous section, it is quite natural to rephrase the mean-field
result discussed in Chapter 2 (by assuming the interaction to be sufficiently smooth) in the
Wigner formalism in order to investigate the possibility of obtaining estimates on the error in
the mean-field approximation which are uniform with respect to ε or, at least, which exhibit a
dependence on ε less singular with respect to that we saw previously.

By looking at the Wigner BBGKY hierarchy (3.2.6) we observe that the operator T εN,j is

of size O
(
j2

N

)
while the operator Cε

j,j+1 is O(1) with respect to N and it is properly the same

appearing in the infinite hierarchy (3.3.22). Therefore, in analogy to what we did in proving

Theorem 2.3.1 one expects that the flow Φ
(N)
j (t) appearing in (3.2.10) converges in a suitable

sense to the free flow Φj(t) as N →∞ and that

W ε
N,j(t) → f εj (t), as N →∞, (3.4.1)

in a sense to be made precise.

In Chapters 1 and 2, to show the validity of propagation of chaos, we considered as initial
datum for theN -particle dynamics the (bosonic) factorized state (2.2.8), or equivalently, (2.2.9).
We observe that the Wigner transform f ερ defined in (3.1.8) is linear with respect to the density

matrix (kernel) ρ, thus we find that the Wigner transform of the factorized state ρ̂N,0 = ρ̂⊗N0

considered in Theorem 2.3.1 is also factorized, namely

W ε
N(XN , VN) =

N∏
i=1

f ε0 (xi, vi), (3.4.2)
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where f ε0 is the Wigner transform of ρ̂0. Moreover, being ρ̂0 = |ψ0 >< ψ0|, we find

f ε0 = f ερ0 ↔ ρ̂0 = |ψ0 >< ψ0| (3.4.3)

and

‖f ε0‖L2(R3×R3) = ‖ρ0‖L2(R3×R3) = ‖ψ0‖2
L2(R3) = 1. (3.4.4)

By taking the j-particle marginal associated with W ε
N(XN , VN) we straightforward obtain

W ε
N,j(Xj, Vj) =

j∏
i=1

f ε0 (xi, vi) = (f ε0 )⊗j (Xj, Vj), (3.4.5)

then, by (3.2.10), the solution of the equations (3.2.6) with initial datum (3.4.5) is given by

W ε
N,j(t) = Φ

(N)
j (t) (f ε0 )⊗j +

+

N−j∑
n=1

∫
0≤tn≤···≤t1≤t

dtn . . . dt1 Φ
(N)
j (t− t1)

(
N − j

N

)
Cε
j,j+1 . . .

. . .

(
N − j − n+ 1

N

)
Cε
j+n−1,j+n Φ

(N)
j+n(tn) (f ε0 )⊗j+n , (3.4.6)

while the hierarchy (3.3.23) with initial datum (f ε0 )⊗j is

f εj (t) = Φj(t) (f ε0 )⊗j +

+

N−j∑
n=1

∫
0≤tn≤···≤t1≤t

dtn . . . dt1 Φj(t− t1)C
ε
j,j+1 . . . C

ε
j+n−1,j+n Φj+n(tn) (f ε0 )⊗j+n .

(3.4.7)

Following the line of the proof of Theorem 2.3.1, to prove the convergence of the series
(3.4.6) to (3.4.7) we must find a norm |·|j for the marginals W ε

N,j(t) which plays the role of the

trace norm on L2 (R3j × R3j) in Theorem 2.3.1. First of all, it has to be controlled by the flows

Φ
(N)
j and Φj in the sense that for any T > 0 and for fixed j∣∣∣Φ(N)

j (t)W ε
N,j

∣∣∣
j
≤ Ct,j

∣∣W ε
N,j

∣∣
j
, Ct,j > 0 : sup

t∈[0,T ]

Ct,j < +∞, (3.4.8)

and ∣∣Φj(t)W
ε
N,j

∣∣
j
≤ C ′

t,j

∣∣W ε
N,j

∣∣
j
, C ′

t,j > 0 : sup
t∈[0,T ]

C ′
t,j < +∞, (3.4.9)

56



(note that for the flows S
(N)
j and Sj involved Theorem 2.3.1 we had properly conservation of

the trace norm, actually estimates of the form (3.4.8) and (3.4.9) would have been sufficient).
Thus, by (3.4.8) we could have the following bound for the n-th term of the (formal) series
(3.4.6)

tn

n!
j(j + 1) . . . (j + n− 1) (Ct)

n
∣∣∣(f ε0 )⊗j+n

∣∣∣
j+n

, Ct = Ct(φ, j) > 0 : ∀ T > 0 sup
t∈[0,T ]

Ct < +∞

(3.4.10)

provided that the operator Cε
j,j+1 satisfies∣∣Cε

j,j+1W
ε
N,j+1

∣∣
j
≤ jC

∣∣W ε
N,j+1

∣∣
j+1

, C = C(φ) > 0. (3.4.11)

Clearly (3.4.10) and (3.4.11) hold even for the n-th term of the series (3.4.7) by virtue of (3.4.9).
By (3.4.10), it follows that |·|j has to be such that∣∣∣(f ε0 )⊗j

∣∣∣
j
= (|f ε0 |1)

j ≤ aj for any j, (3.4.12)

then we could conclude that the n-th term of the (formal) series (3.4.6) and the n-th term of
(3.4.7) are bounded by:

tn

n!
j(j + 1) . . . (j + n− 1) (Ct)

naj+n < tn(Cj a
j) (2aCt)

n, C = C(φ) > 0 (3.4.13)

and then we would have convergence for short times |t| < t0 (t0 depending on φ and a) of
(3.4.6) and (3.4.7) with respect to the norm |·|j. This implies that the solution of the infinite

hierarchy (3.3.23) with initial datum (f ε0 )⊗j is uniquely determined up to time t0, thus, by the
analysis done in the previous section, we know that it is given by (f ε(t))⊗j, f ε(t) solving the
nonlinear Wigner-Liouville equation (3.3.1). Moreover, by (3.4.3) it follows that

f ε(t) = f ερt
↔ ρ̂t = |ψt >< ψt|, (3.4.14)

ψt solving the Hartree equation (2.1.21) with initial datum ψ0.
To prove convergence of (3.4.6) to (3.4.7), the norm |·|j has to be such that∥∥T εN,j∥∥→ 0 as N →∞, (3.4.15)

where ‖·‖ is the operator norm on the space of j-particle functions with finite norm |·|j. In
fact, we observe that∣∣∣Φ(N)

j (t) fj − Φj(t) fj

∣∣∣
j
≤
∫ t

0

dτ
∣∣Φj(t− τ)T εN,j fj(τ)

∣∣
j
, (3.4.16)
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for any j-particle Wigner function fj. Thus, by virtue of (3.4.9) and (3.4.15) we would obtain

lim
N→∞

∥∥∥Φ(N)
j (t)− Φj(t)

∥∥∥ = 0, (3.4.17)

implying convergence of (3.4.6) to (3.3.23) with respect to the norm |·|j, namely, propagation
of chaos, for short times |t| < t0 in the sense that, for any fixed j,∣∣∣W ε

N,j(t)− (f ε(t))⊗j
∣∣∣
j
→ 0, as N →∞ ∀ t < t0. (3.4.18)

Finally, the argument just given can be iterated to prove propagation of chaos for t ∈ [t0 −
δ, t0 + δ] (for any δ > 0) if we can prove that∣∣f εj (t0 − δ)

∣∣
j
= (|f ε(t0 − δ)|1)

j ≤ Caj, for any fixed j,

(3.4.19)

implying property (3.4.12) to hold for t = t0 − δ. Then, by iteration we conclude that propa-
gation of chaos in the sense of (3.4.18) holds for all t.

By looking at the scheme we have just presented it turns out that the accuracy of the
mean-field approximation is provided by the speed of convergence of the operator norm of T εN,j
to zero as N → ∞ (see (3.4.15)). Then, if one was able to provide an estimate uniform in
ε for

∥∥T εN,j∥∥, the convergence (3.4.18) would be also uniform with respect to ε and then, by
iteration, we would have uniformity in ε for all times.

Choice of the norm |·|

On the basis of (3.4.4) one could think to choose the L2-norm because (3.4.12) would be satisfied
(with a = 1) and this would hold for each t because the Hartree dynamics preserves the L2-

norm (see (3.3.14)). Moreover, the flows Φ
(N)
j (t) and Φj(t) not only control the L2-norm in the

sense of (3.4.8) and (3.4.9) but even preserve it. Nevertheless, the operator Cε
j,j+1 is unbounded

on L2 (R3 × R3) (it can be verified easily by looking at (3.2.8)), thus property (3.4.11) fails.
Actually, one can verify that, by assuming Hs regularity at time t = 0, it is propagated

by the flow Φ
(N)
j (t) (see [25]), by the free flow Φj(t) and also by the nonlinear Wigner-Liouville

equation (3.3.1) (according to Proposition 3.3.1). So, this choice could be appropriate for the
preservation in time of property (3.4.12) but, as for the L2-norm, the boundness of Cε

j,j+1 fails.
By taking into account the (formal) analogy between the N -particle Wigner-Liouville equa-

tion (3.2.1) and the Liouville equation (1.1.5) one could think to use the L1-norm. Indeed it
is easy to check that the operators T εN,j and Cε

j,j+1 are bounded in L1 and it can be also ver-

ified that the flow Φ
(N)
j (t) controls the L1-norm in the sense of (3.4.8). The free flow Φj(t)
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clearly preserves the L1-norm. Furthermore, by assuming property (3.4.12) to hold , namely
f ε0 ∈ L1 (R3 × R3), it is easy to check that it is verified for all t because the L1-norm is con-
trolled by the Hartree dynamics. In other words, property (3.4.19) would be satisfied and we
could iterate the procedure presented above to prove convergence for all times. Therefore the
L1-norm could seem a good choice but the point is that Wigner functions are, in general, not
in L1. More precisely, by only knowing that f ε0 is the Wigner transform of a wave function
ψ0 ∈ L2 (R3) (as in the present situation), we are not guaranteed that f ε0 ∈ L1 (R3 × R3).
Indeed, in general the L1-norm of Wigner functions is not related to any norm of the wave
functions from which they arise. We will come back on this topic in Remark 3.4.1.

It turns out that a fruitful approach is to use a norm which, from on side, is ”good” for
estimating Cε

j,j+1, it is controlled by Φ
(N)
j (t), Φj(t) and even by the Hartree dynamics, and, on

the other side, it somehow ”relates” Wigner functions to the wave functions from which they
arise.

Let us to consider the Fourier transform Fx of the N -particle Wigner function with respect
to position variables, namely

(FxW
ε
N) (PN , VN) := W̃ ε

N(PN , VN) =

∫
dXN e−i PN ·XNW ε

N(XN , VN), (3.4.20)

with PN = (p1, . . . , pN) ∈ R3N and let us define the L̃1-norm as

‖W ε
N‖L̃1(R3N×R3N ) :=

∥∥∥W̃ ε
N

∥∥∥
L1(R3N×R3N )

=

∫
dPN

∫
dVN |W̃ ε

N(PN , VN)|. (3.4.21)

We can verify that the operator T εN,j : L̃1(R3j × R3j) → L̃1(R3j × R3j) is bounded under the

assumption
∥∥∥φ̂∥∥∥

L1(R3)
< +∞. Indeed, by computing

Fx

(
T εN,jW

ε
N,j

)
(Pj, Vj) =

∫
dPj e

−i Pj ·Xj T εN,jW
ε
N,j(Xj, Vj),

(3.4.22)

by manipulating (3.2.7) we find

Fx

(
T εN,jW

ε
N,j

)
(Pj, Vj) :=

(
T̃ εN,jW̃

ε
N,j

)
(Pj, Vj) =

i(2π)−3N

εN

j∑
l 6=r

∑
σ=±1

σ

∫
dk φ̂(k)

W̃ ε
N,j

(
p1, . . . , pl − k, . . . , pj, v1, . . . , vl +

σεk

2
, . . . , vj

)
,

(3.4.23)
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then ∥∥T εN,jW ε
N,j

∥∥
L̃1(R3j×R3j)

=
∥∥∥T̃ εN,jW̃ ε

N,j

∥∥∥
L1(R3j×R3j)

≤ 1

(2π)3N

2j2

εN

∥∥∥φ̂∥∥∥
L1(R3)

∥∥W ε
N,j

∥∥
L̃1(R3j×R3j)

.

(3.4.24)

In a similar way, we verify that the operator Cε
j,j+1 : L̃1(R3(j+1) × R3(j+1)) → L̃1(R3j × R3j) is

bounded under the assumption
∥∥∥φ̂∥∥∥

L∞(R3)
< +∞. In fact we compute

Fx

(
Cε
j,j+1W

ε
N,j+1

)
(Pj, Vj) =

∫
dPj e

−i Pj ·Xj
(
Cε
j,j+1W

ε
N,j+1

)
(Xj, Vj),

(3.4.25)

obtaining by (3.2.8) that

Fx

(
Cε
j,j+1W

ε
N,j+1

)
(Pj, Vj) :=

(
C̃ε
j,j+1W̃

ε
N,j+1

)
(Pj, Vj) =

=
i(2π)−3N

ε

(
N − j

N

) j∑
l=1

∑
σ=±1

σ

∫
dvj+1

∫
dk φ̂(k)

W̃ ε
N,j+1

(
p1, . . . , pl − k, . . . , pj, k, v1, . . . , vl +

σεk

2
, . . . , vj+1

)
,

(3.4.26)

then∥∥Cε
j,j+1W

ε
N,j+1

∥∥
L̃1(R3j×R3j)

=
∥∥∥C̃ε

j,j+1W̃
ε
N,j+1

∥∥∥
L1(R3j×R3j)

≤

≤ (2π)−3N (2j)

ε

(
N − j

N

)∥∥∥φ̂∥∥∥
L∞(R3)

∥∥W ε
N,j+1

∥∥
L̃1(R3(j+1)×R3(j+1))

.

(3.4.27)

Furthermore, concerning the initial datum (f ε0 )⊗j, by (3.4.3) we have∥∥∥(f ε0 )⊗j
∥∥∥
L̃1(R3j×R3j)

=
(
‖f ε0‖L̃1(R3×R3)

)j
≤ C

(∥∥∥ψ̂0

∥∥∥
L1(R3)

)2

j ≤ C
(
‖ψ0‖Hs(R3)

)2

j, s > 3/2

(3.4.28)

where the last inequalities are simply obtained by explicit computations. For any t > 0, by
(3.4.14) we have

‖f ε(t)‖L̃1(R3×R3) ≤ C
∥∥∥ψ̂t∥∥∥2

L1(R3)
≤ C ‖ψt‖2

Hs(R3) , s > 3/2, (3.4.29)
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and by using standard energy methods it is easy to check that, under suitable smoothness
assumption on the potential φ, the Hs-norm of ψt is controlled by the Hs-norm of ψ0 for any
s. Furthermore, even by looking at the (Hartree) nonlinear Wigner-Liouville equation (3.3.1),
it is easy to check that the L̃1-norm of f ε(t) is controlled by the L̃1-norm of f ε0 .

Finally, by virtue of (3.4.24), (3.4.27), (3.4.28) and (3.4.29), it follows that by setting

|·|j := ‖·‖L̃1(R3j×R3j) , (3.4.30)

and by assuming ψ0 ∈ Hs (R3) with s > 3/2 and the potential φ to be sufficiently smooth (in
order to make all constants appearing in the estimates finite), we have∣∣∣W ε

N,j(t)− (f ε(t))⊗j
∣∣∣
j
→ 0, as N →∞ ∀ t. (3.4.31)

Therefore, for smooth potentials, we can show propagation of chaos in the Wigner formu-
lation by following the same strategy of Theorem 2.3.1. Nonetheless, we note that the error
in the approximation (3.4.31) is still not uniform with respect to ε and diverging when ε → 0
because from (3.4.24) we see that the operator norm of T εN,j is of order 1/ε (as in Theorem 2.3.1).

We conclude the present analysis by observing that (3.4.31) implies straightforward that∫
R3j

dVj sup
Xj

∣∣∣W ε
N,j(Xj, Vj; t)− (f ε(t))⊗j (Xj, Vj)

∣∣∣→ 0, as N →∞ ∀ t, (3.4.32)

namely ∥∥∥W ε
N,j(t)− (f ε(t))⊗j

∥∥∥
L∞

(
R3j

Xj

)
∩L1

(
R3j

Vj

) → 0, as N →∞ ∀ t. (3.4.33)

Despite the fact that (3.4.32) is a quite ”strong” convergence, it is not related to any convergence
for the reduced density matrices and it does not imply any convergence for the expected value
of j-particle observables (namely, it does not provide informations about macroscopic values of
physically interesting quantities).

Nevertheless, one can verifies that the convergence (3.4.31) and the uniform bounds∥∥W ε
N,j(t)

∥∥
L2(R3j×R3j)

≤ 1, ‖f ε(t)‖L2(R3×R3) ≤ 1, (3.4.34)

imply

W ε
N,j(t) → (f ε(t))⊗j , as N →∞ ∀ t, L2 − weakly. (3.4.35)

By virtue of property (3.1.4), (3.4.35) ensures the convergence of expected values of suitable
observables. More precisely, (3.4.35) allows to compute ”macroscopic” (or ”effective”) ex-
pected value of j-particle observables Oj whose phase space representations (symbols) are in
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L2 (R3j × R3j) (see also [11]). Indeed, for any j-particle observable Oj with symbol Oj(Xj, Vj),
we have the following estimate

(
Oj,W

ε
N,j(t)

)
L2 ≈

(
Oj, (f

ε(t))⊗j
)
L2

+
Cj(ε)

N
, ∀ t, as N →∞, (3.4.36)

where Cj(ε) →∞ as ε→ 0.

