

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Mathematical Quantum Mechanics – Final Test, 12.02.2011 Mathematische Quantenmechanik – Endklausur, 12.02.2011

Name: / Name:						
Matriculation number:/Matrik	elnr.:	Semester:				
Degree course: / <i>Studiengang</i> :	 □ Bachelor PO 2007 □ Bachelor PO 2010 □ Diplom □ Master 	 Lehramt Gymnasium (modularisiert) Lehramt Gymnasium (nicht modularisiert) TMP 				
Major:/Hauptfach: 🗅 Mathema	tik 🛛 Wirtschaftsm.	🗅 Informatik 🗅 Physik 🗅 Statistik 🗅				
Minor:/Nebenfach: 🗅 Mathema	tik 🕒 Wirtschaftsm.	🗅 Informatik 🗅 Physik 🗅 Statistik 🗅				
Credits needed for:/Anrechnung der Credit Points für das:						
Extra solution sheets submitted:/Zusätzlich abgegebene Lösungsblätter: 🖵 Yes 📮 No						

problem	1	2	3	4	5	6	7	8	9	\sum
total points	10	10	15	15	15	15	15	20	25	140
scored points										
homework performance		final test performance			total performance			FINAL MARK		

INSTRUCTIONS:

- This booklet is made of twenty-two pages, including the cover, numbered from 1 to 22. The test consists of nine problems. Each problem is worth the number of points specified in the table above. 100 points are counted as 100% performance in this test. You are free to attempt any problem and collect partial credits.
- The only material that you are allowed to use is black or blue pens/pencils and one two-sided A4-paper "cheat sheet" (Spickzettel). You cannot use your own paper: should you need more paper, raise your hand and you will be given extra sheets.
- Prove all your statements or refer to the standard material discussed in class.
- Work individually. Write with legible handwriting. You may hand in your solution in English or in German. Put your name on every sheet you hand in.
- You have 150 minutes.

GOOD LUCK!

Fill in the form here below only if you need the certificate (Schein).

	Dieser L nach §	eistungsnach Abs.	weis entspri Nr.	cht auch den An Buchstabe	forderungen LPO I
UNIVERSITÄT MÜNCHEN		Abs.	Nr.	Buchstabe	LPO I
ZEUGNIS					
Der / Die Studierende der	<i>ans</i>				
geboren am in hat im	\underline{WiSe}	<i>H</i>	Ialbjahr	2010/2011_	
meine Übungen zur Mathematischen Quantenmecha	nik				
					_ besucht.
Er / Sie hat	n wurden.				

MÜNCHEN, den <u>12 Februar 2011</u>

PROBLEM 1. (10 points) Consider the sequence $\{f_n\}_{n=1}^{\infty}$ in $L^1_{loc}(\mathbb{R})$ defined by

 $f_n(x) := x^{2011} \sin nx, \qquad x \in \mathbb{R}.$

Prove that f_n converges in \mathcal{D}' (i.e., in the sense of distributions) as $n \to \infty$ and compute its limit.

PROBLEM 2. (10 points) Let \mathcal{H} be a Hilbert space with norm $\|\cdot\|$ and scalar product $\langle \cdot, \cdot \rangle$. Let $f, g, h \in \mathcal{H}$ be three orthonormal elements in \mathcal{H} , that is, $\|f\| = \|g\| = \|h\| = 1$ and $\langle f, g \rangle = \langle f, h \rangle = \langle g, h \rangle = 0$. Show that $f \wedge g, f \wedge h, g \wedge h$ are three orthonormal elements in the tensor product space $\mathcal{H} \otimes \mathcal{H}$.

PROBLEM 3. (15 points) The purpose of this problem is to show that the ground state of a single-well potential has only a single peak. Consider the Hamiltonian $H = -\frac{d^2}{dx^2} - V(x)$ acting on $L^2(\mathbb{R})$, where $V \in L^1(\mathbb{R}) \cap L^{\infty}(\mathbb{R}) \cap C^1(\mathbb{R}), V \ge 0, V'(x) > 0 \quad \forall x \in (-\infty, 0), V'(x) < 0 \quad \forall x \in (0, +\infty).$

- (i) Show that H admits a ground state ψ_0 with ground state energy $E_0 < 0$. (Recall that in this case ψ_0 can be assumed to be strictly positive.)
- (ii) Show that ψ_0 has only one local maximum (which then, of course, is global). I.e., show that ψ_0 cannot have a shape of, e.g., two peaks as in Fig (a), the correct behaviour is depicted in Fig (b).

PROBLEM 4 (15 points). Consider the one-body wave-functions $\varphi, \psi \in L^2(\mathbb{R}^d)$ such that $\|\varphi\|_{L^2(\mathbb{R}^d)} = \|\psi\|_{L^2(\mathbb{R}^d)} = 1$ and $\langle \varphi, \psi \rangle_{L^2(\mathbb{R}^d)} = 0$ (*d* is a given positive integer). For a given integer $N \ge 2$ consider the bosonic *N*-body wave functions $\Phi_N, \Psi_N \in L^2(\mathbb{R}^{Nd})$ defined by

$$\Phi_N := \varphi^{\otimes N}, \qquad \Psi_N := \left(\psi \otimes \varphi^{\otimes (N-1)}
ight)_{ ext{sym}}$$

Recall the notation: $(\psi \otimes \varphi^{\otimes (N-1)})_{\text{sym}} = \frac{1}{\sqrt{N}} \sum_{j=1}^{N} (\varphi \otimes \cdots \otimes \varphi \otimes \psi \otimes \varphi \otimes \cdots \otimes \varphi)$, where in

the *j*-th summand the function ψ occupies the *j*-th entry of the tensor product.

