Proof of Weiestrass theorem via Bernstein polynomials

This is a concrete construction to prove that polynomials on $[0,1]$ are dense in $C([0,1])$.
To this aim define the polynomials $p_{n, k}:[0,1] \rightarrow \mathbb{R}$ by

$$
p_{n, k}(x):=\binom{n}{k} x^{k}(1-x)^{n-k}, \quad \begin{gather*}
x \in[0,1] \tag{1}\\
n, k \text { integers } \\
\text { with } 0 \leqslant k \leqslant n .
\end{gather*}
$$

They satisfy the following identities:

$$
\begin{align*}
& \sum_{k=0}^{n} p_{n, k}(x)=1 \tag{2}\\
& \sum_{k=0}^{n} k p_{n, k}(x)=n x \tag{3}\\
& \sum_{k=0}^{n} k(k-1) p_{n, k}(x)=n(n-1) x^{2} . \tag{4}
\end{align*}
$$

Indeed, (2) is just the Binomial Theorem $(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}$ applied to $a=x$ and $b=1-x$, (3) follows from

$$
\begin{aligned}
\sum_{k=0}^{n} k p_{n, k}(x) & =\sum_{k=1}^{n} k\binom{n}{k} x^{k}(1-x)^{n-k}=n x \sum_{k=1}^{n} \frac{k}{n}\binom{n}{k} x^{k-1}(1-x)^{n-k} \\
& =n x \sum_{k=1}^{n}\binom{n-1}{k-1} x^{k-1}(1-x)^{n-k}=n x \sum_{r=0}^{n-1}\binom{n-1}{r} x^{r}(1-x)^{n-1-r} \stackrel{(2)}{=} n x
\end{aligned}
$$

and (4) follows from

$$
\begin{aligned}
\sum_{k=0}^{n} k(k-1) p_{n, k}(x) & =\sum_{k=2}^{n} k(k-1)\binom{n}{k} x^{k}(1-x)^{n-k} \\
& =n(n-1) x^{2} \sum_{k=2}^{n} \frac{k(k-1)}{n(n-1)}\binom{n}{k} x^{k-2}(1-x)^{n-k} \\
& =n(n-1) x^{2} \sum_{k=2}^{n}\binom{n-2}{k-2} x^{k-2}(1-x)^{n-k} \\
& =n(n-1) x^{2} \sum_{r=0}^{n-2}\binom{n-2}{r} x^{r}(1-x)^{n-2-r} \stackrel{(2)}{=} n(n-1) x^{2}
\end{aligned}
$$

As a consequence, one has

$$
\begin{equation*}
\sum_{k=0}^{n}(k-n x)^{2} p_{n, k}(x)=n x(1-x) \tag{5}
\end{equation*}
$$

because

$$
\sum_{k=0}^{n}(k-n x)^{2} p_{n, k}(x)=\sum_{k=0}^{n}\left(k(k-1)-(2 n x-1) k+n^{2} x^{2}\right) p_{n, k}(x)=n x(1-x)
$$

where in the last step one uses (2), (3), and (4). Moreover, for any $\delta>0$,

$$
\begin{equation*}
\sum_{k \text { s.t. }|k-n x| \geqslant n \delta} p_{n, k}(x) \leqslant \frac{1}{4 n \delta^{2}} \tag{6}
\end{equation*}
$$

(in the inequality selecting k it is understood that k is an integer between 0 and n), because

$$
\sum_{|k-n x| \geqslant n \delta} p_{n, k}(x) \leqslant \frac{1}{n^{2} \delta^{2}} \sum_{|k-n x| \geqslant n \delta}(k-n x)^{2} p_{n, k}(x) \stackrel{(5)}{\leqslant} \frac{x(1-x)}{n \delta^{2}} \leqslant \frac{1}{4 n \delta^{2}}
$$

where last inequality is due to $x(1-x) \in\left[0, \frac{1}{4}\right]$ (since $x \in[0,1]$). All the preliminaries are now completed.

Take now $f \in C([0,1])$. Correspondingly, define the polynomials

$$
\begin{equation*}
B_{n}^{(f)}(x):=\sum_{k=0}^{n} f\left(\frac{k}{n}\right) p_{n, k}(x) . \tag{7}
\end{equation*}
$$

f is uniformly continuous, being a continuous function defined on a compact. That is, $\forall \varepsilon>0 \exists \delta>0$ such that $\left|x-x^{\prime}\right| \leqslant \delta$ implies $\left|f(x)-f\left(x^{\prime}\right)\right| \leqslant \varepsilon$ (uniformly in the choice of x, x^{\prime}). Then one has

$$
\begin{aligned}
\left|f(x)-B_{n}^{(f)}(x)\right| & \stackrel{(2)}{=}\left|\sum_{k=0}^{n}\left(f(x)-f\left(\frac{k}{n}\right)\right) p_{n, k}(x)\right| \leqslant \sum_{k=0}^{n}\left|f(x)-f\left(\frac{k}{n}\right)\right| p_{n, k}(x) \\
& =\sum_{|k-n x| \leqslant n \delta}\left|f(x)-f\left(\frac{k}{n}\right)\right| p_{n, k}(x)+\sum_{|k-n x| \geqslant n \delta}\left|f(x)-f\left(\frac{k}{n}\right)\right| p_{n, k}(x) \\
& \leqslant \varepsilon \sum_{k=0}^{n} p_{n, k}(x)+2\|f\|_{\infty} \sum_{|k-n x| \geqslant n \delta} p_{n, k}(x) \\
& \stackrel{(6)}{\leqslant} \varepsilon+\frac{\|f\|_{\infty}}{2 n \delta^{2}} .
\end{aligned}
$$

Therefore, $\lim _{\sup _{n \rightarrow \infty}}\left|f(x)-B_{n}^{(f)}(x)\right| \leqslant \varepsilon$, uniformly in x. Last, ε being arbitrary, one concludes $\sup _{x \in[0,1]}\left|f(x)-B_{n}^{(f)}(x)\right| \xrightarrow{n \rightarrow \infty} 0$. In other words,

$$
\lim _{n \rightarrow \infty}\left\|f-B_{n}^{(f)}\right\|_{\infty}=0
$$

i.e., the polynomial $B_{n}^{(f)}$'s associated with f approximate f uniformly.

Remark: polynomials $B_{n}^{(f)}$ ("Bernstein polynomials") were introduced first by S. Bernstein in the paper Démonstration du théorème de Weiestrass, fondeé sur le calcul des probabilités, Comm. Soc. Math. Kharkow (2), 13 (1912), 1-2.

Alessandro