Remark 3.4.1 We observe that all estimates we did by using the L̃1-norm would be also valid
for the L1-norm. Thus, by assuming f ε0 ∈ L1 (R3 × R3) and following exactly the same strategy
leading to the L̃1-convergence (3.4.31), we can prove that∥∥∥W ε

N,j(t)− (f ε(t))⊗j
∥∥∥
L1(R3j×R3j)

→ 0, as N →∞ ∀ t, (3.4.37)

and, as for the L̃1-convergence, it can be verified that (3.4.37) together with the uniform bounds
(3.4.34) leads to the L2-weak convergence (3.4.35) and, in particular, to the estimate (3.4.36).
Then, apparently, there is no reason for considering the L̃1-norm instead of the L1-norm. In
fact, in both cases we can realize the limit N →∞ in the L2-weak sense and in both cases we
find that the error in the mean-field approximation is not uniform with respect to ε, indeed
diverging as ε → 0 (by looking at the constant Cj(ε) in (3.4.36)). Nevertheless, as we have
already noticed, the crucial point is: which assumptions one has to do on the wave function ψ0

to ensure that its Wigner transform f ε0 is in L1 (R3 × R3)? We remind that∫
dx

∫
dv f ε0 (x, v) =

∫
dx|ψ0(x)|2 = Trρ̂0 = 1 with ρ̂0 = |.ψ0 >< ψ0| (3.4.38)

We know that the integral on the phase space of f ε0 (x, v) does not correspond to its L1-norm
being f ε0 not positive in general. But, by considering a wave function ψ0 such that f ε0 (x, v) ≥ 0
for any x, v we could identify the L2-norm of ψ0 (which is taken equal to one) with the L1-norm
of f ε0 and we are guaranteed that property (3.4.12) is verified (with a = 1). The only way
for having a positive Wigner function is to choose ψ0 ≈ e−x

2
(see for example [11]), in par-

ticular we can consider coherent states of the form ψ(x) = Nεe
− (x−x0)2

ε ei
v0x

ε , for some x0, v0 ∈ R3.

In the end, we found that propagation of chaos in the mean-field limit by using the Wigner
formalism can be proven in the L1-norm by choosing initial gaussian states. On the other
side, it can be proven in the L̃1-norm by choosing initial wave functions in Hs, s > 3/2 (if the
dimension of the system is assumed to be equal to 3; in general, in any dimension d, we have
s > d/2). In both cases we obtain convergence of expected values of j-particle observables Oj

with symbol in L2 (R3j × R3j).
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The previous considerations give an idea of which are the main difficulties in investigating
the mean-field limit in the Wigner formalism and, in this perspective it is not surprising that
results concerning the limitN →∞ for j-particle (Wigner) marginals are formulated in terms of
weak convergence (strong convergence in L2 is prevented by the unboundness of the operators
involved in the BBGKY hierarchy). However, weak convergence provides the possibility to
compute expected values of j-particle observables and this is what is physically relevant.

3.5 Alternative approaches

The validity of propagation of chaos in the mean-field limit has been established also in [26]
by using the ”second-quantization formalism”. For fixed ε, the authors provide an alternative
proof of the emergence of the Hartree dynamics for bounded potential φ and, even if obtained
by using a different formalism, the general strategy of the proof is analogous to that of [7] and
the result can be formulated in terms of convergence of reduced density matrices to products of
solutions of the Hartree equation. Then, by passing to the Wigner formalism, for a restricted
class of two-body interactions the following (distributional) estimate in S ′ (R3j × R3j) is proven

W ε
N,j(t) ≈ (f ε(t))⊗j +

Cj
N

+O
(
e−1/

√
‖φ‖∞t

)
, ∀ t, as N →∞, (3.5.1)

where ‖φ‖∞ := ‖φ‖L∞(R3), Cj is a positive constant only depending on j and W ε
N,j(t) and f ε(t)

are defined as in (3.4.36). It turns out that the error in approximating the N -particle evolution
with the Hartree dynamics is indeed uniform with respect to ε but the exponential remainder
appearing in (3.5.1) is small only if ‖φ‖∞ t << 1, namely, by looking at very short times or by
considering an interaction potential having very small L∞-norm.

Joint limit N →∞ and ε→ 0

In looking at the connection between mean-field limit and semiclassical approximation, a joint
limit N → ∞ and ε → 0 can be considered. Indeed, there are systems in which this kind of
limit arises quite naturally by the scaling properties of the Hamiltonian.

A remarkable example is provided by the model considered in [19] and, previously, in [8]
(with a somewhat different interpretation). The model considered in [19] is a system of N
fermions interacting by the mean-field potential (2.1) with initial data localized in a cube of
size of order one and at energy comparable with the ground state energy of the system. The
Hamiltonian of the system is given by (2.1.5), thus all the potential energy arises from the
interaction term (2.1) and it follows straightforward that the potential energy per particle is
of order one. As regard to the kinetic energy, it can be verified that the kinetic energy per
particle of N fermions, i.e., −1

2
ε2∆xk

(k = 1, . . . , N), in a cube of size one scales like ε2N2/3 in
the ground state. Therefore, in order to look at the limit N → ∞ keeping the kinetic energy
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per particle of order one, one has to multiply the kinetic energy in (2.1.5) by N−2/3. Then, by
defining the ”effective Planck constant” εeff such that εeff = εN−1/3, the Hamiltonian of the
systems becomes

HQ
N,eff = −

N∑
k=1

ε2
eff∆k

2
+ UQ(XN), εeff ≈ N−1/3 → 0 as N →∞. (3.5.2)

Therefore the kinetic and the potential energy per particle in the Hamiltonian HQ
N,eff are

comparable and, as we already observed in introducing the mean-field model, this is the basic
physical criterion to obtain a non trivial limiting dynamics (as N → ∞) that captures the
nonlinear effect of the interaction. Clearly, the limit N →∞ for the system whose Hamiltonian
isHQ

N,eff entails the limit εeff → 0 which is a semiclassical limit for (2.1.5). Thus, one expects to
find a limiting dynamics which is ruled by a classical equation. On the other side, it is known
(and it is validated by numerous applications) that the equation governing the macroscopic
(physically observable) dynamics of a Fermi gas in states close to the ground state is the
Hartree-Fock equation:

iε∂tρ̂t =

[
−ε

2

2
∆, ρ̂t

]
+ Tr2 {[φ(x− x2), ρ̂t ⊗ ρ̂t]} −

∫
dz [φ(x− z)− φ(y − z)] ρt(x, z)ρt(z, y).

(3.5.3)

Equation (3.5.3) differs from the Hartree equation (2.2.6) because of the presence of the so
called ”exchange term” which is the main effect of the correlations induced by the Fermi-Dirac
statistics (see (2.1.2)). In [19] it has been proven that there exists a fixed time T > 0 such that
the difference, in a suitable weak sense, between the j-particle marginal associated with the
N -particle Wigner function of this system and the solution of the (Hartree) nonlinear Wigner-
Liouville equation (3.3.1) is of order N−1 ≈ ε3 for any time t ≤ T , provided that the potential φ
is real analytic. In other words, all ε2 corrections come from the difference between the Vlasov
equation (1.1.8) and the Hartree equation (2.2.6); hence they are related to the accuracy of the
semiclassical approximation in the one-body theory. In particular it is proven that all correla-
tion effects (the main of them is precisely the exchange term) are of order at most O(ε3).

We observe that the case of undistinguishable particles (in the sense specified by (2.1.13)
and (3.2.4)) and even the bosonic case are crucially different from the fermionic case discussed
above. Indeed in these situations the kinetic energy per particle , i.e., −1

2
ε2∆xk

(k = 1, . . . , N),
in a cube of size one scales like ε2 in the ground state. Thus the Hamiltonian of an N -
particle system interacting by the potential (2.1) is precisely (2.1.5) because no further scaling
is needed. Therefore, there is no reason for considering a joint limit and the problem of realizing
the (mean-field) limit N →∞ uniformly in ε arises quite naturally.

On the other side, even for undistinguishable particles there are models in which the scaling
of the potential somewhat leads to define a rescaled Hamiltonian which exhibits an effective
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Planck constant going to 0 as N → ∞ (as in the fermionic case). These kind of systems are
taken into account in [24] (and previously in [8] with the specific scaling ε ≈ N−1/3) and an
example is provided by systems interacting by Kac potentials defined below.

Example: the Kac potential. Consider a system of N identical bosons of mass m = 1
interacting through the (Kac) potential

φλ(x) =
1

λ
φ
(x
λ

)
, (3.5.4)

where λ is a large parameter of the same order of N and φ is a given smooth potential. The
Hamiltonian is:

HN = −ε
2

2

N∑
k=1

∆xk
+

∑
1≤k<l≤N

φλ(xk − xl). (3.5.5)

After the rescaling x = λq the Hamiltonian becomes:

HN = −1

2

( ε
λ

)2
N∑
k=1

∆qk +
1

λ

∑
1≤k<l≤N

φ(qk − ql). (3.5.6)

Setting λ = N , and εsc = ε
λ

= ε
N

we finally get:

Hsc
N = −ε

2
sc

2

N∑
k=1

∆qk +
1

N

∑
1≤k<l≤N

φ(qk − ql), (3.5.7)

where εsc ≈ 1/N → 0 as N →∞.

In [24] it has been proven that in all situations in which N → ∞ entails ε → 0 (as
the case of the Kac potential), which, roughly speaking, are ”asymptotically classical”, the
Vlasov equation is indeed recovered in the limit N → ∞ even when ε → 0 according to an
arbitrary law. For WKB states of the form ψ(x) = a(x)eiS(x)/ε the result, formulated in terms
of weak convergence of j-particles Wigner marginals, is local in time (as one expects from WKB
analysis), while by considering suitable mixtures of WKB states, the result holds globally in
time. The potential is assumed to be in C2

b (R3) and the explicit rate of convergence is computed
by means of a constructive method.

In [8] the same result had been proven for the specific scaling ε ≈ N−1/3 by considering
more general initial data but assuming the potential to be analytic. In [8] it was also proven
that the solution of the (Hartree) nonlinear Wigner-Liouville equation (3.3.1) converges in
S ′ (R3 × R3) to the solution of the Vlasov equation (1.1.8) as ε→ 0.
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Chapter 4

Mean-field limit and Semiclassical
Expansion

In this chapter we describe a different approach in investigating the ε dependence of the error
in the mean-field approximation, by using the Wigner formalism. It consists in looking at the
semiclassical expansion of the N -particle system and proving that each term of the expansion
agrees, in the limit N →∞, with the corresponding one associated with the Hartree equation
(see [29]).

This idea is motivated by the following argument.

In Chapter 1 we recalled what is established by classical mean-field theory, namely, under
suitable assumption on the potential, for any fixed j we have

F
(j)
N (t) → (f(t))⊗j , as N →∞, (4.1)

in the weak topology of probability measures, where F
(j)
N (t) are the j-particle marginals asso-

ciated with the solution FN(t) of the Liouville equation (1.1.5) with a factorized initial datum
f⊗N0 and f(t) is the solution of the Vlasov equation (1.1.8) with initial datum f0. Thus, (4.1)
means that propagation of chaos holds for the classical mean-field model. On the other side,
in Chapter 3 we proved that, under suitable assumptions on the potential and on the initial
datum, the following quantum mean-field limit result holds

W ε
N,j(t) → (f ε(t))⊗j , as N →∞, L2 − weakly, (4.2)

where W ε
N,j(t) are the j-particle Wigner marginals associated with the solution W ε

N(t) of the

N -particle Wigner-Liouville equation (3.2.1) with a factorized initial datum (f ε0 )⊗N and f ε(t) is
the solution of the (Hartree) nonlinear Wigner-Liouville equation (3.3.1) with initial datum f ε0 .
Furthermore, we found that the error in approximating W ε

N,j(t) with (f ε(t))⊗j is not uniform
with respect to ε and diverging when ε→ 0.
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As regard to the semiclassical limit ε→ 0, it is known that the N -particle quantum (mean-
field) dynamics for sufficiently smooth potentials converges (for fixed N) in a suitable sense to
the the N -particle classical (mean-field) evolution (see for example [12], [25]). Moreover, it has
also been proven that the Hartree dynamics with smooth interaction, rephrased in the Wigner
formalism, is approximated in a suitable sense by the classical Vlasov evolution (see for example
[8], [14]).

So that, it seems natural to consider the solution W ε
N(t) of the N -particle Wigner-Liouville

equation (3.2.1) with a suitable factorized initial datum (f ε0 )⊗N and to look for an asymptotic
expansion as

f ε0 = f
(0)
0 + εf

(1)
0 + ε2f

(2)
0 + . . . (4.3)

implying, for the initial j-particle marginals,

W ε
N,j (0) = (f ε0 )⊗j =

(
f

(0)
0

)⊗j
+ εW

(1)
N,j (0) + ε2W

(2)
N,j (0) + . . . (4.4)

Then, for the time evolved marginals we expect to find an analogous expansion as

W ε
N,j (t) = W

(0)
N,j (t) + εW

(1)
N,j (t) + ε2W

(2)
N,j (t) + . . . (4.5)

where the zero order term W
(0)
N,j (t) is expected to be equal to the (classical) marginals associated

with the solution of the Liouville equation with initial datum
(
f

(0)
0

)⊗N
determined by (4.3).

In a similar way, we consider the j-fold product (f ε(t))⊗j of solutions of the (Hartree)
nonlinear Wigner-Liouville equation (3.3.1) with initial datum f ε0 and we look for an expansion
as

(f ε(t))⊗j = f
(0)
j (t) + εf

(1)
j (t) + ε2f

(2)
j (t) + . . . (4.6)

where the zero order term f
(0)
j is expected to be equal to the j-fold product

(
f (0)(t)

)⊗j
, where

f (0)(t) solves the Vlasov equation with initial datum f
(0)
0 given by (4.3).

Therefore, by recognizing that at zero order in ε we find the classical quantities, by (4.1)

we know that W
(0)
N,j(t) converges to f

(0)
j (t) =

(
f (0)(t)

)⊗j
in the weak topology of probability

measures. Then, it looks natural to ask if the following convergence holds

W
(k)
N,j (t) → f

(k)
j (t) , as N →∞, for any k > 0 (4.7)

in a suitable sense. This is what we are going to show in the present chapter and it is contained
in our recent paper [29].

Note that the term by term convergence (4.7) does not provide the uniformity in ε of the
limit N → ∞ because this would require a control of the remainder of the expansion (4.5),
and for the moment we are not able to do it. On the other side, in proving (4.7), we provide

67



quantum corrections to the classical mean-field limit result and, by characterizing explicitly
both coefficients W

(k)
N,j (t) and f

(k)
j (t), we prove that those corrections are given in terms of the

classical Liouville flow and, in particular, of suitable derivatives of the classical trajectories.
We note that to prove (4.7) we make use of coherent states (see Section 4.5) and in that

framework it is somewhat expected to find that quantum corrections to the classical dynam-
ics can be expressed in terms of derivatives of the classical trajectories (see for example [2], [15]).

4.1 Semiclassical expansion for the Hartree dynamics

We want to determine an expansion in power series of ε of the solution f ε(x, v; t) of the (Hartree)
nonlinear Wigner-Liouville equation (3.3.1) for a given initial datum f ε0 (x, v), namely:

f ε(t) = f (0)(t) + εf (1)(t) + ε2f (2)(t) + . . . (4.1.1)

by knowing that the initial datum f ε0 is expanded as follows

f ε0 (x, v) = f
(0)
0 (x, v) + εf

(1)
0 (x, v) + ε2f

(2)
0 (x, v) + . . . (4.1.2)

Indeed an expansion like (4.1.2) holds for general quantum states. For example, in [25] the
semiclassical expansion for various kinds of states is presented, both gently varying with respect
to ε (such as pure states whose wave function is not depending on ε) and singularly behaving
as ε→ 0 (such as states of semiclassical type: WKB and coherent states). In the first situation

we find an expansion of the form (4.1.2) where the coefficients f
(k)
0 are smooth, on the contrary,

for WKB and coherent states we find distributional coefficients (precisely Dirac δ-functions
and suitable derivatives of it) which apparently are more difficult to treat (with respect to the
smooth case). Nevertheless, by manipulating them in a suitable way, such kinds of ”singular”
expansions can be very useful to deal with problems of semiclassical approximation (see Section
4.5 and Chapter 5).