- (i) Show that $\|\Phi_N\|_{L^2(\mathbb{R}^{Nd})} = \|\Psi_N\|_{L^2(\mathbb{R}^{Nd})} = 1.$
- (ii) Show that $\langle \Phi_N, \Psi_N \rangle_{L^2(\mathbb{R}^{Nd})} = 0$ and compute $\|\Phi_N \Psi_N\|_{L^2(\mathbb{R}^{Nd})}$.
- (iii) Compute Tr $|\gamma_{\Phi_N}^{(1)} \gamma_{\Psi_N}^{(1)}|$, where $\gamma_{\Theta}^{(1)}$ denotes the one-body reduced density matrix associated with an N-body state $\Theta \in L^2(\mathbb{R}^{Nd})$, |A| denotes the absolute value of an operator A, and Tr is the trace of non-negative operators on $L^2(\mathbb{R}^d)$.

PROBLEM 5. (15 points) Let $V = (V_1, V_2, V_3) \in C_0^{\infty}(\mathbb{R}^3, \mathbb{R}^3)$.

(i) Prove that there exists a constant C, depending on V, such that

$$\left\|\frac{1}{1-\Delta}V\cdot\nabla f\right\|_{2} \leqslant C \|f\|_{2}$$

for all $f \in C_0^{\infty}(\mathbb{R}^3)$. Recall the notation: $V \cdot \nabla = \sum_{j=1}^3 V_j \partial_{x_j}$, where $(x_1, x_2, x_3) \in \mathbb{R}^3$.

(ii) Show that the operator $\frac{1}{1-\Delta}V \cdot \nabla$ extends to a bounded operator T on $L^2(\mathbb{R}^3)$.

(iii) Show that T is compact.

PROBLEM 6. (15 points) The purpose of this problem is to show that there exist L^2 normalisable approximate eigenstates to any positive energy. Consider the Hamiltonian $H = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + V(x), \text{ where } V \in L^{\infty}(\mathbb{R}) \text{ and } \lim_{x \to \pm \infty} V(x) = 0. \text{ For any given } E > 0 \text{ construct a}$ sequence $\{\psi_n\}_{n=1}^{\infty}$ in $C_0^{\infty}(\mathbb{R})$ such that $\|\psi_n\|_2 = 1$ for any n and

$$\lim_{n \to \infty} \|(H - E)\psi_n\|_2 = 0.$$

PROBLEM 7. (15 points) Consider the Hamiltonian $H = -\Delta - V(x)$ in three dimensions, where

$$V(x) = Z |x|^{-1} e^{-|x|}, \qquad x \neq 0,$$

and Z is a positive parameter. (You may think of H as the Hamiltonian of an hydrogenic atom where the Coulomb interaction is exponentially suppressed at large distances.)

- (i) Prove that there exists a universal constant $Z_0 > 0$ such that if $Z < Z_0$ then the ground state energy E_0 of H is non negative (i.e., V does not bind any electron).
- (ii) Prove that there exists a universal constant $C_0 > 0$ such that the ground state energy $E_0^f(N)$ of a system of N non-interacting fermions, each subject to the same potential V, is bounded below by $E_0^f(N) \ge -C_0 Z^{5/2}$ uniformly in N.

PROBLEM 8. (20 points) The purpose of this problem is to establish certain properties of the non-linear Hartree potential. Throughout the problem p shall be a fixed index in $[1, \infty]$, $V \in L^p(\mathbb{R}^3)$, and $q := \frac{4p}{2p-1}$.

(i) Show that for any $f, g, h \in L^q(\mathbb{R}^3)$ one has

 $\| (V * (fg)) h \|_{q'} \leq C_q \| V \|_p \| f \|_q \| g \|_q \| h \|_q,$

the constant C_q depending on q only. Here q' is the Hölder conjugate of q, that is, $q' = (1 - \frac{1}{q})^{-1}$, fg is the pointwise product of f and g, and * is the convolution.

(ii) Show that $G(f) := (V * |f|^2) f$ defines a continuous map $G : L^q(\mathbb{R}^3) \to L^{q'}(\mathbb{R}^3)$. (Warning: G is not a linear map, so it is useless to check whether G is bounded.)

PROBLEM 9. (25 points) Consider a potential $V \in C(\mathbb{R}^3)$ such that $V \ge 0$, $V(x) \to 0$ as $|x| \to \infty$, and the ground state energy E_0 of the Hamiltonian $h = -\Delta - V$ is negative. Let $U \in C(\mathbb{R}^3)$ be such that $U \ge 0$, U(x) = U(-x), and $U(x) \to 0$ as $|x| \to \infty$. Consider the two-body Hamiltonian

$$H = -\Delta_1 - \Delta_2 - V(x_1) - V(x_2) + U(x_1 - x_2)$$

acting on wave-functions of two variables $(x_1, x_2) \in \mathbb{R}^3 \times \mathbb{R}^3$.

- (i) Prove that the fermionic ground state energy of H is bounded above as $E_0^f \leq E_0$.
- (ii) Prove that the bosonic ground state energy of H is bounded above as $E_0^b \leq E_0$.