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Chapter 1

Introduction

The object of this thesis is the three-dimensional Dirac operator D0 in the
presence of an external electro-magnetic field, which consists of an electric
potential V and a magnetic vector potential A. Following the work of [5] we
give the details of the proof of the essential self-adjointness of D0 +α ·A+V .
Such a result turns out to be a Chernoff-type theorem, in the sense that the
self-adjointness is not affected by the behaviour of V at ∞.

1.1 The model

1.1.1 The free Dirac operator

The free Dirac operator D0 is defined by

D0 = cα · (−i~∇x) + mc2β (1.1)

where α = (α1, α2, α3) and β are the Dirac matrices

αi =
[
O σi
σi O

]
, β =

[
1 O
O −1

]
, (1.2)

where O ∈ C2×2 is the zero matrix, 1 ∈ C2×2 the identity matrix and

σ1 =
[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
are the usual Pauli matrices.

It is well known that D0 is essentially self-adjoint for instance on the do-
main C∞0 (R3,C4) and therefore extends naturally to a self-adjoint operator,
which we will denote D0 for convenience, on (a dense subset of) L2(R3,C4)
(see [6, Theorem 1.1]).
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1.1.2 The Dirac equation

The time dependent (free) Dirac equation is the differential equation

i~∂tψ(t, x) = D0ψ(t, x). (1.3)

Here the four component wave-function ψ ∈ L2(R3,C4) is the four com-
ponent Dirac spinor. Two if its components are positive energy states and
the other two components are negative energy states, which describe the
particle and its anti-particle, respectively.

1.1.3 Dirac equation coupled to an external field

A spin-1
2 particle with charge −q, subject to an external electric field de-

scribed by electric potentials V`,m : R3 → R, `,m = 1, 2 and an external
magnetic field described by a magnetic vector potential A : R3 → R3, is
governed by the Hamiltonian

H := D(A, V ) := cα · (−i~∇x) + mc2β − qα ·A+ V (1.4)

where

V :=

[
(V`,m)`,m=1,2 O

O −(V`,m)`,m=1,2

]
.

This Hamiltonian is obtained by applying the minimal coupling principle to
the free Dirac operator D0.

Henceforth we assume A locally square integrable and V`,m locally square
integrable and Hermitian for almost all x ∈ R3. This Hamiltonian is clearly
symmetric on C∞0 (R3,C4) and the goal of this thesis will be to find the
domain on which D(A, V ) is essential self-adjoint.

In analogy to (1.3), the Dirac equation associated with the Dirac operator
(1.4) takes the form

i~∂tψ(t, x) = D(A, V )ψ(t, x). (1.5)

1.2 The main result and the strategy of the proof

We are interested in the conditions under which the Dirac operator (1.4)
is essentially self-adjoint, as it allows us to exponentiate it via the Spectral
Theorem, as is well known. Therefore the dynamics associated with (1.4) is
well-posed.

As we discuss in detail in Section 3.1, the essential self-adjointness for
a symmetric H is equivalent to the existence of a unique global solution
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u ∈ C(R, D(H)) ∩ C1(R, D(H)∗) to the Schrödinger equation associated
with H and the initial datum u0, i.e.{

i∂tu = Hu

u(0, ·) = u0 ∈ D(H)
. (1.6)

In our case, i.e. for external As and V s, one can prove self-adjointness
of D(0, V ) using the self-adjointness of the free Dirac operator D0 (see [6,
Section 4.3]). To be precise, if each V`,m has at most a local Coloumb
singularity with a coupling constant smaller than c/2 and a bounded tail,
we can use Hardy’s inequality and the Kato-Rellich Theorem to prove that
D(0, V ) is self-adjoint on the domain H1(R3,C4).

Additionally, essential self-adjointness of D(A, 0), which can be seen as a
super-symmetric operator (see [6, Section 5.5.2]), on the self-adjoint domain
of Q := α · (−i∇ − A) can be proven using the Kato-Rellich Theorem and
the boundedness of mc2 (see [6, Theorem 5.12]).

Putting these results together, self-adjointness of D(A, V ) on the self-
adjoint domain of Q can be shown if V is relatively Q-bounded such that
the Q-bound of V is smaller than c, using again the Kato-Rellich Theorem
(see [6, Section 6.1.1]).

In this thesis we follow instead the scheme of the work [5], which was
originally designed to prove self-adjointness in the case of a quantised radia-
tion field, which we shall present in its simplified version for non-quantised,
external fields.