Following [25], for a fixed g, the operator T εg appearing in equation (3.3.1) can be expanded
as

T εg = T (0)
g + εT (1)

g + ε2T (2)
g + . . . (4.1.3)

where

T (n)
g = cn(2π)−3i

∫
R3

dkφ̂(k)ρ̂g(k)e
i k·x(k · ∇v)

n+1, (4.1.4)

cn =
1

2n(n+ 1)!
, (4.1.5)

for n even and
T (n)
g = 0, (4.1.6)
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for n odd. The operator T
(n)
g , for n even, can be also written as

T (n)
g = (−1)n/2cn

(
Dn+1
x φ ∗ g

)
·Dn+1

v , (4.1.7)

where, as in (1.1.8), ∗ denotes the convolution with respect to both x and v and we used the
notation:

Dn
xν ·Dn

v ζ =
∑

n1,n2,n3∈N:∑
j nj=n

∂nν

∂n1x1∂n2x2∂n3x3

∂nζ

∂n1v1∂n2v2∂n3v3
, (4.1.8)

with x = (x1, x2, x3) ∈ R3 and v = (v1, v2, v3) ∈ R3

for the one-particle functions ν and ζ.
Inserting (4.1.1) in (4.1.3) and setting:

T
(n)
k = T

(n)

f (k)(t)
, (4.1.9)

we readily arrive to the following sequence of problems for the coefficients f (k)(t) of the expan-
sion (4.1.1): {

(∂t + v · ∇x) f
(0)(t) = T

(0)
0 f (0)(t),

f (0)(x, v; t)
∣∣
t=0

= f
(0)
0 (x, v),

(4.1.10)

and {
(∂t + v · ∇x) f

(k)(t) = L(f (0)(t))f (k)(t) + Θ(k)(t),

f (k)(x, v; t)
∣∣
t=0

= f
(k)
0 (x, v),

(4.1.11)

for k ≥ 1, where

L(h)f = T
(0)
h f + T

(0)
f h = (∇xφ ∗ h) · ∇vf + (∇xφ ∗ f) · ∇vh, (4.1.12)

and
Θ(k)(t) =

∑
l,p,r:

l+p+r=k
l<k,r<k

T (p)
r f (l)(t). (4.1.13)

Note that, as we expected, equation (4.1.10) we found at zeroth order in ε is precisely the
classical Vlasov equation (1.1.8)) associated with the interaction φ. Thus we need to assume
φ ∈ C2

b (R3) to guarantee that the Vlasov flow is well-defined and, as we recalled in Chapter 1,
the Vlasov equation can be solved by means of characteristics and fixed point. Moreover, the
problems (4.1.11) are linear and can be solved by a recursive argument by observing that the
source terms Θ(k)(t) involve only those coefficients f (n)(t) with n < k, so that they are known
by the previous steps. Clearly we shall state suitable smoothness assumptions on φ because
the operators T

(p)
r appearing in Θ(k)(t) involve derivatives of φ of order possibly higher than 2,
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depending on k.

Hypotheses H: Here and henceforth we will assume that is spherically symmetric (φ(x) =
φ(|x|),∀ x ∈ R3) and φ ∈ C∞

b (R3)1.

Actually, in some of the results we are going to show less regularity is needed on φ, but for
the sake of simplicity we state here ”maximal” hypotheses under which we can deal both with
semiclassical expansions and with the term by term convergence of the N -particle expansion
(see Section 4.2 and 4.6 below). Furthermore, under the same hypotheses on φ, by taking the
initial datum as specified in Section 4.5, we are ensured about the validity of the result proven
in Section 3.4 concerning the mean-field limit for Wigner functions.

In order to simplify the notation, from now on we will denote the time evolved coefficients
f (k)(t) = f (k)(x, v; t) solving (4.1.11) by f (k) and the source terms Θ(k)(x, v; t) = Θ(k)(t) by

Θ(k). Moreover, we will denote the initial coefficients f
(k)
0 (x, v) by f

(k)
0 . We will specify the

dependence on time and on the phase space variables just in case it is not clear from the context.

The crucial tool we shall use to give a sense to the solutions f (k), for k ≥ 1, of problems
(4.1.11) is the following proposition whose proof will be given in Appendix A (see also [29]).

Proposition 4.1.1 Consider the initial value problem:{
(∂t + v · ∇x) γ = L(h)γ + Θ,

γ(x, v; t)|t=0 = γ0(x, v),
(4.1.14)

where γ0 ∈ L1(R3×R3), h = h(x, v; t) is such that |∇vh| ∈ C0 (L1(R3 × R3),R+), Θ = Θ(x, v; t)
is such that Θ ∈ C0 (L1(R3 × R3),R+).
Then there exists a unique solution γ = γ(x, v; t) of (4.1.14), such that γ ∈ C0 (L1(R3 × R3),R+),
given by an explicit series expansion.
Furthermore, denoting by Σh the flow generated by L(h), we have that Σh(t, 0)γ0 ∈ Cd (R3 × R3)
provided that ∇vh ∈ Cd (R3 × R3) and γ0 ∈ Cd (R3 × R3).

By looking at the problems (4.1.11), we realize that the coefficients f (k), for k ≥ 1, play
the role of γ(x, v; t) in Proposition 4.1.1, while the time evolved zero-order coefficient f (0) and
the source term Θ(k) play the role of the functions h(x, v; t) and Θ(x, v; t) respectively. Clearly

the initial datum γ0(x, v) in this case is given by f
(k)
0 (x, v), k ≥ 1.

Therefore, by applying Proposition 4.1.1 to identify the coefficients f (k), k ≥ 1, as the
unique solutions of (4.1.11) in C0 (L1(R3 × R3),R+), we have to consider an initial Wigner

1Here and henceforth we denote by C∞b (Rd) the space of infinitely differentiable functions on Rd with
uniformly bounded derivatives
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function f ε0 (x, v) such that f
(k)
0 ∈ L1(R3 × R3) for k ≥ 1 and f

(0)
0 is sufficiently smooth to

ensure f (0), |∇vf
(0)| ∈ C0 (L1(R3 × R3),R+). Concerning the source terms {Θ(k)}k≥1, we have

to prove that, with our choice of the initial datum, Θ(k) ∈ C0 (L1(R3 × R3),R+) for k ≥ 1.
We take the initial Wigner function f ε0 (x, v) in such a way that

f
(k)
0 ∈ S

(
R3 × R3

)
for any k ≥ 0, (4.1.15)

in particular f
(k)
0 ∈ L1 (R3 × R3) for any k. In Section 4.5 and in Chapter 5 we will give explicit

examples of Wigner functions verifying this property (see also [29]). Then, by (4.1.15) we find

f (0) ∈ C0
(
S
(
R3 × R3

)
,R+

)
(4.1.16)

(because of the smoothness of the Vlasov flow as discussed in Section 1.2) and, in particular

|∇vf
(0)| ∈ C0

(
C∞ ∩ L1(R3 × R3),R+

)
. (4.1.17)

As a consequence, from Proposition 4.1.1 we find

Σf (0)(t, s) : C0
(
C∞ ∩ L1

(
R3 × R3

)
,R+

)
→ C0

(
C∞ ∩ L1

(
R3 × R3

)
,R+

)
∀ s ∈ [0, t]. (4.1.18)

Moreover, by looking at the series expansion associated with the solution of the homogeneous
version of problem (4.1.14) (see Appendix B below and [29]), we realize that

Σf (0)(t, s) : C0
(
S
(
R3 × R3

)
,R+

)
→ C0

(
S
(
R3 × R3

)
,R+

)
∀ s ∈ [0, t], (4.1.19)

provided that f (0)(t) ∈ S (R3 × R3) for each t and that suitable smoothness assumptions on the
potential φ are satisfied. In particular, under our assumptions, we are guaranteed that (4.1.19)
holds.

As regard to the source terms, from (4.1.13) it is easy to check that Θ(1) = 0 then f (1)(t) =

Σf (0)(t, 0)f
(1)
0 ∈ L1(R3×R3) for each t by virtue of the fact that f

(1)
0 ∈ S(R3×R3) ⊂ L1(R3×R3)

and thanks to Proposition 4.1.1. Moreover, by (4.1.19) we have also

f (1) ∈ C0
(
S(R3 × R3),R+

)
. (4.1.20)

On the contrary, for k ≥ 2 we have Θ(k) 6= 0 and by (4.1.13), (4.1.6) and (4.1.7) we find that
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the norm of Θ(k) (k ≥ 2) in C0 (L1 (R3 × R3) ,R+) (C0 (L1)-norm in the sequel) is bounded by

sup
τ∈[0,t]

∥∥Θ(k)(τ)
∥∥
L1(R3×R3)

= sup
τ∈[0,t]

∑
l,p,r:

l+p+r=k
l<k,r<k

∥∥T (p)
r f (l)(τ)

∥∥
L1(R3×R3)

≤

≤
∑
r,p,l:

l+p+r=k
l<k,r<k

cp sup
τ∈[0,t]

{∥∥Dp+1
x φ ∗ f (r)(τ)

∥∥
L∞(R3×R3)

∥∥Dp+1
v f (l)(τ)

∥∥
L1(R3×R3)

}
≤

≤
∑
l,p,r:

l+p+r=k
r<k,l<k

cp
∥∥Dp+1

x φ
∥∥
L∞(R3×R3)

sup
τ∈[0,t]

{∥∥f (r)(τ)
∥∥
L1(R3×R3)

∥∥Dp+1
v f (l)(τ)

∥∥
L1(R3×R3)

}
.

(4.1.21)

Let us check if it is possible to use a recursive argument to prove that Θ(k) ∈ C0 (L1(R3 × R3),R+)
(for k ≥ 2). By (4.1.21) it follows that if we knew that

sup
τ∈[0,t]

{∥∥f (r)(τ)
∥∥
L1(R3×R3)

∥∥Dp+1
v f (l)(τ)

∥∥
L1(R3×R3)

}
< +∞ (4.1.22)

for each l, p, r : l + p + r = k and l < k, r < k, being the potential as in Hypotheses H, we
would find that the C0 (L1)-norm of Θ(k) is finite and we could conclude that for each T > 0:

sup
t∈[0,T ]

∥∥f (k)(t)
∥∥
L1(R3×R3)

< +∞ ∀ k ≥ 2. (4.1.23)

Thus, we note that a recursive argument is not ”well-posed” because it is not possible to
provide a uniform bound for the C0 (L1)-norm of f (k), by assuming the same to hold for f (n)

with n < k. Indeed, by (4.1.22), we see that we would need to assume even that the L1-norm
of any derivative of f (n) with n < k is bounded uniformly in time.

On the contrary, we realize that we can use an induction procedure in C0 (S(R3 × R3),R+).
Indeed, by the expression of Θ(k) and by the regularity of φ we know that Θ(k) ∈ C0 (S(R3 × R3),R+)
if all coefficients f (n) up to n = k− 1 are in C0 (S(R3 × R3),R+). Then, by (4.1.19), we obtain

f (n) ∈ C0
(
S(R3 × R3),R+

)
for all n < k

⇓
Θ(k) ∈ C0

(
S(R3 × R3),R+

)
⇓
f (k) ∈ C0

(
S(R3 × R3),R+

)
, (4.1.24)

and thanks to (4.1.16) and (4.1.20) the induction procedure is ”closed”. Therefore, we have
well-posedeness of problems (4.1.11) in L1(R3 × R3) and, in particular, the coefficients f (k)(t)
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are also in S(R3 × R3) for all t. Actually, we could relax our assumption on the initial datum
f ε0 obtaining less smooth coefficients, but in the present context this not an issue because we
want to focus on the structure of the expansion and not on minimal regularity properties of
the solutions.

4.2 Semiclassical expansion for the N-particle dynamics

In this section we determine an expansion in power series of ε of the solution W ε
N(t) =

W ε
N(XN , VN ; t) of the N -particle Wigner-Liouville equation equation (3.2.1) for the factorized

initial datum

W ε
N,0(XN , VN) =

N∏
j=1

f ε0 (xj, vj), (4.2.1)

where f ε0 is the same one-particle Wigner function we chose as initial datum for the nonlinear
Wigner-Liouville equation (3.3.1). Thus, we know that f ε0 is expanded as in (4.1.2) and it turns
out that, for the N -fold product (f ε0 )⊗N , we find

(f ε0 )⊗N = W
(0)
N,0 + εW

(1)
N,0 + ε2W

(2)
N,0 + . . . (4.2.2)

with

W
(0)
N,0(XN , VN) =

N∏
j=1

f
(0)
0 (xj, vj), (4.2.3)

W
(k)
N,0(XN , VN) =

∑
s1...sN
0≤sj≤k∑

j sj=k

N∏
j=1

f
(sj)
0 (xj, vj) for k ≥ 1. (4.2.4)

Note that W
(k)
N,0 is factorized only for k = 0.

For the sake of simplicity, here and henceforth we will make explicit the dependence on
time and on the phase space variables only if not clear from the context.

Following [25], the operator T εN appearing in (3.2.1) can be expanded as

T εN = T
(0)
N + εT

(1)
N + ε2T

(2)
N + . . . (4.2.5)

where, for n even we have

T
(n)
N = i(2π)−3NCn

∫
R3N

dKN Û(KN)eiKN ·XN (KN · ∇VN
)n+1 , (4.2.6)
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Cn being constants depending on n, and Û being the Fourier transform of the potential in (2.1)
(to simplify the notations we omit the superscript ”Q”). For n odd, we find

T
(n)
N = 0. (4.2.7)

Looking for a semiclassical expansion

W ε
N(t) = W

(0)
N (t) + εW

(1)
N (t) + ε2W

(2)
N (t) + . . . , (4.2.8)

by (4.2.2), (4.2.6) and (4.2.7) we arrive to the sequence of problems: (∂t + VN · ∇XN
)W

(0)
N (t) = T

(0)
N W

(0)
N (t),

W
(0)
N (XN , VN ; t)

∣∣∣
t=0

= W
(0)
N,0(XN , VN),

(4.2.9)

and  (∂t + VN · ∇XN
)W

(k)
N (t) = T

(0)
N W

(k)
N (t) + Θ

(k)
N (t),

W
(k)
N (XN , VN ; t)

∣∣∣
t=0

= W
(k)
N,0(XN , VN),

(4.2.10)

for k ≥ 1, where

Θ
(k)
N (t) =

∑
0≤l<k

T
(k−l)
N W

(l)
N (t). (4.2.11)

Note that T
(0)
N = ∇XN

UN ·∇VN
= 1

N

∑N
i6=j∇xi

φ(xi−xj) ·∇vi
is the classical Liouville operator,

while the source terms Θ
(k)
N (t), at each order k, are known by the previous steps. As we recalled

in Chapter 1, under smoothness assumptions on the interaction potential φ, equation (4.2.9)
can be solved by considering the Hamiltonian flow Φt(XN , VN) associated with the Newton
equations (1.1.3). Thus we find

W
(0)
N (XN , VN ; t) = SN(t)W

(0)
N,0(XN , VN) = W

(0)
N,0

(
Φ−t (XN , VN)

)
, (4.2.12)

where, from now on, we denote by SN the flow generated by the Liouville operator T
(0)
N . On

the other side, equations (4.2.10) can be solved by recurrence thanks to the Duhamel formula:

W
(k)
N (t) = SN(t)W

(k)
N,0 +

∫ t

0

dt1 SN(t− t1)Θ
(k)
N (t1). (4.2.13)

We conclude this section by expressing the operators T
(n)
N (n even) in terms of the variables

XN , VN . From (4.2.6), we find that:

T
(n)
N = T̂

(n)
N +R

(n)
N , (4.2.14)
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where

T̂
(n)
N = cn

(−1)n/2

N

N∑
l 6=j

Dn+1
x φ(xl − xj) ·Dn+1

vl
, (4.2.15)

where cn is the same of (4.1.5), and

R
(n)
N =

1

N

N∑
l 6=j

∑
k1,k2∈N3

|k1|+|k2|=n+1

Ck1,k2
∂n+1

∂
|k1|
xl ∂

|k2|
xj

φ(xl − xj) ·
∂n+1

∂
|k1|
vl ∂

|k2|
vj

, (4.2.16)

where, for i = 1, 2, ki = (ki,1, ki,2, ki,3), |ki| = ki,1 + ki,2 + ki,3 , and

∂n+1

∂
|k1|
xl ∂

|k2|
xj

=
∂|k1|

∂k1,1x1
l ∂

k1,2x2
l ∂

k1,3x3
l

∂|k2|

∂k2,1x1
j∂

k2,2x2
j∂

k2,3x3
j

, (4.2.17)

with xj =
(
x1
j , x

2
j , x

3
j

)
, xl =

(
x1
l , x

2
l , x

3
l

)
,

while Ck1,k2 are suitable coefficients. The same holds for the derivatives with respect to the
velocities.

We observe that, by the expression (4.2.16), we mean that the derivative of order |k1| is
distributed over the three components of xl in the same way in which it is distributed over the
three components of vl, and the same holds for the derivative of order |k2|.

4.3 Structure of the j-particles limiting marginals

Let us consider the sequence {f εj (t)}j≥1, where f εj (t) = f εj (Xj, Vj; t) is given by

f εj (t) = (f ε(t))⊗j (4.3.1)

and f ε(t) is the solution of the nonlinear Wigner-Liouville equation (3.3.1) with initial datum
f ε0 chosen as in Section 4.1. By the one-particle expansion (4.1.1), it turns out that

f εj (t) = (f ε(t))⊗j = f
(0)
j (t) + εf

(1)
j (t) + ε2f

(2)
j (t) + . . . , (4.3.2)

with

f
(0)
j (Xj, Vj; t) =

j∏
i=1

f (0)(xi, vi; t) (4.3.3)

f
(k)
j (Xj, Vj; t) =

∑
s1...sj :
0≤sr≤k∑

r sr=k

j∏
r=1

f (sr)(xr, vr; t) for k ≥ 1, (4.3.4)
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where the one-particle functions f (sr)(xr, vr; t) solve equation (4.1.10), if sr = 0, and (4.1.11),

for sr > 0. Note that f
(k)
j (t) is factorized only for k = 0.

Thus by (4.3.3) we find that, as expected, the zero order term of the expansion of (f ε(t))⊗j

is given by the j-fold product
(
f (0)(t)

)⊗j
of solutions of the Vlasov initial value problem (4.1.10).

