
Abstract

PROBLEM IN CLASS - WEEK 3 These additional problems are for your own preparation at home. They supplement examples and properties not discussed in class. Some of them will discussed interactively in the weekly exercise/tutorial sessions. You are not required to hand in their solution. You are encouraged to think them over and to solve them. Being able to solve them is essential for the final exam. Further info at www.math.lmu.de/~michel/WS11-12_FA2.html.

Problem 9. Let $k \in L^{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ for some positive integer d. Use the notation $k(x, y)$ with $x, y \in \mathbb{R}^{d}$. Consider on $L^{2}\left(\mathbb{R}^{d}\right)$ the map $f \mapsto T f$ defined by

$$
\begin{equation*}
(T f)(x):=\int_{\mathbb{R}^{d}} k(x, y) f(y) \mathrm{d} y \quad \text { for a.e. } x \in \mathbb{R}^{d} \tag{*}
\end{equation*}
$$

(i) Show that $(*)$ defines a bounded operator $T: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right)$ with operator norm at $\operatorname{most}\|k\|_{L^{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)}$.
(ii) Produce a sequence $\left\{T_{n}\right\}_{n=1}^{\infty}$ of finite rank operators in $\mathcal{B}\left(L^{2}\left(\mathbb{R}^{d}\right)\right)$ such that $T_{n} \xrightarrow{n \rightarrow \infty} T$ in the operator norm, thus concluding that T is a compact operator.
(iii) Let $\left\{\varphi_{n}\right\}_{n=1}^{\infty}$ be an orthonormal basis of $L^{2}\left(\mathbb{R}^{d}\right)$. Show that

$$
\sum_{n=1}^{\infty}\left\|T f_{n}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}=\|k\|_{L^{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)}^{2}
$$

irrespectively of the choice of the orthonormal basis $\left\{\varphi_{n}\right\}_{n=1}^{\infty}$.

Problem 10. Let X, Y be Banach spaces and $T \in \mathcal{B}(X, Y)$.
(i) Show that T is invertible if and only if $\operatorname{Ran} T$ is dense in Y and T is "bounded below" in the sense that $\exists \varepsilon>0$ such that $\|T x\|_{Y} \geqslant \varepsilon\|x\|_{X}$ for all $x \in X$.
(Note: choosing Y to be just a normed space the same conclusion follows.)
(ii) Show that if T is invertible then $\sigma\left(T^{-1}\right)=\frac{1}{\sigma(T)}:=\left\{\left.\frac{1}{\lambda} \in \mathbb{C} \right\rvert\, \lambda \in \sigma(T)\right\}$.
(iii) Show that if $Y=X$, if T is invertible, and if $T x=\lambda x$ for some $\lambda \neq 0$, then $T^{-1} x=\lambda^{-1} x$.

Problem 11. (Projections on a Banach space. Compare with Exercise 6, where orthogonal projections on a Hilbert space were discussed.)
Let X be a vector space. In this exercise \oplus is the direct sum in the algebraic sense. (Note: in the Hilbert space case \oplus is the orthogonal sum.) Recall that a projection on X (and onto $\operatorname{Ran} P)$ is a linear map $P: X \rightarrow X$ such that $P^{2}=P$.
(i) Show that if P is a projection on X then

$$
X=\operatorname{Ker} P \oplus \operatorname{Ran} P
$$

(ii) Show that if P is a projection on X then $\mathbb{1}-P$ is a projection too with

$$
\operatorname{Ker}(\mathbb{1}-P)=\operatorname{Ran} P, \quad \operatorname{Ran}(\mathbb{1}-P)=\operatorname{Ker} P .
$$

(iii) Show that for every subspace $X_{0} \subset X$ there exists a projection onto X_{0}. (Hint: Zorn.)

Assume now in addition that X is a normed vector space.
(iv) Produce an example of a normed space X and a linear map $P: X \rightarrow X$ such that $P=P^{2}$ but P is not continuous.
(v) Show that if P is a bounded linear projection on X then both $\operatorname{Ker} P$ and Ran P are closed subspaces and either $P=\mathbb{O}$ or $\|P\| \geqslant 1$.

Last, let X be a Banach space. Note that given a subspace $X_{0} \subset X$, the projection onto X_{0} that exists by (iii) need not be continuous.
(vi) Show that if $X=X_{0} \oplus X_{1}$ for some closed subspaces X_{0}, X_{1} of X then there exists a bounded projection $P: X \rightarrow X$ such that $\operatorname{Ker} P=X_{0}, \operatorname{Ran} P=X_{1}$.
(vii) Assume that $X=X_{0} \oplus X_{1}$ for some subspaces X_{0}, X_{1} of X such that X_{0} is closed and $\operatorname{dim} X_{1}<\infty$. Pick another subspace of X, say \widetilde{X}_{1}, such that $X_{0} \cap \widetilde{X}_{1}=\{0\}$. Show that $\operatorname{dim} \widetilde{X}_{1} \leqslant \operatorname{dim} X_{1}$, and that $\operatorname{dim} \widetilde{X}_{1}=\operatorname{dim} X_{1}$ when $X=X_{0} \oplus \widetilde{X}_{1}$.
(Note that (vii) proves Remark 1.2 stated in class, that is: if X_{0} is a closed subspace of a Banach space X with $\operatorname{codim} X_{0}<\infty$, i.e., if $X=X_{0} \oplus X_{1}$ and $\operatorname{codim} X_{0}=\operatorname{dim} X_{1}<\infty$, then the codimension of X_{0} does not depend on the choice of the complement subspace X_{1}.)

Problem 12. (Spectrum of self-adjoint operators.) Let \mathcal{H} be a Hilbert space and let $A=A^{*}$ be a bounded, self-adjoint operator on \mathcal{H}. Show the following spectral properties of A.
(i) $\sigma(A) \subset\left[\inf _{\substack{x \in \mathcal{H} \\\|x\|=1}}\langle x, A x\rangle, \sup _{\substack{x \in \mathcal{H} \\\|x\|=1}}\langle x, A x\rangle\right] \subset \mathbb{R}$.
(ii) $\sigma_{\mathrm{r}}(A)=\emptyset$.
(iii) If $A x=\lambda x$ and $A y=\mu y$ with $\lambda \neq \mu$ then $\langle x, y\rangle=0$.
(iv) If $\sigma(A)=\{0\}$ then $A=\mathbb{O}$.