Therefore a finite-speed-of-propagation method is employed. To this
aim, one considers the truncated Dirac operator

HR := D0 − qα ·A+ VR (1.7)

where
VR(x) := V (x)1BR(x) (1.8)

for some ball BR ⊆ R3 centred at the origin and with radius R > 0.

In revisiting Arai’s analysis [1, Section D] one gets, due to the detour
via the quantised model, to a result with very strong conditions on V :

Proposition 1.1. Let V (x) be Hermitian for almost all x ∈ R3 and V ∈
L∞ or V relatively −∆-bounded and ∂Vjl

∂xm
∈ L2

loc(R3) relatively (−∆ + 1)
1
2 -

bounded. Then D(A, V ) is essentially self-adjoint on C∞0 (R3,C4).
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Proposition 1.1 guarantees that the class of V s such that for all R > 0,
HR is essentially self-adjoint, is not empty. Therefore the solution to the
initial value problem {

i∂tu = HRu

u(0, ·) = u0 ∈ D(HR)
(1.9)

exists and is unique globally in time.

Moreover it can be proved that the time evolution e−itHR evolves a lo-
calised initial f into a localised e−itHRf , which has a possibly larger support.
This is the finite speed of propagation (see details in Theorem 3.4).

Hence, one can check that for sufficiently small times t, e−itHRf solves
the initial value problem (1.6) for every R > 0, too. An extension argument
shows that the solution is global and therefore (1.6) has a unique solution
globally in time.

With the strategy sketched above, we shall prove the main theorem:

Theorem 1.2. Let V ∈ L2
loc(R3,C4) be such that V (x) is Hermitian for

almost all x ∈ R3 and such that for any R > 0 the operator HR is essentially
self-adjoint. Then H = D(A) +V is essentially self-adjoint on C∞0 (R3,C4).

Theorem 1.2 is in the spirit of Chernoff’s analysis [2], [5] where self-
adjointness holds irrespectively of the behaviour of V at infinity. The under-
lying picture is that the particle cannot escape to infinity in a finite amount
of time and therefore boundary conditions at infinity are not needed to make
H essentially self-adjoint.

1.3 Structure of the thesis

The material is organized as follows:

In Chapter 2 we state important notations and definitions needed
throughout the thesis

Chapter 3 contains the two main technical ingredients for the proof of
our main theorem 1.2.

First, in Section 3.1, we discuss in abstract terms the relation be-
tween essential self-adjointness of an operator A on a separable
Hilbert space H and the existence of solutions to the correspond-
ing initial value problem.
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In Section 3.2 we perform the finite-speed-of-propagation analysis
for e−itHR .

In Chapter 4 we combine the previously proved ingredients in order to
show that H is essentially self-adjoint.
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Chapter 2

Definitions and symbols

List of symbols:

H a Hilbert space
〈·, ·〉 the scalar product of a Hilbert space, linear in the second argument

L2(R3,C4) ≡ L2 the space of functions f : R3 → C4 such that ‖f‖L2 <∞, where

‖f‖L2 :=
(∫

R3 ‖f(x)‖2 dx
) 1

2

H1(R3,C4) ≡ H1 the Sobolev space of functions on f : R3 → C4 such that ‖f‖H1 <∞, where
‖f‖2H1 := ‖f‖2L2 + ‖∇f‖2L2

C∞0 (Rd) the space of smooth functions with compact support on Rd

C(I,X) the space of continuous functions from I to X, I ⊆ R an interval
C1(I,X) the space of continuous differentiable functions from I to X, I ⊆ R an interval

A an operator
A the closure of an operator A
A∗ the adjoint of an operator A
A′ the dual of an operator A
D(A) the domain of an operator A
D(A)∗ the dual of the domain of an operator A
σ(A) the spectrum of an operator A

Br ≡ {x ∈ R3 : ‖x‖ < r}
the open ball centred at the origin and with radius r in R3
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Chapter 3

Technical preliminaries

3.1 Essential self-adjointness and initial value prob-
lems

Lemma 3.1. Let A be symmetric on H and let I ⊂ R be an interval of the
form [−T, T ].

a) Then there exists at most one solution u ∈ C(R, D(A)) ∩ C1(R, D(A)∗)
to {

i∂tu = Au

u(0) = u0 ∈ D(A) .
(3.1)

b) If A is also essentially self-adjoint there exists a solution of (3.1) defined
∀t ∈ R.