By the analysis done in Chapter 3, we know that {f εj (t)}j≥1 solves the infinite (Hartree)

hierarchy (3.3.22) with factorized initial datum {(f ε0 )⊗j}j≥1. On the other hand, the sequence
of j-particle marginals {W ε

N,j(t)}Nj=1 associated with the solution of the N -particle Wigner-

Liouville equation (3.2.1) with factorized initial datum (f ε0 )⊗N , solves the Wigner BBGKY
hierarchy (3.2.6) with initial datum {(f ε0 )⊗j}Nj=1. Moreover, in Chapter 3 we proved also that,

for any j, W ε
N,j(t) → (f ε(t))⊗j L2-weakly as N → ∞ and the error in approximating the

N -particle dynamics with the limiting one is not uniform with respect to ε and diverging as
ε → 0. We recall that the reason for that arises from the fact that the operator T εN,j involved
in the BBGKY hierarchy (3.2.6) is bounded in the norm appropriate to study the convergence
(namely L̃1 (R3j × R3j) or L1 (R3j × R3j)), but its norm is diverging when ε goes to zero (in
particular it is O(1/ε)). This suggests to consider the semiclassical equations described in
Sections 4.1 and 4.2. In this way, considering equations at each order in ε and analyzing the
hierarchies associated with each of those equation, we have to deal with operators which are
clearly independent of ε (e.g. T

(n)
N ), , and we have to investigate only the limit N →∞ without

any dependence on ε. The price we have to pay is that now those operators are unbounded, as
it comes out for the classical mean-field limit we faced in Chapter 1.

Thus, if we want to prove that the coefficient of order εk of the expansion of the j-particle
marginals W ε

N,j(t), namely:

W
(k)
N,j(Xj, Vj; t) =

∫
R3(N−j)×R3(N−j)

dXN−jdVN−jW
(k)
N (Xj, XN−j, Vj, VN−j; t),

(4.3.5)

converges to the corresponding object f
(k)
j (t) arising from the Hartree dynamics (i.e (4.3.4)),

the use of the hierarchy solved by W
(k)
N,j(t) does not seem a good idea. In fact, even at level zero,

when we have to deal with the classical mean-field limit, the hierarchy is very difficult to handle
with (see Section 1.4) because it involves derivation operators which are clearly unbounded,
unless to make them act on analytic functions (see (1.4.3)-(1.4.5)). The obstacle which occurs
in facing the higher order terms is precisely the same.

However, as we saw in Chapter 1, in the classical case we can treat the convergence in a
more natural way, avoiding to use the hierarchy. Indeed we can control the j-particle marginals
associated with the Liouville equation (1.1.5) in terms of the expectation of the j-fold product
of empirical measures with respect to the initial N -particle probability distribution (see Section
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1.4). Then, to use this strategy to establish the convergence of W
(0)
N,j(t) to

(
f (0)(t)

)⊗j
, we have to

choose the one-particle initial Wigner function f ε0 in such a way that the zeroth order coefficient

f
(0)
0 is a one-particle probability distribution. As a consequence, the (factorized) zeroth order

coefficient W
(0)
N,0 (4.2.3) of the N -particle expansion is also a probability distribution (we will

discuss this choice in Section 4.5). Then, we will follow a similar strategy in dealing with the

convergence of the higher order terms of the expansion. More precisely, we will express W
(k)
N,j(t)

in terms of the expectation, with respect to W
(0)
N,0, of suitable (derivation) operators acting on

empirical measures. The control of these objects will be obtained thanks to some estimates of
the derivatives of the classical flow with respect to the initial data (see Proposition 4.4.1).

4.4 Idea of the proof

As we already noticed in the previous section, the convergence of the j-particle marginal at
zeroth order in ε is ensured by our assumption on the initial datum (to be specified in Section
4.5) and by the classical mean-field theory.

Thus, the first non-trivial term is that of order one in ε. By looking at (4.1.11) for k = 1,
we realize that the first correction to the Vlasov equation in the Hartree dynamics satisfies{

(∂t + v · ∇x) f
(1) = L(f (0))f (1),

f (1)(x, v; t)
∣∣
t=0

= f
(1)
0 (x, v),

(4.4.1)

(looking at the expression (4.1.13) for the source terms Θ(k), we straightforward verify that
Θ(1) ≡ 0). As we shall see in detail in the following section, our choice for the initial one-
particle datum is a mixture of coherent states such that each coefficient of the expansion is
given by suitable derivatives of the zeroth order term which, as we already observed, is a
probability distribution. In particular, the explicit form for f

(1)
0 is:

f
(1)
0 (x, v) = D2

Gf
(0)
0 (x, v), (4.4.2)

where D2
G is a suitable second order derivation operator (see formula (4.5.8) below in the case

k = 2) with respect to the variable z ∈ R6 (we recall the notation z = (x, v) ∈ R3 × R3

introduced in Chapter 1).
As regard to the N -particle dynamics, looking at (4.2.4) in the case k = 1, we know that

the initial datum for the coefficient of order one in ε is:

W
(1)
N,0(ZN) =

N∑
j=1

f
(1)
0 (zj)

N∏
l 6=j

f
(0)
0 (zl) = D2W

(0)
N,0(ZN), (4.4.3)

where

D2 =
N∑
j=1

D2
G,j, (4.4.4)
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and D2
G,j is the operator D2

G acting on the variable zj ∈ R6 . Let us consider the time evolved
empirical measure µN(t) (see Section 1.3) associated with the flow generated by the Newton
equations (1.1.3) and let us define D2µN(t) as the distribution acting on a test function u in
the following way:

(
u,D2µN(t)

)
= D2

(
1

N

N∑
l=1

u(zl(t))

)
=

1

N

N∑
l,j=1

D2
G,ju(zl(t)). (4.4.5)

We know that the operators D2
G,j involve derivatives with respect to the initial variables zj,

j = 1, . . . , N , thus, if at time t = 0 we have µN → f
(0)
0 when N → ∞ in the weak sense of

probability measures, it follows that:

(
u,D2µN

)
= D2 1

N

N∑
l=1

u(zl) =
1

N

N∑
l,j=1

D2
G,ju(zl) =

1

N

N∑
j=1

D2
G,ju(zj) =

=
(
D2
Gu, µN

)
→

(
D2
Gu, f

(0)
0

)
=
(
u,D2

Gf
(0)
0

)
=
(
u, f

(1)
0

)
(4.4.6)

as N → ∞. By the Strong Law of Large Numbers (1.3.10) we know that the convergence

(4.4.6) holds a.e with respect to the product measure
(
f

(0)
0

)⊗∞
, then, by (4.4.3) and (4.4.6),

we can conclude that:(
u,W

(1)
N,1(t)|t=0

)
=
(
u,EN

[
D2µN

])
→

(
u, f

(1)
0

)
as N →∞,

(4.4.7)

where EN [·] denotes the expectation with respect to the N -particle probability distribution

W
(0)
N,0 =

(
f

(0)
0

)⊗N
(see (4.2.3)).

In the sequel, as in Chapter 1, we will say that a configuration ZN is ”typical” with respect
to the probability measure f

(0)
0 , if the corresponding empirical measure µN(z|ZN) converges to

f
(0)
0 in the weak topology of probability measures.

By equation (4.2.10) for k = 1, we have:

(∂t + VN · ∇XN
)W

(1)
N = ∇XN

U · ∇VN
W

(1)
N ,

W
(1)
N (ZN ; t)|t=0 = W

(1)
N,0(ZN), (4.4.8)

namely, the classical Liouville equation (1.1.5), where, to simplify the notation, we omitted the
superscript ”cl”. Therefore:

W
(1)
N (ZN ; t) = SN(t)W

(1)
N,0(ZN). (4.4.9)
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Finally, by virtue of (4.4.9) and (4.4.3), we obtain(
u,W

(1)
N,1(t)

)
=

∫
R3N×R3N

dZNSN(t)W
(1)
N,0(ZN) (u, µN) =

=

∫
R3N×R3N

dZNW
(1)
N,0(ZN) (u, µN(t)) =

=

∫
R3N×R3N

dZND2W
(0)
N,0(ZN) (u, µN(t)) =

=

∫
R3N×R3N

dZNW
(0)
N,0(ZN)

(
u,D2µN(t)

)
=

=
(
u,EN

[
D2µN(t)

])
. (4.4.10)

Therefore, the behavior of W
(1)
N,1(t) is determined by that of D2µN(t) for any initial configuration

ZN which is typical with respect to f
(0)
0 . Finally, since µN(t) solves the Vlasov equation in the

weak form (see Chapter 1):{
(∂t + v · ∇x)µN(t) = (∇φ ∗ µN(t)) · ∇vµN(t)

µN(t)|t=0 = µN ,
(4.4.11)

applying D2, we get: {
(∂t + v · ∇x)D2µN(t) = L (µN(t))D2µN(t) +RN ,

D2µN(t)
∣∣
t=0

= D2µN ,
(4.4.12)

where RN is a term involving objects of the form
∑

j (DG,jµN(t)) (DG,jµN(t)) which, as we
shall see later, are of order 1/N when tested versus smooth functions. The equation (4.4.12)
is similar to (4.4.1), except for the presence of the term RN and for the fact that we have

L (µN(t)) instead of L
(
f (0)
)
. Therefore, the proof of the convergence of W

(1)
N,1(t) to f (1)(t)

reduces to that of a stability property for the solution of (4.4.1) with respect to suitable weak
topologies. Proposition 4.5.1 in the forthcoming Section 4.5 will provide us such property.

The general case k > 1 is only technically more complicated because of the presence of
source terms, but the main ideas are those presented here.

Remark 4.4.1 By looking at the strategy of the proof for k = 1 we realize that the basic
idea is to apply the classical mean-field theory at suitable derivatives of the empirical measure.
Therefore, if in the classical framework we have to deal with convergence with respect to the
weak topology of probability measures, namely, with continuous and uniformly bounded test
functions, now we need to deal with test functions whose derivatives are also continuous and
uniformly bounded (e.g (4.4.6)). Therefore we can argue that we will establish the term by
term convergence in a suitable distributional sense.
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We conclude by establishing a Proposition controlling the size of the derivatives of the
Hamilton flow associated with (1.1.3) with respect to the initial data.

From now on we shall denote by C a positive constant, independent of N , possibly changing
from line to line.

Proposition 4.4.1 Let zi(t) = (xi(t), vi(t)) , i = 1, . . . , N be the solution of equations (1.1.3)
with initial datum zi = (xi, vi) , i = 1, . . . , N . Let zβi ∀ β = 1, . . . , 6 be the β-th component of
zi ∈ R6. If the pair interaction potential φ is assumed to satisfy Hypotheses H, then, for each
k ∈ N: ∣∣∣∣∣ ∂kzβi (t)

∂zα1
j1
. . . ∂zαk

jk

∣∣∣∣∣ ≤ C

Nd
(i)
k

, (4.4.13)

where I := (j1, . . . , jk) is any sequence of possibly repeated indices and d
(i)
k is the number of

different indices in I which are also different from i.

The physical significance of (4.4.13) is obvious. In the mean-field context, the quantity

zi(t) depends weakly on zj if j 6= i for each t > 0. Actually
∂zβ

i (t)

∂zα
j

= O
(

1
N

)
while

∂zβ
i (t)

∂zα
i

= O (1)

and these two estimates give rise to (4.4.13) in the case k = 1. Estimate (4.4.13) says that for
each derivative of any order with respect to some zj of zi(t) , we gain a factor 1/N . We have
also the following corollary whose straightforward proof will be omitted.

Corollary 4.4.1 Let U = U(ZN(t)) be a function of the time evolved configuration ZN(t) of
the form:

U(ZN(t)) =
1

N

N∑
i=1

u(zi(t)),

where u ∈ C∞
b (R3 × R3). Then, if the pair interaction potential φ satisfies Hypotheses H, the

following estimate holds: ∣∣∣∣ ∂kU(ZN(t))

∂zα1
j1
. . . ∂zαk

jk

∣∣∣∣ ≤ C

Ndk
, (4.4.14)

where dk is the number of different indices in the sequence I = (j1, . . . , jk).

The proof of Proposition 4.4.1 will be given in Appendix A.

4.5 Results and technical preliminaries

We choose, as initial condition for the one-particle Wigner function, a mixture of coherent states.
The Wigner function associated with a pure coherent state centered at the point (x0, v0) is given
by:

w(x, v|x0, v0) =
1

(πε)3
e−

(x−x0)2

ε e−
(v−v0)2

ε . (4.5.1)
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Let now g = g(x, v) be a smooth probability density on the one-particle phase space
independent of ε (see Hypotheses H1 below) . Then we define:

f ε0 (x, v) =

∫
R3×R3

dx0dv0 w(x, v|x0, v0)g(x0, v0). (4.5.2)

Using the standard notation z = (x, v) and z0 = (x0, v0), (4.5.2) is equivalent to:

f ε0 (z) =
1

(πε)3

∫
R6

dz0 e
− (z−z0)2

ε g(z0) =

=
1

(π)3

∫
R6

dζ e−ζ
2

g(z −
√
εζ). (4.5.3)

Expanding

g(z −
√
εζ) = g(z)− (ζ · ∇z) g(z)

√
ε+ (ζ · ∇z)

2 g(z)
(
√
ε)2

2
+ . . .

· · · − (ζ · ∇z)
2n−1 g(z)

(
√
ε)2n−1

(2n− 1)!
+ (ζ · ∇z)

2n g(z)
(
√
ε)2n

(2n)!
+ . . . ,

(4.5.4)

and performing the gaussian integrations (which cancels the terms with the odd powers of
√
ε),

we readily arrive to the following expansion for the Wigner function f ε0 :

f ε0 = f
(0)
0 + εf

(1)
0 + · · ·+ εnf

(n)
0 + . . . , (4.5.5)

where

f
(0)
0 = g, (4.5.6)

f
(n)
0 = D2n

G f
(0)
0 for n ≥ 1, (4.5.7)

and Dk
G (G stands for ”Gaussian”), for each k > 0, is the following derivation operator with

respect to the variable z = (x, v):

Dk
G =

∑
α1...αk:
αj=1,...,6

CG(α1 . . . αk)
∂k

∂zα1 . . . ∂zαk
, (4.5.8)

where

CG(α1 . . . αk) =
1

k!

∫
R6

dζ e−ζ
2

k∏
j=1

ζαj . (4.5.9)
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Therefore, CG(α1 . . . αk) is equal to zero for each sequence α1 . . . αk in which at least one index
appears an odd number of times.

Hypotheses H1:
We assume that g = f

(0)
0 ∈ S(R3 × R3), thus (4.5.7) make sense for any n ≥ 1 and, in

particular, f
(n)
0 ∈ S(R3 × R3) for any n. By the analysis done in Section 4.1, this allows to

identify the time-evolved coefficients f (n)(t), n ≥ 1, as the unique solutions of the initial value
problems (4.1.11).

Remark 4.5.1 Here we consider a completely factorized N -particle initial state (see (4.2.1)),
then property (3.2.4) is satisfied. Furthermore the one-particle state is a mixture and this
automatically excludes the Bose statistics.

Remark 4.5.2 We made the choice to expand fully the initial state f ε0 according to equation
(4.5.5). Another possibility is to assume the (ε dependent) state f ε0 (which is a probability
measure in the present case) as initial condition for the Vlasov problem and, consequently,

f
(k)
0 = 0 for the problems (4.1.11). Now the coefficients f (k)(t) are ε dependent but this does

not change deeply our analysis because f ε0 is smooth, uniformly in ε.

As we explained at the beginning of the present Chapter, our goal is to compare the j-particle
semiclassical expansion associated with the N -particle flow, namely W

(k)
N,j(t), k = 0, 1, 2, . . . ,

with the corresponding coefficients f
(k)
j (t) of the expansion:

f εj (t) = f
(0)
j (t) + εf

(1)
j (t) + · · ·+ εkf

(k)
j (t) + . . . , (4.5.10)

where f
(k)
j (t) is given by (4.3.4). The main result is the following.

Theorem 4.5.1 Let us consider the (Hartree) nonlinear Wigner-Liouville equation (3.3.1) as
in (4.5.2) where the probability distribution g satisfies Hypotheses H1. Moreover, let us consider
the N-particle Wigner-Liouville equation (3.2.1) with factorized initial datum as in (4.2.1). If
the pair interaction potential φ is assumed to verify Hypotheses H, for all t > 0, for any integers
k and j, the following limit holds in S ′(R3j × R3j):

W
(k)
N,j(t) → f

(k)
j (t). (4.5.11)

as N →∞.

Remark 4.5.3 As we shall see in the sequel, the convergence (4.5.11) is slightly stronger than

the convergence in S ′(R3j×R3j). Indeed, the sequence W
(k)
N,j(t) converges also when it is tested

on functions in C∞b (R3j × R3j). Such kind of convergence, which is natural in the present
context, will be called C∞b -weak convergence.
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A crucial tool in proving Theorem 4.5.1 is provided by the following

Proposition 4.5.1 Let γN(x, v; t) be a sequence in S ′(R3 × R3) (for each t) satisfying:{
(∂t + v · ∇x) γN = L(hN)γN + ΘN ,

γN(x, v; t)|t=0 = γN,0(x, v),
(4.5.12)

where γN,0, ΘN are sequences in S ′(R3 × R3). We assume that:
i) hN(x, v; t) is a sequence of probability measures converging, as N → ∞, to a measure
h(t)dxdv with a density h(t) ∈ C∞b (R3 × R3) and such that |∇vh| ∈ C0 (L1(R3 × R3),R+).
ii) for all u1, u2 in C∞b (R3 ×R3) , there exists a constant C = C(u1, u2) > 0, not depending on
N , such that:

‖u1 ∗ (u2γN)‖L∞(R3×R3) < C < +∞ for any t. (4.5.13)

iii) γN,0 → γ0, as N →∞, C∞b -weakly , γ0 = γ0(x, v) is a function belonging to L1(R3 ×R3).
iv) ΘN → Θ, as N →∞, C∞b -weakly , Θ = Θ(x, v; t) is a function belonging to C0 (L1(R3 × R3),R+).
Then:

γN → γ, as N →∞ C∞b -weakly,

(4.5.14)

where γ is the unique solution of the problem (4.1.14) in C0 (L1 (R3 × R3) ,R+).

For the proof, see Appendix B.

4.6 Convergence

This section is devoted to the proof of Theorem 4.5.1.

By (4.2.13) and (4.2.11), for k ≥ 0 we have:

W
(k)
N (ZN ; t) =

∑
n≥0

k∑
r=0

∑
r1...rn:
rj>0∑
rj=k−r

∫ t

0

dt1

∫ t1

0

dt2 . . .

∫ tn−1

0

dtn

SN(t− t1)T
(r1)
N SN(t1 − t2) . . . T

(rn)
N SN(tn)W

(r)
N,0(ZN). (4.6.1)

It is useful to remind that, the only non-vanishing terms in (4.6.1) are those for which all
r1, . . . , rn are even (because the odd terms in the expansion for the operator T εN appearing in
(3.2.1) are vanishing (see (4.2.7)).

83



According to (4.2.4) and (4.5.7),

W
(r)
N,0(ZN) =

∑
s1...sN
0≤sj≤r∑

j sj=r

N∏
j=1

(
D

2sj

G,jf
(0)
0 (zj)

)
, (4.6.2)

where Dk
G,j is defined in (4.5.8) and the extra symbol j means that this operator acts on the

variable zj. Defining the operator D2r as:

D0 = 1,

D2r =
∑
s1...sN :
0≤sj≤r∑

j sj=r

N∏
j=1

D
2sj

G,j, r ≥ 1, (4.6.3)

we have:

W
(r)
N,0(ZN) = D2rW

(0)
N,0(ZN) ∀ r ≥ 0. (4.6.4)

In order to investigate the behavior of the j-particle functions W
(k)
N,j(Zj; t) when N → ∞,

we consider the following object, for a given configuration Z ′j = (z′1 . . . z
′
j):

ω
(k)
N,j(Z

′
j; t) =

∫
R6N

dZN W
(k)
N (ZN ; t)µN(z′1|ZN) . . . µN(z′j|ZN). (4.6.5)

In the end of the section, we will show that (4.6.5) is asymptotically equivalent to W
(k)
N,j(Z

′
j; t).

From (4.6.1), (4.6.4) and (4.6.5), it follows that:

ω
(k)
N,j(Z

′
j; t) =

∑
n≥0

k∑
r=0

∑
r1...rn:
rj>0∑
rj=k−r

∫ t

0

dt1

∫ t1

0

dt2 . . .

∫ tn−1

0

dtn

∫
R6N

dZNµN,j(Z
′
j|ZN)

SN(t− t1)T
(r1)
N SN(t1 − t2) . . . T

(rn)
N SN(tn)D2rW

(0)
N,0(ZN), (4.6.6)

where

µN,j(Z
′
j|ZN) = µN(z′1|ZN) . . . µN(z′j|ZN). (4.6.7)

Integrating by parts, reminding that each rj is even and that each T
(rj)
N involves derivatives of

order rj + 1, we have:

ω
(k)
N,j(Z

′
j; t) =

∑
n≥0

(−1)n
k∑
r=0

∑
rn: rj>0
|rn|=k−r

∫ t

ord

dtn

EN

[
D2rT

(rn)
N (tn)T

(rn−1)
N (tn−1) . . . T

(r1)
N (t1)µN,j(Z

′
j|ZN(t))

]
, (4.6.8)
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where rn is the sequence of positive integers r1, . . . , rn, |rn| =
∑n

j=1 rj and ZN(t) is the Hamil-

tonian flow associated with (1.1.3). Moreover tn = t1 . . . tn and
∫ t
ord

dtn denotes the integral
over he simplex 0 < tn < tn−1 < · · · < t1 < t. Finally, EN stands for the expectation with

respect to the N -particle density W
(0)
N,0 and

T
(r)
N (t) = SN(−t)T (r)

N SN(t). (4.6.9)

Therefore, the objects we have to investigate in the limit N →∞ are:

ν
(k)
j (Z ′j; t) =

∑
n≥0

(−1)n
k∑
r=0

∑
rn: rj>0
|rn|=k−r

∫ t

ord

dtnηj(Z
′
j; t, r, rn, tn, ZN),

(4.6.10)

(for any configuration ZN , typical with respect to f
(0)
0 ), where ηj is given by:

ηj(Z
′
j; t, r, rn, tn, ZN) = D2rT

(rn)
N (tn)T

(rn−1)
N (tn−1) . . . T

(r1)
N (t1)µN,j(Z

′
j|ZN(t)).

(4.6.11)

Note that:

ν
(0)
j (Z ′j; t) = µN,j

(
Z ′j|ZN(t)

)
.

(4.6.12)

We start by analyzing the behavior of ν
(k)
j in the cases j = 1, 2, thus we are lead to consider:

η1(z
′
1; t, r, rn, tn, ZN) = D2rT

(rn)
N (tn)T

(rn−1)
N (tn−1) . . . T

(r1)
N (t1)µN(z′1|ZN(t)),

(4.6.13)

and

η2(z
′
1, z

′
2; t, r, rn, tn, ZN) = D2rT

(rn)
N (tn)T

(rn−1)
N (tn−1) . . . T

(r1)
N (t1)µN,2 (Z ′2|ZN(t)) .

(4.6.14)

It is useful to stress that the operators T
(rj)
N (tj) (j = 1, . . . , n) and D2r act as suitable

distributional derivatives with respect to the variables ZN . To evaluate η1, let us first analyze
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the action of T
(r)
N (τ). By (4.6.9) and (4.2.14), for any function G = G(ZN), we have:(

T
(r)
N (τ)G

)
(ZN) = SN (−τ)

(
T̂

(r)
N +R

(r)
N

)
(SN (τ)G) (ZN) =

= (−1)r/2
cr
N

∑
j,l

SN (−τ)Dr+1
x φ(xj − xl) ·Dr+1

vj
(SN (τ)G) (ZN) +

+
1

N

N∑
l,j=1

∑
k1,k2∈N3

|k1|+|k2|=r+1

Ck1,k2SN (−τ) ∂r+1

∂
|k1|
xl ∂

|k2|
xj

φ(xl − xj) ·
∂r+1

∂
|k1|
vl ∂

|k2|
vj

(SN (τ)G) (ZN) .

(4.6.15)

Note that the derivatives involved here are done with respect to the variables at time t = 0.
Denoting by Dr

zj
any derivative of order r with respect to a variable zj at time t = 0, we

observe that:

SN(−t)Dr
zj
G(ZN) =

(
Dr
zj
G
)

(ZN(t)) = Dr
zj

(t) (SN(−t)G) (ZN), (4.6.16)

where, by Dr
zj

(t), we denote the same derivative of order r with respect to the variable zj(t).
Then, by (4.6.16) and (4.6.15):(

T
(r)
N (τ)G

)
(ZN) = SN (−τ)

(
T̂

(r)
N +R

(r)
N

)
SN (τ)G (ZN) =

= (−1)r/2
cr
N

∑
j,l

(
Dr+1
x φ

)
(xj(τ)− xl(τ)) ·Dr+1

vj
(τ)G (ZN) +

+
1

N

N∑
l,j=1

∑
k1,k2∈N3

|k1|+|k2|=r+1

Ck1,k2

(
∂r+1

∂
|k1|
xl ∂

|k2|
xj

φ

)
(xl(τ)− xj(τ)) ·

∂r+1

∂
|k1|
vl ∂

|k2|
vj

(τ)G (ZN) .

(4.6.17)

Therefore, in computing the action of T
(r)
N (τ), we have to consider derivatives with respect to

the variables at time τ . As a consequence, we have to deal with a complicated function of the
configuration ZN which, however, we do not need to make explicit, as we shall see in a moment.

On the basis of the previous considerations, we compute the time derivative of η1 by
applying the operators D2rT

(rn)
N (tn)T

(rn−1)
N (tn−1) . . . T

(r1)
N (t1) to the Vlasov equation:(

∂t + v′1 · ∇x′1

)
µN(t) =

(
∇x′1

φ ∗ µN(t)
)
· ∇v′1

µN(t). (4.6.18)

In doing this we have to compute

D2rT
(rn)
N (tn)T

(rn−1)
N (tn−1) . . . T

(r1)
N (t1)µN(z′1|ZN(t))µN(z′2|ZN(t)). (4.6.19)
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Now we select the contribution in which each T
(r`)
N (t`) and D2r apply either on µN(z′1|ZN(t))

or to µN(z′2|ZN(t)). The other contribution involves terms in which are present products of
derivatives with respect to the same variable. By Proposition 4.4.1 and Corollary 4.4.1 we
expect those terms to be negligible (in the C∞b -weak sense) in the limit N →∞. Therefore we
obtain the following equation:(

∂t + v′1 · ∇x′1

)
η1(z

′
1, t, r, rn, tn, ZN) = L(µN(t))η1(z

′
1, t, r, rn, tn, ZN) +

+
∑

0≤`≤r

∑
0≤m≤n

∑
I⊂In:
|I|=m,

0<|rI |+`<k

(
∇x′1

φ ∗ η1(·, t, `, rI , tI , ZN)
)
· ∇v′1

η1(z
′
1, t, r − `, rIn\I , tIn\I , ZN) +

+E1
N , (4.6.20)

where E1
N is an error term which will be proven to be negligible in the limit N →∞ in Appendix

C. In (4.6.20) we used the notations:

In = {1, 2, . . . , n}, I is any subset of In, rI = {rj}j∈I , tI = {tj}j∈I .
(4.6.21)

Next, we compute the time derivative of ν
(k)
1 . We have:

(
∂t + v′1 · ∇x′1

)
ν

(k)
1 =

∑
n≥0

(−1)n
k∑
r=0

∑
|rn|:
rj>0

|rn|=k−r

∫ t

0

dt2

∫ t2

0

dt3 . . .

∫ tn−1

0

dtnη1 (z′1; t, r, rn, tn, ZN)

∣∣∣∣
t1=t

+

+
∑
n≥0

(−1)n
k∑
r=0

∑
|rn|:
rj>0

|rn|=k−r

∫ t

ord

dtn
(
∂t + v′1 · ∇x′1

)
η1(z

′
1; t, r, rn, tn, ZN). (4.6.22)

In evaluating the first term on the right hand side of (4.6.22), we are lead to consider η1

evaluated in t = t1. Thus, according to the expression of η1 (see (4.6.13)), we have to deal with:

T
(r1)
N (t)µN(z′1|ZN(t)) = SN(−t)T (r1)

N µN(z′1|ZN). (4.6.23)

Therefore:

T
(r1)
N (t)µN(z′1|ZN(t)) = (−1)r1/2cr1

(
Dr1+1
x′1

φ ∗ µN(t)
)

(x′1) ·D
r1+1
v′1

µN(z′1|ZN(t)) =

= (−1)r1/2cr1

∫
dx′2 dv′2 D

r1+1
x′1

φ(x′1 − x′2) ·D
r1+1
v′1

µN(x′1, v
′
1|ZN(t))µN(x′2, v

′
2|ZN(t)),

(4.6.24)
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where the term involving off-diagonal derivatives, namely R
(r1)
N (see (4.2.16)), disappears be-

cause both the derivatives and the empirical distribution are evaluated at time t. Hence we
compute η1 in t = t1 and, inserting it in the first term of the right hand side of (4.6.22), we
obtain: ∑

n≥0

(−1)n
k∑
r=0

∑
rn: rj>0
|rn|=k−r

∫ t

0

dt2

∫ t2

0

dt3dt3 . . .

∫ tn−1

0

dtnη1 (z′1; t, r, rn, tn, ZN)

∣∣∣∣
t1=t

=

=
∑

0<r1≤k
r1 even

(−1)r1/2cr1

∫
dx′2 dv′2 D

r1+1
x′1

φ(x′1 − x′2) ·D
r1+1
v′1

ν
(k−r1)
2 (x′1, v

′
1, x

′
2, v

′
2; t).

(4.6.25)

Let us come back now to equation (4.6.22). It is useful to observe that:∫ t

ord

dtn
∑
I⊂In:
|I|=m

=

∫ t

ord

dtI

∫ t

ord

dtIn\I . (4.6.26)

Then, putting together (4.6.22), (4.6.25), (4.6.20) and (4.6.26), we obtain the following equation

for ν
(k)
1 :(

∂t + v′1 · ∇x′1

)
ν

(k)
1 (x′1, v

′
1; t) = L(µN(t))ν

(k)
1 (x′1, v

′
1; t) +

+
∑

0<r1≤k
r1 even

(−1)r1/2cr1

∫
dx′2 dv′2 D

r1+1
x′1

φ(x′1 − x′2) ·D
r1+1
v′1

ν
(k−r1)
2 (x′1, v

′
1, x

′
2, v

′
2; t) +

+
∑

0<`<k

(
∇x′1

φ ∗ ν(`)
1 (t)

)
· ∇v′1

ν
(k−`)
1 (t) + E2

N , (4.6.27)

with initial datum given by:

ν
(k)
1 (x′1, v

′
1; t)|t=0 = η1((z

′
1; 0, k, r0, t0, ZN) = D2kµN(z′1|ZN). (4.6.28)

Here E2
N arises from E1

N (see (4.6.20)). Now, we want to prove that:

ν
(k)
1 (t) → f (k)(t), as N →∞, C∞b − weakly, (4.6.29)

and

ν
(k)
2 (t) → f

(k)
2 (t), as N →∞, C∞b − weakly, (4.6.30)

for any configuration ZN such that µN → f
(0)
0 in the weak sense of probability measure (namely,

for any ZN typical with respect to f
(0)
0 (see Section 4.4)). As a consequence, reminding that
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ν
(k)
1 (t) and ν

(k)
2 (t) are equal to ω

(k)
N,1(t) and ω

(k)
N,2(t) respectively, a.e. with respect to W

(0)
N,0,

(4.6.29) and (4.6.30) are equivalent to:

ω
(k)
N,1(t) → f (k)(t), as N →∞, C∞b − weakly, (4.6.31)

and

ω
(k)
N,2(t) → f

(k)
2 (t), as N →∞, C∞b − weakly. (4.6.32)

As we already remarked, the C∞b -weak convergence implies the convergence in S ′, therefore,

(4.6.31) and (4.6.32) imply the convergence of ω
(k)
N,1(t) to f (k)(t) in S ′(R3 × R3) and of ω

(k)
N,2(t)

to f
(k)
2 (t) in S ′(R6 × R6).

4.6.1 One and two-particle convergence

In evaluating the behavior of νk1 (t) when N → ∞, we note that it solves the initial value
problem (4.6.27)-(4.6.28) for which we want to use Proposition 4.5.1. First, however, we have
to verify the assumptions. The first one, namely i), is verified as follows by our choice of the

initial datum which ensures f
(0)
0 to be a smooth probability measure (see Section 4.5) and by

the classical mean-field theory recalled in Chapter 1.
Now, we have to check that assumption ii) is satisfied, namely, we have to prove that

∀ u1, u2 in C∞b (R3 × R3),

there exists a constant C = C(u1, u2) > 0, independent of N , such that:∥∥∥u1 ∗
(
u2 ν

(k)
1 (t)

)∥∥∥
L∞(R3×R3)

< C for any t. (4.6.33)
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We have:∥∥∥u1 ∗
(
u2 ν

(k)
1 (t)

)∥∥∥
L∞(R3×R3)

= sup
x′1,v

′
1

∣∣∣∣∫ dydw u1(x
′
1 − y, v′1 − w)u2(y, w)ν

(k)
1 (y, w; t)

∣∣∣∣ ≤
≤
∑
n≥0

k∑
r=0

∑
rn: rj>0
|rn|=k−r

∫ t

ord

dtn sup
x′1,v

′
1

∣∣∣∣∫ dydw u1(x
′
1 − y, v′1 − w)u2(y, w)η1(y, w; t; r, rn, tn, ZN)

∣∣∣∣ =

=
∑
n≥0

k∑
r=0

∑
rn: rj>0
|rn|=k−r

∫ t

ord

dtn

sup
x′1,v

′
1

∣∣∣∣∫ dydw (u1(x
′
1 − y, v′1 − w)u2(y, w))D2rT

(rn)
N (tn) . . . T

(r1)
N (t1)µN(y, w|ZN(t))

∣∣∣∣ =

=
∑
n≥0

k∑
r=0

∑
rn: rj>0
|rn|=k−r

∫ t

ord

dtn

sup
x′1,v

′
1

∣∣∣∣∫ dydw g(x′1, v
′
1, y, w)D2rT

(rn)
N (tn) . . . T

(r1)
N (t1)µN(y, w|ZN(t))

∣∣∣∣ ,
(4.6.34)

where we used the notation g(x′1, v
′
1, y, w) := u1(x

′
1 − y, v′1 − w)u2(y, w) and, clearly, we have

g(x′1, v
′
1, ·, ·) ∈ C∞b (R3×R3) for any x′1 and v′1 and g(·, ·, y, w) ∈ C∞b (R3×R3) for any y and w. By

some estimates which will be proven in Appendix C (see Lemma C.2), we are guaranteed that,

applying the operator D2rT
(rn)
N (tn) . . . T

(r1)
N (t1) on the empirical measure µN(t) and integrating

versus a function in C∞b (R3 ×R3) we obtain a quantity uniformly bounded in N . This feature,
by virtue of the good properties of the function g ensures that (4.6.34) is finite.