Proof. a) As A is symmetric and therefore closable we assume it to be
closed, without loss of generality.
Let u1, u2 ∈ C(I,D(A)) be solutions to (3.1), u := u1 − u2 and s 6= 0.
From

d

dt
‖u(t)‖2 = lim

s→0

1
s

(
‖u(t+ s)‖2 − ‖u(t)‖2

)
and

1
s

(
‖u(t+ s)‖2 − ‖u(t)‖2

)
=

=
1
s

(
〈u(t+ s), u(t+ s)〉 − 〈u(t+ s), u(t)〉

+ 〈u(t+ s), u(t)〉 − 〈u(t), u(t)〉
)

=
〈
u(t+ s),

u(t+ s)− u(t)
s

〉
+
〈
u(t+ s)− u(t)

s
, u(t)

〉
,
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we get, in the limit s→ 0:

d

dt
‖u(t)‖2 = 〈u(t), u′(t)〉+ 〈u′(t), u(t)〉

(3.1)
= 〈u(t),−iAu(t)〉+ 〈−iAu(t), u(t)〉
= 〈iAu(t), u(t)〉 − 〈iAu(t), u(t)〉
= 0 .

(3.2)

So ‖u1(t) − u2(t)‖ is constant and from u1(0) = u2(0) = u0 we can
conclude that u1 ≡ u2.

It remains to prove that u(t) ∈ C1(I,D(A)∗), i.e.

〈u′(t)− u′(s), g〉D∗,D
t→s−→ 0 ∀g ∈ D (3.3)

with D := D(A) and its dual space D∗ := D(A)∗, equipped with the
weak-* topology induced by D. Notice, in particular, that

D ⊆ H ⊆ D∗.

Denote the dual of A by
A
′ : H → D∗.

Let g ∈ D(A). Then

〈u′(t)− u′(s), g〉D∗,D = 〈−iA′ u(t) + iA
′
u(s), g〉D∗,D

= 〈iA′(−u(t) + u(s)), g〉D∗,D
= 〈i(−u(t) + u(s)), Ag〉D∗,D
−→
t→s

0 .

(3.4)

So u ∈ C1(I,D(A)∗).

b) Assume A is self-adjoint. Let {T (t)}t be the group of isometries on H
generated by A

T (t) := e−itA, ‖T (t)‖ = 1, T (t)∗ = T (−t). (3.5)

From [4, Theorem VIII.7] we know that

∀ψ ∈ D(A)
T (s)ψ − ψ

s

‖·‖−→
s→0

−iAψ .

Let now u0 ∈ D(A) be the initial datum of the initial value problem
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(3.1). Define u(t) := T (t)u0, then

u(t+ s)− u(t)
s

=
T (t+ s)u0 − T (t)u0

s

= T (t)
T (s)u0 − u0

s
‖·‖−→
s→0

− T (t) iAu0

= −iAT (t)u0

= −iAu(t) .

This can be rewritten as

i∂tu(t) = Au(t) (3.6)

So u ∈ C(R, D(A)) and {
i∂tu = Au

u(0) = u0 ∈ D(A) .
(3.7)

By repeating the calculation (3.4), we show that u ∈ C1(R, D(A)∗).

Lemma 3.2. Let A be a symmetric operator on H. If for any u0 ∈ D(A)
the initial value problem (3.1) has a solution u : R → D(A), then A is
essentially self-adjoint.

Proof. Assume A is not self-adjoint, i.e. ∃w± ∈ D(A∗), w± 6= 0 such that

(A∗ ± i)w± = 0. (3.8)

Let u be a solution to the initial value problem (3.1). In particular for any
t ∈ R u(t) ∈ D(A) and u(0) = u0. Hence

d

dt
〈u(t), w±〉 = 〈∂tu(t), w±〉 = i〈Au(t), w±〉

= i〈u(t), A∗w±〉 = i〈u(t),∓iw±〉
= ±〈u(t), w±〉

(3.9)

First we applied (3.1) to Au and then we used (3.8).

Therefore α(t) := 〈u(t), w±〉 satisfies d
dtα(t) = ±α(t), hence

α(t) = α(0) · e±t . (3.10)
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Owing to (3.2) and the fact that u1− u2 is again a solution if u1 and u2 are
solutions, we know that d

dt‖u(t)‖ = 0. So ‖u(t)‖ is constant and therefore
for any t ∈ R

|α(t)| = |〈u(t), w±〉| ≤ ‖u(t)‖ ‖w±‖ = ‖u0‖ ‖w±‖ < ∞ . (3.11)

The uniform bound (3.11) is consistent with (3.10) only if α(0) = 0, that
is 〈u(0), w±〉 = 0. Since u(0) ∈ D(A) is arbitrary and D(A) is dense in H,
w± = 0 and we conclude that

Ker(A∓ i) = 0, (3.12)

which is a contradiction to the assumption. Therefore A is self-adjoint.