Let us now look at the initial datum for ν
(k)
1 (t), in order to verify assumption iii).

From (4.6.28) we know that ν
(k)
1 (0) = D2kµN ∈ S ′(R3 × R3). As regard to its limiting

behavior, we find that:

ν
(k)
1 (t)

∣∣∣
t=0

= D2kµN =
N∑
n=1

∑
I⊂IN
|I|=n

∑
sj :j∈I

1≤sj≤k∑
j sj=k

∏
j∈I

D
2sj

G,j µN , (4.6.35)

where IN = {1, . . . , N}. For our convenience, we have written the action of the operator D2k

in a equivalent and slightly different way from that we used in (4.6.3).
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We realize that the only surviving term in the sum (4.6.35) is that with n = 1. Hence:

νk1 (t)
∣∣
t=0

=
N∑
j=1

D2k
G,jµN =

1

N

N∑
j=1

D2k
G,jδ(z

′
1 − zj) = D2k

G µN . (4.6.36)

Therefore we can conclude, by using the mean-field limit:(
u, ν

(k)
1 (t)|t=0

)
=
(
u,D2k

G µN
)

=

=
(
D2k
G u, µN

)
→
(
D2k
G u, f

(0)
0

)
=
(
u,D2k

G f
(0)
0

)
=
(
u, f

(k)
0

)
, as N →∞,

∀ u in C∞b
(
R3 × R3

)
. (4.6.37)

Thus, f
(k)
0 plays the role of γ0 in Proposition 4.5.1 and it is in L1 (R3 × R3) because f

(0)
0 ∈

S (R3 × R3).
We conclude the convergence proof (for the one and two-particle functions) by induction.

For k = 0 we know that, for any configuration ZN which is typical with respect to f
(0)
0 , we

have:

ν
(0)
1 (t) = µN(t) → f (0)(t), as N →∞ (4.6.38)

in the weak sense of probability measures (see (1.3.10) and (1.3.11)) and, as a consequence, the
convergence holds C∞b − weakly. Moreover

ν
(0)
2 (t) = µN(t)⊗ µN(t) → f

(0)
2 (t) = f (0)(t)⊗ f (0)(t), as N →∞, (4.6.39)

in the weak sense of probability measures and, as previously, the convergence holds C∞b −weakly.
We make the following inductive assumptions for all h < k:

ν
(h)
1 (t) → f (h)(t), as N →∞, C∞b − weakly, (4.6.40)

for any configuration ZN which is typical with respect to f
(0)
0 , and

ν
(h)
2 (t) → f

(h)
2 (t) =

∑
0≤q≤h

f (q)(t)f (h−q)(t), as N →∞, C∞b − weakly, (4.6.41)

for any configuration ZN which is typical with respect to f
(0)
0 .

Now we want to prove that (4.6.40) and (4.6.41) hold also for h = k.
Thanks to (4.6.40), we can affirm that:∑

0<`<k

(
∇x′1

φ ∗ ν(`)
1

)
· ∇v′1

ν
(k−`)
1 →

∑
0<`<k

(
∇x′1

φ ∗ f (`)
)
· ∇v′1

f (k−`) =
∑

0<`<k

T
(0)
` f (k−`),

C∞b − weakly, (4.6.42)
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and, thanks to (4.6.41), have:∑
0<r1≤k
r1 even

(−1)r1/2cr1

∫
dx′2dv

′
2D

r1+1
x′1

φ(x′1 − x′2) ·D
r1+1
v′1

ν
(k−r1)
2 (x′1, v

′
1, x

′
2, v

′
2; t)

↓ C∞b − weakly

∑
0<r1≤k
r1 even

(−1)r1/2cr1

∫
dx′2dv

′
2D

r1+1
x′1

φ(x′1 − x′2) ·D
r1+1
v′1

f
(k−r1)
2 (x′1, v

′
1, x

′
2, v

′
2; t) =

=
∑

0<r1≤k
r1 even

∑
0≤q≤k−r1

(−1)r1/2cr1

∫
dx′2dv

′
2D

r1+1
x′1

φ(x′1 − x′2)f
(k−r1)(x′2, v

′
2; t) ·D

r1+1
v′1

f (q)(x′1, v
′
1; t) =

=
∑

0<r1≤k
r1 even

∑
0≤q≤k−r1

T (r1)
q f (k−r1−q)(t).

(4.6.43)

At the end, putting together (4.6.42) and (4.6.43), we find that the sum of the source terms
in equation (4.6.27) converges C∞b -weakly to:∑

0<`<k

T
(0)
` f (k−`) +

∑
0<r1≤k

0≤q≤k−r1

T (r1)
q f (k−r1−q), (4.6.44)

which plays the role of Θ in Proposition 4.5.1 and it is easy to verify that it is in C0 (L1(R3 × R3),R+).
Therefore, we can apply Proposition 4.5.1 claiming that, for any typical configuration ZN with
respect to f

(0)
0 , ν

(k)
1 (t) converges C∞b -weakly to the solution of the problem (4.1.14). Looking at

(4.1.11) and (4.1.13), we realize that we obtained the equation satisfied by f (k)(t).
In order to ”close” the recurrence procedure, it remains to show the two-particle conver-

gence at order k. It follows from the one-particle analysis and from the following computation
(see (4.6.14)):

η2(z
′
1, z

′
2; t, r, rn, tn, ZN) =

=
∑

0≤`≤k

∑
0≤m≤n

∑
I:I⊆In
|I|=m

η1(z
′
1; t, `, rI , tI , ZN)η1(z

′
2; t, k − `, rIn\I , tIn\I , ZN) +R2

N ,(4.6.45)

where R2
N is a remainder arising from the action of the operator D2rT

(rn)
N (tn) . . . T

(r1)
N (t1) on a

product of two empirical measures µN(t). In Appendix C we will see that it is vanishing in the

limit. As a consequence, ν
(k)
2 (see (4.6.10) for j = 2) is such that:

ν
(k)
2 (t) =

∑
0≤q≤k

ν
(q)
1 (t)ν

(k−q)
1 (t) + o(1), (4.6.46)
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in the limit N → ∞. Therefore, from the inductive assumption (4.6.40) and from the one-
particle convergence at order k, we conclude that:

ν
(k)
2 (t) →

∑
0≤q≤k

f (q)(t)f (k−q)(t) = f
(k)
2 (t), as N →∞, C∞b − weakly, (4.6.47)

for any configuration ZN which is typical with respect to f
(0)
0 . Thus, we have just proven the

convergence of ω
(k)
N,j in the cases j = 1, j = 2.

4.6.2 j-particle convergence

As for j = 2, the j-particle convergence can be reduced by the one-particle control. Indeed by
(4.6.10) and (4.6.11) we have:

ν
(k)
j (t) =

∑
s1...sj

0≤sm≤k∑
m sm=k

j∏
m=1

ν
(sm)
1 (t) +Rj

N , (4.6.48)

with Rj
N → 0 when N →∞.

Again the error term Rj
N arises from the presence of products of derivatives with respect to

the same variable. In conclusion, the result we proved for ν
(k)
1 (t), together with the estimates

proven in Appendix C, is sufficient to guarantee the C∞b -weak convergence of ν
(k)
j (t) to f

(k)
j (t)

for any j (for any typical configuration ZN with respect to f
(0)
0 ), and, as a consequence, the

C∞b -weak convergence of ω
(k)
N,j(t) is f

(k)
j (t), for any j.

The final step is to realize that this convergence does imply that for the coefficients W
(k)
N,j(t),

namely what is established by Theorem 4.5.1.
First of all, we observe that, for any test function u we have:(

u,W
(k)
N,1(t)

)
=

∫
R6

dz1W
(k)
N,1(z1; t)u(z1) =

=

∫
R3N×R3N

dZNW
(k)
N (ZN ; t)u(z1) =

=

∫
R3N×R3N

dZNW
(k)
N (ZN ; t)

1

N

N∑
l=1

u(zl) =

=

∫
R3N×R3N

dZNW
(k)
N (ZN ; t) (u, µN) =

(
u, ω

(k)
N,1(t)

)
,

(4.6.49)
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where we made use of the symmetry of the coefficient W
(k)
N (ZN ; t) with respect to any per-

mutation of the variables (the computation is the same we did in Section 4.4 for W
(1)
N,1(t)).

From (4.6.49), we can see that W
(k)
N,1(t) and ω

(k)
N,1(t) are equal as distributions in S ′ (R3 × R3)

(in particular, we can choose test functions belonging to C∞b (R3 × R3)), then the convergence

of W
(k)
N,1(t) is proven. Moreover, for j ≥ 2, a straightforward computation shows that, by fixing

an index j, we have(
uj, ω

(k)

N,j
(t)
)

=
N(N − 1) . . . (N − j + 1)

N j

(
uj,W

(k)

N,j
(t)
)

+
Cj<j
N

, (4.6.50)

where Cj<j < ∞ provided that
(
uj,W

(k)
N,j(t)

)
is uniformly bounded for each j < j. Then, to

conclude the proof of Theorem 4.5.1, it is enough to use a recurrence argument.
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Chapter 5

Outlooks and Perspectives

In this chapter we give an overview of possible developments of our research, both in the per-
spective of generalizing our result, and from the point of view of applications in other (somewhat
related) fields.

First we observe that the we can apply Theorem 4.5.1 even by considering as one-particle
initial datum a suitable mixtures of WKB states. Indeed, let us consider the one-particle WKB
state described by the wave function ψWKB ∈ L2 (R3) given by:

ψWKB(x|v0) = a(x)ei
v0·x

ε , a ∈ S(R3), a(x) ∈ R ∀ x, v0 fixed in R3, (5.1)

where the amplitude a is assumed to verify∫
dx a2(x) = 1, (5.2)

namely, a2(x) can be interpreted as a one-particle probability density in the position phase
space R3. The Wigner function associated with (5.1), given by

f εWKB(x, v|v0) = (2π)−3

∫
R3

dy ei v·y ψWKB

(
x+

εy

2
|v0

)
ψWKB

(
x− εy

2
|v0

)
=

= (2π)−3

∫
R3

dy ei y·v a
(
x+

εy

2

)
e−i

v0·(x+
εy
2 )

ε a
(
x− εy

2

)
ei

v0·(x− εy
2 )

ε =

= (2π)−3

∫
R3

dy ei y·(v−v0) a
(
x+

εy

2

)
a
(
x− εy

2

)
, (5.3)

can be expanded as follows

f εWKB(x, v|v0) = f
(0)
WKB(x, v|v0) + εf

(1)
WKB(x, v|v0) + ε2f

(2)
WKB(x, v|v0) + . . . (5.4)

95



where

f
(0)
WKB(x, v|v0) = a2(x)δ(v − v0), (5.5)

f
(2n+1)
WKB (x, v|v0) = 0 ∀ n = 0, 1, 2, . . . , (5.6)

f
(2n)
WKB(x, v|v0) = − 1

(2)2n

2n∑
l=0

1

l!

1

(2n− l)!
(−1)lDla(x)D2n−la(x)D2n

v δ(v − v0), ∀ n = 1, 2, . . .

(5.7)

and Dm
v δ(v − v0), for any m > 0, is the distribution acting as

(5.8)

(u,Dm
v δ(v − v0)) =

∫
dv u(v)Dm

v δ(v − v0) =

= (−1)m
∫

dv Dm
v u(v)δ(v − v0) = (−1)mDm

v u(v0),

(5.9)

for any smooth test function u.
Then, we consider the Wigner function

f εW (x, v) =

∫
dv0 gW (v0)f

ε
WKB(x, v|v0), gW ∈ S

(
R3
)

(5.10)

associated with the (continuum) mixed state (see paragraph ”Mixed states” in Section 2.1)
described by the density matrix (kernel)

ρW (x, v) =

∫
dv0gW (v0)ψWKB(x|v0)ψWKB(y|v0) (5.11)

and we assume gW to be a probability density with respect to the velocity variable, gW not
depending on ε (states similar to (5.10) have been considered in [24]). By (5.4), (5.5), (5.6)
and (5.7) we obtain that (5.10) is expanded as:

f εW (x, v) = f
(0)
W (x, v) + εf

(1)
W (x, v) + ε2f

(2)
W (x, v) + . . . (5.12)

where

f
(0)
W (x, v) = a2(x)gW (v), (5.13)

f
(2n+1)
W (x, v) = 0 ∀ n = 0, 1, 2, . . . , (5.14)

f
(2n)
W (x, v) = − 1

(2)2n

2n∑
l=0

1

l!

1

(2n− l)!
(−1)lDla(x)D2n−la(x)D2n

v gW (v). ∀ n = 0, 1, 2, . . .

(5.15)
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By virtue of our assumptions on a and gW we find that f
(0)
W defined by (5.13) is a one-particle

probability density and f
(0)
W ∈ S (R3). Furthermore, we choose a in such a way that

Dma(x) = α(m)(x)a(x), ∀ m ≥ 1 with α(m)(x) ∈ C0
(
R3
)
, (5.16)

C0 (R3) being the space of continuous functions. Therefore, by (5.15) we find

f
(2n)
W (x, v) = − 1

(2)2n

2n∑
l=0

1

l!

1

(2n− l)!
(−1)lDla(x)D2n−la(x)D2n

v gW (v) =

= β(2n)(x)a2(x)D2n
v gW (v) = β(2n)(x)D2n

v f
(0)
W (x, v) ∀ n = 0, 1, 2, . . .

(5.17)

where β(2n)(x) = − 1
(2)2n

∑2n
l=0

1
l!

1
(2n−l)!(−1)lα(l)(x)α(2n−l)(x) for any n ≥ 1 and in the last equality

of (5.17) we used (5.13). By the smoothness of α (see (5.16)) it follows that β(2n)(x) ∈ C0 (R3)

for all n, thus (5.17) together with the smoothness of f
(0)
W implies that f

(2n)
W ∈ S (R3 × R3) for

all n ≥ 1.
Therefore, we have

f
(0)
W ∈ S

(
R3 × R3

)
(5.18)

f
(2n+1)
W (x, v) = 0 ∀ n = 0, 1, 2, . . . , (5.19)

f
(2n)
W ∈ S

(
R3 × R3

)
∀ n = 1, 2, . . .

(5.20)

and, by applying Proposition 4.1.1 as in Section 4.1, we can identify the time-evolved coefficients
f

(k)
W (t), for each k ≥ 0, as the unique solutions of problems (4.1.10) and (4.1.11) in L1 (R3 × R3).

Clearly, by (5.19) we find

f
(2n+1)
W (x, v; t) ≡ 0, for each n ≥ 0 and ∀ t, (5.21)

while f
(2n)
W (t) ∈ S (R3 × R3) for any n ≥ 0. In particular, f

(0)
W (t) is the unique solution of

the Vlasov equation (1.1.8) with initial datum f
(0)
W , thus we are guaranteed that f

(0)
W (t) is a

one-particle probability density for all times.
Let us consider the following factorized initial datum for the N -particle Wigner-Liouville

equation (3.2.1)

W ε
N,W (XN , VN) = (f εW )⊗N (XN , VN). (5.22)

Then we find

W ε
N,W (XN , VN) = W

(0)
N,W (XN , VN) + εW

(1)
N,W (XN , VN) + ε2W

(2)
N,W (XN , VN) + . . . ,

(5.23)
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where, by (5.12),

W
(0)
N,W (XN , VN) =

(
f

(0)
W

)⊗N
(XN , VN) (5.24)

W
(n)
N,W (XN , VN) =

∑
s1...sN
0≤sj≤n∑

j sj=n

N∏
j=1

f
(sj)
W (xj, vj) for n ≥ 1, (5.25)

and we note that, as in the case we considered in Chapter 4, factorization holds only for the
zero order coefficient which, furthermore, turns to be an N -particle probability density.

By (5.25), thanks to (5.14) and (5.17), we find

W
(0)
N,W (XN , VN) =

(
f

(0)
W

)⊗N
(XN , VN) (5.26)

W
(n)
N,W (XN , VN) =

∑
s1...sN even

0≤sj≤n∑
j sj=n

N∏
j=1

β(sj)(xj)D
sj
vj
W

(0)
N,W (Xj, Vj) for n ≥ 1. (5.27)

Defining the operator D̂r, for any r even, as:

D̂0 = 1,

D̂r =
∑

s1...sN even:
0≤sj≤k∑

j sj=r

N∏
j=1

β(sj)(xj)D
sj
vj
, r ≥ 2, (5.28)

we have:

W
(2n+1)
N,W (XN , VN) = 0, for n = 0, 1, 2, . . . (5.29)

W
(2n)
N,W (XN , VN) = D̂2nW

(0)
N,W (XN , VN) for n = 0, 1, 2, . . . . (5.30)

Now, let us consider the factorized j-particle Wigner function (f εW (t))⊗j, where f εW (t) is
the solution of the (Hartree) nonlinear Wigner-Liouville equation (3.3.1) with initial datum f εW
given by (5.10). The product (f εW (t))⊗j can be expanded as

(f εW (t))⊗j = f
(0)
j,W (t) + εf

(1)
j,W (t) + ε2f

(2)
j,W (t) + . . . ,

(5.31)
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where, by the analysis done in Section 4.3 and thanks to (5.14), we have

f
(0)
j,W (t) =

(
f

(0)
W (t)

)⊗j
(5.32)

f
(2n+1)
j,W (t) = 0, ∀ n ≥ 0 (5.33)

f
(2n)
j,W (t) =

∑
s1...sjeven
0≤sm≤2n∑

m sm=2n

j∏
m=1

f
(sm)
W (t), ∀ n ≥ 1, (5.34)

f
(0)
W (t) solving the Vlasov equation (1.1.8) with initial datum f

(0)
W and f

(sm)
W (t), with 1 ≤ sm ≤

2n, obtained by (4.1.11).
By the analysis done in Section 4.2, we find that the N -particle zero order coefficient

W
(0)
N,W (t) solves  (∂t + VN · ∇XN

)W
(0)
N,W (t) = T

(0)
N W

(0)
N,W (t),

W
(0)
N,W (XN , VN ; t)

∣∣∣
t=0

=
(
f

(0)
W

)⊗N
(XN , VN)

(5.35)

the odd coefficients W
(2n+1)
N,W (t) are determined by (∂t + VN · ∇XN

)W
(2n+1)
N,W (t) = T

(0)
N W

(2n+1)
N,W (t),

W
(2n+1)
N,W (XN , VN ; t)

∣∣∣
t=0

= 0, k = 0, 1, 2, . . .
(5.36)

and the even terms W
(2n)
N,W (t) solve (∂t + VN · ∇XN

)W
(2n)
N,W (t) = T

(0)
N W

(2n)
N,W (t) + Θ

(2n)
N,W (t),

W
(2n)
N,W (XN , VN ; t)

∣∣∣
t=0

= D̂2nW
(0)
N,W (XN , VN), n = 1, 2, . . .

(5.37)

where
Θ

(2n)
N,W (t) =

∑
0≤l<2n

T
(2n−l)
N W

(l)
N,W (t). (5.38)

We observe that the odd coefficients W
(2n+1)
N,W (t) solve homogeneous Liouville equations

with zero initial data, then W
(2n+1)
N,W (t) ≡ 0 for all n ≥ 0. On the contrary, the zero order term

W
(0)
N,W (t) solve the Liouville problem (5.35), thus, denoting by {W (0)

j,W (t)}Nj=1 the corresponding
j-particle marginals, by the classical mean-field theory we obtain

W
(0)
j,W (t) →

(
f

(0)
W (t)

)⊗j
, as N →∞, for any fixed j (5.39)
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in the weak topology of probability measures and, in particular, in S ′ (R3j × R3j), where(
f

(0)
W (t)

)⊗j
is given by (5.32).

As regard to the higher order terms, we can apply exactly the same strategy presented in
Chapter 4, replacing the operator Dk

G defined in (4.5.8) with β(k)(x)Dk
v (see (5.17) ) and the

operator Dr (see Section 4.6) with D̂r (see (5.28)). In the end we prove that, for k ≥ 1

W
(k)
j,W (t) → f

(k)
W,j(t), as N →∞, for any fixed j (5.40)

in S ′ (R3j × R3j). Clearly, (5.40) is trivially verified for k = 2n + 1, because we have already
noticed that

W
(2n+1)
j,W (t) ≡ f

(2n+1)
j,W (t) ≡ 0, ∀ n ≥ 0. (5.41)

As we observed in Remark 4.5.1, the assumption on the initial N -particle Wigner function
to be a product of mixed states prevents the possibility of considering bosonic states. Indeed,
factorized states could be compatible with the bosonic statistics if pure states were considered.

It is easy to check that the classical limit is equivalent to the limit of heavy particles. In
fact, if we set ε = 1 in the N -particle Hamiltonian (2.1.5) but we let the particle mass m
(previously chosen equal to 1) become large, by imposing the condition that the kinetic energy
per particle is independent of m, we find exactly the mean-field hamiltonian (2.1.5) where ε
is replaced by the ”effective Planck constant” εm = 1/

√
m going to zero as m → ∞. Then a

possible application of our result would be that of studying the approximations of dynamics of
this type, in which one looks at a particular scaling which corresponds to the semiclassical one,
even if interpreted in a different sense.
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Appendix A

Proof of Proposition 4.4.1

To avoid inessential notational complications, we deal with the one-dimensional case.
By the Newton equations, we have:

∂xi(t)

∂vr
= δirt+

∫ t

0

ds(t− s)
1

N

N∑
j 6=i

∂xF (xi(s)− xj(s))

(
∂xi(s)

∂vr
− ∂xj(s)

∂vr

)
, (A.1)

∂vi(t)

∂vr
= δir +

∫ t

0

ds
1

N

N∑
j 6=i

∂xF (xi(s)− xj(s))

(
∂xi(s)

∂vr
− ∂xj(s)

∂vr

)
, (A.2)

where:

F = −∇xφ, (A.3)

is the force associated with the potential φ.
Let us analyze in detail the derivative of xi(t). From (A.1), we get:

max
i,r
t≤T

∣∣∣∣∂xi(t)∂vr

∣∣∣∣ ≤ C. (A.4)

Inserting this estimate again in (A.1), we realize that we can obtain a better bound for ∂vi(t)
∂vr

in the case r 6= i (see [24]), namely:∣∣∣∣∂xi(t)∂vr

∣∣∣∣ ≤ C

∫ t

0

ds(t− s)

∣∣∣∣∂xi(s)∂vr

∣∣∣∣+ (A.5)

+C

∫ t

0

ds(t− s)
1

N

∣∣∣∣∂xr(s)∂vr

∣∣∣∣+
+C

∫ t

0

ds(t− s)
1

N

N∑
j 6=i
j 6=r

∂xF (xi(s)− xj(s))

∣∣∣∣∂xj(s)∂vr

∣∣∣∣ .
(A.6)

Hence, by virtue of the Gronwall lemma, we find:

max
i6=r
t≤T

∣∣∣∣∂xi(t)∂vr

∣∣∣∣ ≤ C

N
. (A.7)
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By (A.2), we find that the same estimate holds for the derivative of vi(t) with respect to vr.
Analogous estimates hold for the derivatives with respect to the initial positions (see also [24]).
Therefore the claim of Proposition 4.4.1 is proven for derivatives of order one.

Now, let us consider a sequence I := (j1, . . . , jk) of possibly repeated indices. We show
that:

1

N

N∑
i=1

∣∣∣∣ ∂kxi(t)

∂vj1 . . . ∂vjk

∣∣∣∣ ≤ C

Ndk
, (A.8)

where dk is the number of different indices in the sequence j1, . . . , jk. We know that (A.8) is
verified for k = 1 (it follows directly by (A.4) and (A.7)), thus we prove (A.8) by induction on
k. Denoting by:

D(I) :=
∂k

∂vj1 . . . ∂vjk
, (A.9)

estimate (A.8) can be rewritten as:

1

N

N∑
i=1

|D(I)xi(t)| ≤
C

Ndk
. (A.10)

By (A.1) we derive the following estimate for D(I)xi(t):

|D(I)xi(t)| ≤
∫ t

0

ds(t− s)
C

N

N∑
j 6=i

|D(I) (xi(s)− xj(s))|+Mi(t),

(A.11)

where the term Mi(t) can be computed from (A.1) according to the Leibniz rule. Let Pn :=
{I1, . . . , In} be a partition of the set I of cardinality n, with 2 ≤ n ≤ k, then we have:

Mi(t) ≤
∫ t

0

ds(t− s)
1

N

N∑
j 6=i

k∑
n=2

∑
Pn

C(Pn)

∣∣∣∣∣ ∏
H∈Pn

[D(H) (xi(s)− xj(s))]

∣∣∣∣∣ ≤
≤
∫ t

0

ds(t− s)
k∑

n=2

∑
Pn

C(Pn)
1

N

N∑
j=1

∣∣∣∣∣ ∏
H∈Pn

[D(H) (xi(s)− xj(s))]

∣∣∣∣∣ , (A.12)

where D(H) :=
∏

h∈H
∂
∂vh

and C(Pn) are coefficients depending on the partition Pn and on

suitable derivatives of F . By (A.11), it follows that:

1

N

N∑
i=1

|D(I)xi(t)| ≤
∫ t

0

ds(t− s)
C

N

N∑
i=1

|D(I)xi(s)|+M(t), (A.13)
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where M(t) = 1
N

∑N
i=1Mi(t) and, by (A.12), we have:

M(t) ≤
∫ t

0

ds(t− s)
k∑

n=2

∑
Pn

C(Pn)
1

N2

N∑
i=1

N∑
j=1

∣∣∣∣∣ ∏
H∈Pn

[D(H) (xi(s)− xj(s))]

∣∣∣∣∣ ,
(A.14)

We observe that:

1

N2

N∑
i,j=1

∣∣∣∣∣ ∏
H∈Pn

[D(H) (xi(s)− xj(s))]

∣∣∣∣∣ ≤ 1

N

N∑
i=1

∏
H∈Pn

|D(H)xi(s)|+
1

N

N∑
j=1

∏
H∈Pn

|D(H)xj(s)|+

+
∑
Q⊂Pn

C(Q)

(
1

N

N∑
i=1

∏
Q∈Q

|D(Q)xi(s)|

) 1

N

N∑
j=1

∏
J∈Pn\Q

|D(J)xj(s)|

 ,

(A.15)

where Q is any subpartition of Pn and C(Q) are coefficients depending on Q.
We assume that the estimate (A.10) holds for any m ≤ k − 1, namely:

1

N

N∑
i=1

|D(M)xi(t)| ≤
C

Ndm
, for any M ⊂ I s.t. |M | = m ≤ k − 1, (A.16)

where dm is the number of different indices in the sequence M .
Indeed, if we consider a partition Pn of cardinality n ≥ 2, we are guaranteed that |M | ≤ k − 1
for each M ∈ Pn. Then, by noting that:

1

N

N∑
i=1

∏
H∈H

|D(H)xi(t)| ≤
∏
H∈H

1

N

N∑
i=1

|D(H)xi(t)| , ∀ subpartition H ⊆ Pn, (A.17)

we can apply the inductive hypotheses (A.16) to estimate the derivatives of xi(s) and xj(s)
appearing in (A.15). Thus, we obtain:

1

N

N∑
i=1

∏
H∈Pn

|D(H)xi(s)| ≤
∏
H∈Pn

1

N

N∑
i=1

|D(H)xi(s)| ≤

≤
∏
H∈Pn

C

Ndh
=

C

N
∑
dh
≤ C

Ndk
, (A.18)

where dh is the number of different indices in the sequence H and we used that
∑

H∈Pn
dh ≥ dk.

In a similar way, we find

1

N

N∑
i=1

∏
Q∈Q

|D(Q)xi(s)| ≤
∏
Q∈Q

C

Ndq
, (A.19)
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where dq is the number of different indices in the sequence Q.
Moreover, we have:

1

N

N∑
j=1

∏
H∈Pn

|D(H)xj(s)| ≤
∏
H∈Pn

C

Ndh
=

C

N
∑
dh
≤ C

Ndk
, (A.20)

and

1

N

N∑
j=1

∏
J∈Pn\Q

|D(J)xj(s)| ≤
∏

J∈Pn\Q

C

Ndj
, (A.21)

where dj is the number of different indices in the sequence J . Then, putting together (A.19)
and (A.21), we find:

∑
Q⊂Pn

C(Q)

(
1

N

N∑
i=1

∏
Q∈Q

|D(Q)xi(s)|

) 1

N

N∑
j=1

∏
J∈Pn\Q

|D(J)xj(s)|

 ≤

∑
Q⊂Pn

C(Q)
∏
Q∈Q

∏
J∈Pn\Q

C

Ndq+dj
≤

≤
∑
Q⊂Pn

C(Q)
∏
Q∈Q

∏
J∈Pn\Q

C

Ndk
≤ C

Ndk
. (A.22)

In the end, we have just proven that each term in (A.15) is bounded by C
Ndk

. Therefore, by
using this estimate in (A.14), we find:

M(t) ≤ C

Ndk
. (A.23)

By (A.23) and (A.13), it follows that:

1

N

N∑
i=1

|D(I)xi(t)| ≤
∫ t

0

ds(t− s)
C

N

N∑
i=1

|D(I)xi(s)|+
C

Ndk
.

(A.24)

Therefore, by using the Gronwall lemma, we find:

1

N

N∑
i=1

|D(I)xi(t)| ≤
C

Ndk
. (A.25)

As regard to the derivatives of vi(t) with respect to some initial velocities vj1 , . . . , vjk , an
analogous estimate holds and the proof works in the same way. Furthermore, this strategy
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leads to the same estimate for the derivatives of the function 1
N

∑N
i=1 zi(t) with respect to some

initial positions xj1 , . . . , xjk .
Now, thanks to the estimate we have just proven for the derivatives of the function

1
N

∑N
i=1 zi(t), we are able to prove the claim of Proposition 4.4.1. In fact, we have:

1

N

N∑
i=1

|D(I)zi(t)| =
1

N

N∑
i=1
i∈D

|D(I)zi(t)|+
1

N

N∑
i=1
i/∈D

|D(I)zi(t)| ≤
C

Ndk
, (A.26)

where D ⊂ I contains the different indices appearing in the sequence I. Thus, according to our
previous notation, |D| = dk and we denote the elements of D by j̃1, . . . , j̃dk

. Then by (A.26)
we find:

1

N

N∑
i=1

|D(I)zi(t)| =
1

N

∣∣D(I)zj̃1(t)
∣∣+ · · ·+ 1

N

∣∣∣D(I)zj̃dk
(t)
∣∣∣+

+
1

N

N∑
i=1
i/∈D

|D(I)zi(t)| ≤
C

Ndk
, (A.27)

which implies

|D(I)zi(t)| ≤ C

(∑dk

`=1 δij̃`
Ndk−1

+
1

Ndk

)
, (A.28)

or

|D(I)zi(t)| ≤
C

Nd
(i)
k

, (A.29)

where d
(i)
k is the number of different indices in the sequence I which are also different from i.

�

Appendix B

Proof of Proposition 4.1.1

Let Uh(t, s) be the two parameters semigroup solution of the linear problem:{
(∂t + v · ∇x)Uh(t, s)γ0 = (∇φ ∗ h) ∗ ∇vUh(t, s)γ0,

Uh(s, s)γ0 = γ0.
(B.1)
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The solution of (B.1) is obtained by carrying the initial datum γ0 along the characteristic flow{
ẋ = v,

v̇ = −∇φ ∗ h.
(B.2)

Next, we consider the problem{
(∂t + v · ∇x) γ̃ = L(h)γ̃,

γ̃|t=0 = γ0.
(B.3)

which can be reformulated in integral form:

γ̃(t) = Uh(t, 0)γ0 +

∫ t

0

ds Uh(t, s) [(∇φ ∗ γ̃(s)) · ∇vh(s)] . (B.4)

The above formula can be iterated to yield the formal solution

γ̃(x, v; t) = Uh(t, 0)γ0(x, v) +
∑
n≥1

∫ t

0

dt1

∫ t1

0

dt2 . . .

∫ tn−1

0

dtn

∫
dx1

∫
dv1 . . .

∫
dxn

∫
dvn

Uh(t, t1) [∇vh(x, v; t1) · ∇xφ(x− x1)]

Uh(t1, t2) [∇v1h(x1, v1; t2) · ∇x1φ(x1 − x2)]

. . .

Uh(tn−1, tn)
[
∇vn−1h(xn−1, vn−1; tn) · ∇xn−1φ(xn−1 − xn)

]
Uh(tn, 0)γ0(xn, vn). (B.5)

We remark that Uh(tk, tk+1) acts on the variables xk, vk with the convention that (x0, v0) = (x, v)
and, furthermore, Uh is multiplicative and preserves the Lp(R3 × R3) norms (p = 1, 2, . . . ,∞).
Under the assumptions of Proposition 4.1.1, the above series is bounded in L1(R3 × R3) by:∑

n≥0

tn

n!

(
supτ∈[0,t] ‖∇vh(τ)‖L1(R3×R3)

)n
‖∇xφ‖nL∞(R3) ‖γ0‖L1(R3×R3) ,

(B.6)

which is converging for each t. Now, we denote by Σh(t, s) : L1(R3 × R3) → L1(R3 × R3),
the two parameters semigroup given by the series (B.5). Then, the solution γ to the problem
(4.1.14) is given by:

γ(t) = Σh(t, 0)γ0 +

∫ t

0

ds Σh(t, s)Θ(s), (B.7)

and, thanks to the assumption we made on Θ and to the fact that the above series (B.5) is
converging for any t, we are guaranteed that γ ∈ C0 (L1(R3 × R3),R+).
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The Ck regularity of γ̃(t) = Σh(t, 0)γ0 follows by (B.5) and the fact that Uh(t, t1) propa-
gates the Ck regularity.

�

Proof of Proposition 4.5.1

The proof consists of two steps.

Step 1):
Let γN be as in Proposition 4.5.1. Then, we show that γN solves the problem:{

(∂t + v · ∇x) γN = L(h)γN + Θ′
N ,

γN |t=0 = γN,0,
(B.8)

with
Θ′
N = ΘN +RN , (B.9)

and RN is such that:
RN → 0, C∞b − weakly. (B.10)

In proving (B.10), the assumption ii) on γN is crucial.