3.2 Data localisation and finite speed of propaga-
tion

Lemma 3.3. Let 0 ≤ R, f ∈ D(HR) such that supp f ⊆ BR. Then

∀ρ ≥ R f ∈ D(Hρ) ∩D(H) and

HRf = Hρf = Hf .

Proof. Assume f ∈ D(HR). By the definition of the closure we can find a
(fj)j∈N ⊆ D(HR) such that

fj
‖·‖−→ f, HRfj

‖·‖−→ HRf . (3.13)

Since supp f is a closed and bounded subset of BR, we can find an open
neighbourhood Ω with supp f ⊆ Ω ( Ω ⊆ BR. By Urysohn’s lemma [4,
Theorem IV.7] there exists a χ ∈ C∞0 (R3) with

χ(x) =

{
1 if x ∈ Ω
0 if x ∈ R3\BR

.

We now evaluate the action of HR on the approximated χfjs:

HR(χfj) = (−i~cα · ∇x)(χfj) + χ(−qαA+mc2β + VR)fj
= χHRfj − i~cα · (∇xχ)fj .

Hence,

HR(χfj)
‖·‖−→ χHRf − i~cα(∇xχ)f = χHRf (3.14)

as (∇xχ)(x) = 0 ∀x ∈ supp f ⊆ Ω. We also see that

Vρχfj = VRχfj = V χfj
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hence we get together with (3.14)

HRχfj = Hρχfj = Hχfj
‖·‖−→ χHRf . (3.15)

We also know that χf = f and

‖χf − χfj‖ = ‖χ(f − fj)‖ ≤ ‖f − fj‖ → 0 ,

therefore χfj
‖·‖−→ χf = f .

Let H# ∈ {H,Hρ, HR}. We can easily see that χfj ∈ D(H#). Thus,
we can replace HR with H# in (3.14) and again due to the definition of the
closure similiar to (3.13) we get

χfj
‖·‖−→ f, H#(χfj)

‖·‖−→ H#f .

Together with (3.15) we see that H#f = χHR = HRf , so

HRf = H#f, f ∈ D(H#) ∩D(HR) .

Theorem 3.4. For R > 0, assume that HR is essentially self-adjoint. For
a fixed r > 0 choose f ∈ L2(R3,C4), such that supp f ⊆ Br = {x ∈ R3 :
‖x‖ < r}. Then

∀t ∈ R3 supp
(
e−itHRf

)
⊆ Br+c|t| .

Proof. Let B ⊆ R3 be measurable and define

PB : L2 → L2, (PBf)(x) := 1B(x)f(x) (3.16)

where 1B denotes the indicator function on B.
Note that both VR and α · A are multiplication operators. Let W ∈

{VR, α ·A}. Its operator domain is

D(W ) =
{
f ∈ L2(R3,C4) :

∫
R3

|W (x) f(x)|2dx <∞
}
.

We also know that W is essentially self-adjoint with σ(W ) = ess ranW (x)
[4, Chapter VIII.3, Prop 1]. Therefore we can define e−itW via the Spectral
Theorem [4, Theorem VIII.5] and

(e−itW f)(x) = e−itW (x)f(x) .

Hence e−itW is a multiplication operator and it commutes with PB.

PBe
−itVR = e−itVRPB ,

PBe
−it(α·A) = e−it(α·A)PB .

(3.17)
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Considering e−iD0 , we know from [6, Section 1.5] that

supp (e−itD0ψ) ⊆ Br′+c|t| for suppψ ⊆ Br′ . (3.18)

We want to prove that the same holds for D(A) := D(A, 0) and for D(A, V ).
First we are going to apply the Trotter product formula for D(A) which

is self-adjoint due to [3, Appendix B, C]:

e−itD(A)f = lim
n→∞

(
e−i

t
n
D0 e−i

t
n

(α·A)
)n
f. (3.19)

We then have

supp e−i
t
n

(α·A)f = supp e−i
t
n

(α·A) (PBrf)

= supp PBr
(
e−i

t
n

(α·A)f
)

⊆ Br

(3.20)

The last inclusion follows from the definition (3.16) of PBr , whereas the
equalities follow from (3.17). Due to (3.18),

supp
(
e−i

t
n
D0 e−i

t
n

(α·A)f
)
⊆ B

r+c
|t|
n

supp
(
e−i

t
n
D0 e−i

t
n

(α·A) e−i
t
n

(α·A)f
)
⊆ B

r+c
|t|
n

supp
(
e−i

t
n
D0 e−i

t
n
D0 e−i

t
n

2(α·A)f
)
⊆ B

r+c
2|t|
n

.