Step 2):
By virtue of Step 1), the hypotheses we made on ∇vh and Proposition 4.1.1, we find that:

γN(t) = Σh(t, 0)γN,0 +

∫ t

0

ds Σh(t, s)Θ
′
N(s). (B.11)

Then, reminding that:
◦ h(t) ∈ C∞b (R3 × R3) for any t,
◦ the flow Σh propagates the Ck regularity,
◦ RN → 0, C∞b − weakly,
and by virtue of the assumptions on γN,0 and ΘN , we can easily show that:

γN → γ, as N →∞, C∞b − weakly, (B.12)

where

γ(t) = Σh(t, 0)γ0 +

∫ t

0

ds Σh(t, s)Θ(s). (B.13)

Therefore, we recognize that γ solves the problem (4.1.14) and, by virtue of Proposition 4.1.1,
it is uniquely determined by (B.13) and hence it is in C0 (L1(R3 × R3),R+).
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Proof of Step 1):

We have: {
(∂t + v · ∇x) γN = L(h)γN + ΘN + L(hN − h)γN

γN(x, v; t)|t=0 = γN,0(x, v),
(B.14)

where
RN = RN(x, v; t) := L(hN − h)γN . (B.15)

We want to show that RN → 0, C∞b -weakly. According to the definition of the operator L, we
have:

RN = (∇xφ ∗ (hN − h))∇vγN + (∇xφ ∗ γN)∇v(hN − h), (B.16)

thus, we have to show that

(u, (∇xφ ∗ (hN − h))∇vγN) → 0, as N →∞, ∀ u ∈ C∞b (R3 × R3), (B.17)

and
(u, (∇xφ ∗ γN)∇v(hN − h)) → 0, as N →∞, ∀ u ∈ C∞b (R3 × R3). (B.18)

We show only (B.18) in detail because (B.17) will follow the same line. We have:

(u, (∇xφ ∗ γN)∇v(hN − h)) =

∫
dxdv

∫
dydw u(x, v)∇xφ(x− y)γN(y, w; t) ·

∇v(hN(x, v; t)− h(x, v; t)) =

= −
∫

dxdv

∫
dydw ∇vu(x, v)∇xφ(x− y)γN(y, w; t) ·

(hN(x, v; t)− h(x, v; t)) =

=

∫
dxdv

∫
dydw ∇vu(x, v) (∇xφ ∗ γN) (x, v; t)(h− hN)(x, v; t).

(B.19)

Setting

ζN(x, v) := ∇vu(x, v)

∫
dydw∇xφ(x− y)γN(y, w; t), (B.20)

we can write (B.19) as:

(u, (∇xφ ∗ γN)∇v(hN − h)) =

∫
dxdv ζN(x, v)(h(x, v; t)− hN(x, v; t)) =

=

∫
dxdv

∫
dx′dv′ (ζN(x, v)− ζN(x′, v′))PN(x, v;x′, v′; t),

(B.21)
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where PN is a coupling of h and hN , namely a probability density in R6 × R6 with marginals
given by h and hN . Now we observe that:

∇x,vζN(x, v) :=

∫
dydw∇x,v [∇vu(x, v)∇xφ(x− y)] γN(y, w; t),

(B.22)

and, thanks to the assumption ii) we made on γN , we know that there exists a constant
C = C(u, φ) > 0 such that:

sup
x,v

|∇x,vζN(x, v)| = ‖∇ζN‖L∞(R3×R3) < C < +∞.

(B.23)

Therefore, coming back to (B.21), we find:

|(u, (∇xφ ∗ γN)∇v(hN − h))| ≤
∫

dz

∫
dz′ |ζN(z)− ζN(z′)|PN(z; z′; t)

≤
∫

dz

∫
dz′C |z − z′|PN(z; z′; t).

(B.24)

where we used the standard notation z = (x, v) and z′ = (x′, v′). Then, taking in (B.24) the
infimum over all couplings between h and hN , we obtain that:

|(u, (∇xφ ∗ γN)∇v(hN − h))| ≤ CW(hN , h), (B.25)

where, as in Section 1.2, W denotes the Wasserstein distance. But we know that the right hand
side of (B.25) goes to zero because of the assumption i), then we have just proven that:

|(u, (∇xφ ∗ γN)∇v(hN − h))| → 0, ∀ u ∈ C∞b (R3 × R3).

(B.26)

Analogously, we can prove that

|(u, (∇xφ ∗ (hN − h))∇vγN)| → 0, ∀ u ∈ C∞b (R3 × R3).

(B.27)

Therefore we have just proven that RN goes to zero in the C∞b -weak sense and the proof of Step
1) is done.
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Proof of Step 2):

Thanks to Step 1) and to the assumption on ∇vh, we know that γN(t) can be written as
in (B.11). Then, for any function u in C∞b (R3 × R3), we have that:

(u, γN(t)) = (u,Σh(t, 0)γN,0) +

∫ t

0

ds (u,Σh(t, s)Θ
′
N(s)) , (B.28)

namely

(u, γN(t)) = ((Σh(t, 0))∗ u, γN,0) +

∫ t

0

ds ((Σh(t, s))
∗ u,Θ′

N(s)) , (B.29)

where Σ∗
h is the adjoint of Σh. We remind that the two-parameters semigroup Σh(t, s) prop-

agates the Ck regularity, provided that ∇vh ∈ Ck (R3 × R3). In particular, if Σh acts on a
function u which is in C∞b (R3×R3) and the function h(t) is supposed to be in C∞b (R3×R3) for
any t, as it is in the assumptions of Proposition 4.5.1, we are clearly guaranteed that ∇vh(t)
is in C∞b (R3 × R3) for any t, and then, u(t) := Σh(t, 0)u(x, v) is also in C∞b (R3 × R3) for any t.
Obviously, the same holds for Σ∗

h. Thus, the functions (Σh(t, 0))∗ u and (Σh(t, s))
∗ u appearing

in (B.29) are in C∞b (R3×R3) for any t. Therefore, thanks to the assumptions we made on γN,0
and ΘN , and of what we know about RN , we find that:

((Σh(t, 0))∗ u, γN,0) +

∫ t

0

ds ((Σh(t, s))
∗ u,Θ′

N(s))

↓ N →∞

((Σh(t, 0))∗ u, γ0) +

∫ t

0

ds ((Σh(t, s))
∗ u,Θ(s)) =

= (u,Σh(t, 0)γ0) +

∫ t

0

ds (u,Σh(t, s)Θ(s)) . (B.30)

Finally, by Proposition 4.1.1, we know that the expression (B.30) identifies properly the unique
solution of the problem (4.1.14) in C0 (L1 (R3 × R3) ,R+) and Proposition 4.5.1 is proven.

�

Appendix C

Lemma C.1: For each time τ > 0, let us define the operator T̂
(n)
N (τ) as follows:

T̂
(n)
N (τ) := SN(−τ)T̂ (n)

N SN(τ).
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Then, for each m ≥ 0 and for each u ∈ C∞b (R3 × R3), there exists a constant C > 0, not
depending on N , such that:

i)
∣∣∣(u, T̂ (rm)

N (tm) . . . T̂
(r1)
N (t1)µN(t)

)∣∣∣ < C. (C.1)

Moreover, we have:

ii)
∣∣∣(u, T (rm)

N (tm) . . . T
(r1)
N (t1)µN(t)

)∣∣∣ ≤ ∣∣∣(u, T̂ (rm)
N (tm) . . . T̂

(r1)
N (t1)µN(t)

)∣∣∣+O

(
1

N

)
.

(C.2)

Proof:
We observe that:(

u, T̂
(rm)
N (tm) . . . T̂

(r1)
N (t1)µN(t)

)
= T̂

(rm)
N (tm)T̂

(rm−1)
N (tm−1) . . . T̂

(r1)
N (t1)U(ZN(t)),

(C.3)

where:

U(ZN(t)) := (u, µN(t)) =
1

N

N∑
`=1

u(z`(t)). (C.4)

We assume m > 0 being the case m = 0 obvious.
By using the notations:

S(rm, tm) := T
(rm)
N (tm) . . . T

(r1)
N (t1) (C.5)

and

Ŝ(rm, tm) := T̂
(rm)
N (tm) . . . T̂

(r1)
N (t1), (C.6)

we have (see the first term in the right hand side of (4.6.15)):

Ŝ(rm, tm)U(ZN(t)) =
C

Nm

∑
j1...jm

∑
l1...lm

Drm+1
x φ(xjm(tm)− xlm(tm)) ·Drm+1

vjm
(tm)

Drm−1+1
x φ(xjm−1(tm−1)− xlm−1(tm−1)) ·Drm−1+1

vjm−1
(tm−1)

. . .

Dr1+1
x φ(xj1(t1)− xl1(t1)) ·Dr1+1

vj1
(t1)U(ZN(t)), (C.7)
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C depending on rm. By setting:

Φjn(ZN(tn)) :=
1

N

N∑
ln=1

Drn+1
x φ(xjn(tn)− xln(tn)) (C.8)

∀ n = 1, 2, . . . ,m

(C.7) can be rewritten as

Ŝ(rm, tm)U(ZN(t)) = C
∑
j1...jm

Φjm(ZN(tm)) ·Drm+1
vjm

(tm)

Φjm−1(ZN(tm−1)) ·Drm−1+1
vjm−1

(tm−1)

. . .

Φj1(ZN(t1)) ·Dr1+1
vj1

(t1)U(ZN(t)). (C.9)

We observe that, thanks to the smoothness of the potential φ, Φjn (for each n) is a uniformly
bounded function of the configuration ZN , together with its derivatives.
Performing the derivatives in (C.9), we realize that Ŝ(rm, tm)U(ZN(t)) is a linear combination
of terms of the following type:∑

j1...jm

Φjm(ZN(tm)) ·Dam,1
vjm

(tm) . . . Da2,1
vj2

(t2)D
a1,1
vj1

(t1)U(ZN(t))

Dam,2
vjm

(tm) . . . Da2,2
vj2

(t2)Φj1(ZN(t1))

. . .

Dam,m−1
vjm

(tm)Dam−1,m−1
vjm−1

(tm−1)Φjm−2(ZN(tm−2))

Dam,m
vjm

(tm)Φjm−1(ZN(tm−1)), (C.10)

with the constraint 
a1,1 = r1 + 1

a2,1 + a2,2 = r2 + 1

. . .

am,1 + am,2 + · · ·+ am,m = rm + 1.

(C.11)

For a fixed sequence a`,s, we have to compensate the divergence arising from the sum∑
j1...jm

, which is O (Nm), by the decay of the derivatives as given by Proposition 4.4.1 and
Corollary 4.4.1. Indeed we have:∣∣∣Dam,1

vjm
(tm) . . . Da2,1

vj2
(t2)D

a1,1
vj1

(t1)U(ZN(t))
∣∣∣ ≤ C

Nd
, (C.12)

where d is the number of different indices in the sequence j1, j2, . . . , jm for which am,1, . . . , a2,1, a1,1

are strictly positive. Note that the fact that the derivatives are not computed at time t = 0
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but at different times t1, t2, . . . , tm, does not change the estimate in an essential way.
An analogous estimate holds when we replace U by some Φjs , namely∣∣∣Dam,k

vjm
(tm)D

am−1,k
vjm−1

(tm−1) . . . D
ak,k
vjk

(tk)Φjk−1
(ZN(tk−1))

∣∣∣ ≤ C

Ndk−1
, (C.13)

where dk−1 is the number of different indices in the sequence jk, . . . , jm which are also different
from jk−1 and from which am,k, . . . , ak,k are strictly positive.

As regard to the term in the sum
∑

j1...jm
in which all the indices are different (which is

the only one of size O(Nm)), the constraints (C.11) together with estimates (C.12) and (C.13)
ensure that the product of derivatives on the right hand side of (C.10) is bounded by 1/Nm.
Thus this term is of order one. Now for each s = 1, . . . ,m− 1 consider the m!

s!(m−s)! terms in the

sum
∑

j1...jm
in which s indices are equal. The sum is bounded by Nm−s. On the other hand,

the constraints (C.11) together with (C.12) and (C.13) ensure that the product of derivatives
on the right hand side of (C.10) is bounded by 1/Nm−s. Thus even these terms are of size one
and i) is proven.

To prove ii) we observe that:

S(rm, tm)U(ZN(t))− Ŝ(rm, tm)U(ZN(t)) (C.14)

can be expanded as in (C.7) and (C.10). However now we have an extra derivative, arising

from the definition of R
(n)
N (see (4.2.16)), which yields an additional 1/N . We omit the details

of the proof which follows the same line of i). �

In the same way we can also prove the following

Lemma C.2: For each m ≥ 0, k > 0 and u ∈ C∞b (R3×R3), there exists a constant C > 0, not
depending on N , such that: ∣∣D2kS(rm, tm)U(ZN(t))

∣∣ < C. (C.15)

where U(ZN(t)) is defined as in (C.4).

Proof:
First we look at the case m > 0. Reminding the structure of the operator D2k (see (4.6.3)),

we are led to consider the term D
2sj

G,jŜ(rm, tm)U(ZN(t)). We remind that D
2sj

G,j is a derivation
operator with respect to the variable zj that acts as specified by (4.5.8). By the expansion
(C.10) we readily arrive to the bound:∣∣∣D2sj

G,jŜ(rm, tm)U(ZN(t))
∣∣∣ ≤ C

N
. (C.16)
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Indeed by applying D
2sj

G,j to (C.10) either j /∈ (j1 . . . jm) so that we gain 1/N by the extra
derivative, or j ∈ (j1 . . . jm) so that we reduce the sum

∑
j1...jm

by a factor 1/N . More generally,
by the same argument we find: ∣∣∣∣∣∏

j∈I

D
2sj

G,jŜ(rm, tm)U(ZN(t))

∣∣∣∣∣ ≤ C

Nn
, (C.17)

where n = |I|.
Finally by writing the action of the operator D2k as in (4.6.35), we obtain

∣∣∣D2kŜ(rm, tm)U(ZN(t))
∣∣∣ ≤ N∑

n=1

N !

n!(N − n)!

∑
s1...sn

1≤sj≤k∑
j sj=k

C

Nn
≤ Bk

N∑
n=1

N !

n!(N − n)!

Cn

Nn
≤

≤ Bk

(
1 +

C

N

)N
≤ C, (C.18)

B,C being positive constants not depending on N . Again D2kŜ(rm, tm)U(ZN(t)) is the leading
term of D2kS(rm, tm)U(ZN(t)) for the same reasons we discussed in Lemma C.1.

If m = 0, the estimates (C.16) and (C.17) follow directly by Proposition 5.2. Thus, even
in this case, the proof is concluded by (C.18).

�

The fact that the error term E1
N (see (4.6.20)) and hence E2

N (see (4.6.27)) are C∞b -weakly
vanishing when N →∞ is an immediate consequence of the following

Lemma C.3: Let rJ and tJ be defined as in Section 7, for any J ⊂ In with In = {1, 2, . . . , n}.
For any r ≥ 0 we have:

D2rS(rn, tn)µN(z′1|ZN(t))µN(z′2|ZN(t)) =

=
∑

0≤`≤r

∑
0≤m≤n

∑
I⊂In
|I|=m

(
D2`S(rI , tI)µN(z′1|ZN(t))

) (
D2(r−`)S(rIn\I , tIn\I)µN(z′2|ZN(t))

)
+ er,N

(C.19)

where

er,N → 0 as N →∞ C∞b − weakly. (C.20)
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Proof:
It is enough to prove (C.19) and (C.20) replacing each streak S with the corresponding Ŝ,

being the difference S − Ŝ negligible in the limit.
We start by assuming r = 0. In that case, testing the left hand side of (C.19) against a

product of two test functions u1, u2, we are led to consider:

Ŝ(rn, tn)U1(ZN(t))U2(ZN(t)) (C.21)

for which we can apply the expansion (C.7).
Proceeding as in the proof of Lemma C.1 (see (C.10)), we have to consider:

Dam,1
vjm

(tm) . . . Da2,1
vj2

(t2)D
a1,1
vj1

(t1)U1(ZN(t))U2(ZN(t)), (C.22)

where a1,1 = r1 + 1 > 0. Now any contribution of the form

Dα
vj1

(t1)U1(ZN(t))Dβ
vj1

(t1)U2(ZN(t)), (C.23)

with α > 0, β > 0, α + β = a1,1 is O
(

1
N2

)
, therefore it is negligible in the limit. The same

argument applies to D
ak,1
vjk

(tk) whenever ak,1 > 0 . This means that each derivative appearing in

Ŝ either applies to µN(z′1|ZN(t)) or to µN(z′2|ZN(t)) up to an error e0,N vanishing in the limit.
This is exactly what (C.19) and (C.20) say for r = 0.

For r > 0 we have to apply D2r to (C.19) (replacing S by Ŝ) with r = 0. Clearly D2re0,N
vanishes in the limit. Moreover:

D
2sj

G,j

[
Ŝ(rI , tI)U1(ZN(t))Ŝ(rIn\I , tIn\I)U2(ZN(t))

]
=

=
(
D

2sj

G,jŜ(rI , tI)U1(ZN(t))
)
Ŝ(rIn\I , tIn\I)U2(ZN(t)) +

+Ŝ(rI , tI)U1(ZN(t))
(
D

2sj

G,jŜ(rIn\I , tIn\I)U2(ZN(t))
)

+O

(
1

N2

)
(C.24)

By simple algebraic manipulation we finally arrive to (C.19) and (C.20).
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119