(3.21)

First we replaced f with e−i
t
n

(α·A)f , as the support is not changed (by (3.20))
and then we applied to it e−i

t
n
D0 which enlarged our support to B

r+c
2|t|
n

(by

(3.18)).
These steps can be repeated until we end up with

supp
(
e−i

t
n
D0 e−i

t
n

(α·A)f
)n
⊆ Br+c|t|. (3.22)

The ball Br+c|t| is independent of n, so we can apply (3.19) and get

supp
(
e−itD(A)f

)
⊆ Br+c|t|. (3.23)

By assumption, HR = D(A) + VR defines an essentially self-adjoint op-
erator, whence we can apply the Trotter product formula of (3.19) again for
HR

e−itHRf = lim
n→∞

(
e−i

t
n
D(A) e−i

t
n
VR
)n
f. (3.24)

Using (3.17), we can replace e−i
t
n

(α·A) with e−i
t
n
VR in (3.20) and get

supp e−i
t
n
VRf ⊆ Br (3.25)
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We repeat the iteration (3.21), (3.22) with D(A) instead of D0 using (3.23)
and obtain together with (3.24)

supp
(
e−itHRf

)
⊆ Br+c|t| . (3.26)
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Chapter 4

Essential self-adjointness à la
Chernoff

We are now going to prove Theorem 1.2.

Proof. Let f ∈ C∞0 (R3,C4) and r > 0, such that supp f ⊆ Br.
Let also R, T1 > 0 be such that

R > r + cT1 . (4.1)

Define
v1(t) := e−itHRf . (4.2)

As f ∈ C∞0 ⊆ D(HR), we can apply Lemma 3.1 and conclude that v1(t) ∈
D(HR) and

∂tv1(t) = −iHRv1(t) ∀t ∈ R . (4.3)

We also know by Theorem 3.4 and (4.1) that

supp v1(t) ⊆ Br+c|t| ⊆ BR

for all t ∈ [−T1, T1]. Therefore, by Lemma 3.3,

∂tv1(t) = −iHRv1(t) = −iHv1(t)

and v1(t) ∈ D(H) for all t ∈ [−T1, T1]. Thus, we found a local solution to
(4.3), which is unique by Lemma 3.1.

We shall now extend this solution to the whole R.
Assume by contradiction that there exist Tmax, r > 0, and f ∈ C∞0 (R3,C4)
with supp f ⊆ Br, such that the corresponding solution u : [0, Tmax) → H
to the initial value problem (1.9) cannot be extended to t > Tmax. The case
Tmax < 0 can be treated analogously.

We choose τ > Tmax and ρ > r + cτ > r + cTmax and define

v2(t) := e−itHρf ∀t ∈ [0, τ) . (4.4)
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According to Theorem 3.4

supp v2(t) ⊆ Br+c|t| ⊆ Bρ ∀t ∈ [0, τ) .

Hence, by Lemma 3.3,

∂tv2(t) = −iHρv2(t) = −iHv2(t) .

Therefore v2 : [0, τ) → H is a solution to (4.3). However, by Lemma 3.1 the
solution u is unique, so u = v2|[0,Tmax), which contradicts our assumption.

This leads to the conclusion that ∀f ∈ D(H) there exists a global solution
u : R→ H to (1.6). Hence, by Lemma 3.2, H is essentially self-adjoint.



Bibliography

[1] Asao Arai, A particle-field hamiltonian in relativistic quantum electrody-
namics, Journal of Mathematical Physics 41 (2000), 4271–4283.

[2] Paul R. Chernoff, Schrödinger and Dirac operators with singular poten-
tials and hyperbolic equations, Pac. J. Math. 72 (1977), 361–382.

[3] Elliott H. Lieb and Michael Loss, Stability of a model of relativistic quan-
tum electrodynamics, Commun. Math. Phys. 228 (2002), 561–588.

[4] Michael Reed and Barry Simon, Methods of modern mathematical
physics. I, second ed., Academic Press Inc., New York, 1980, Functional
analysis.

[5] Edgardo Stockmeyer and Heribert Zenk, Dirac operators coupled to the
quantized radiation field: Essential self-adjointness à la Chernoff, Letters
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