

Mathematical Quantum Mechanics - Final Test, 12.02.2011
 Mathematische Quantenmechanik - Endklausur, 12.02.2011

Name:/Name: \qquad
Matriculation number:/Matrikelnr.: \qquad Semester:/Fachsemester: \qquad
Degree course:/Studiengang:

- Bachelor PO 2007 Lehramt Gymnasium (modularisiert)
\square Bachelor PO $2010 \square$ Lehramt Gymnasium (nicht modularisiert)
\square Diplom Master \square TMP \square

Major:/Hauptfach: \square Mathematik \square Wirtschaftsm. \square Informatik \square Physik \square Statistik $\square \square$
Minor:/Nebenfach: \square Mathematik \square Wirtschaftsm. \square Informatik \square Physik \square Statistik $\square \square$
Credits needed for:/Anrechnung der Credit Points für das: Hauptfach \square Nebenfach (Bachelor/Master)
Extra solution sheets submitted:/Zusätzlich abgegebene Lösungsblätter: \quad Yes \square No

problem	1	2	3	4	5	6	7	8	9	\sum
total points	10	10	15	15	15	15	15	20	25	140
scored points										

| homework
 performance | final test
 performance | total
 performance | FINAL
 MARK | |
| :---: | :--- | :---: | :--- | :---: | :--- | :---: |

INSTRUCTIONS:

- This booklet is made of twenty-two pages, including the cover, numbered from 1 to 22 . The test consists of nine problems. Each problem is worth the number of points specified in the table above. 100 points are counted as 100% performance in this test. You are free to attempt any problem and collect partial credits.
- The only material that you are allowed to use is black or blue pens/pencils and one two-sided A4-paper "cheat sheet" (Spickzettel). You cannot use your own paper: should you need more paper, raise your hand and you will be given extra sheets.
- Prove all your statements or refer to the standard material discussed in class.
- Work individually. Write with legible handwriting. You may hand in your solution in English or in German. Put your name on every sheet you hand in.
- You have 150 minutes.

GOOD LUCK!

Fill in the form here below only if you need the certificate (Schein).

UNIVERSITÄT MÜNCHEN

Dieser Leistungsnachweis entspricht auch den Anforderungen				
nach \S	Abs.	Nr.	Buchstabe	LPO I
nach §	Abs.	Nr.	Buchstabe	LPO I

ZEUGNIS

Der / Die Studierende der
Herr / Frau
\qquad hat im WiSe -Halbjahr 2010/2011
geboren am athematischen Quantenmechanik

Er / Sie hat schriftliche Arbeiten geliefert, die mit ihm / ihr besprochen wurden.

PROBLEM 1. (10 points) Consider the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ in $L_{\text {loc }}^{1}(\mathbb{R})$ defined by

$$
f_{n}(x):=x^{2011} \sin n x, \quad x \in \mathbb{R}
$$

Prove that f_{n} converges in \mathcal{D}^{\prime} (i.e., in the sense of distributions) as $n \rightarrow \infty$ and compute its limit.

SOLUTION:

PROBLEM 2. (10 points) Let \mathcal{H} be a Hilbert space with norm $\|\cdot\|$ and scalar product $\langle\cdot, \cdot\rangle$. Let $f, g, h \in \mathcal{H}$ be three orthonormal elements in \mathcal{H}, that is, $\|f\|=\|g\|=\|h\|=1$ and $\langle f, g\rangle=\langle f, h\rangle=\langle g, h\rangle=0$. Show that $f \wedge g, f \wedge h, g \wedge h$ are three orthonormal elements in the tensor product space $\mathcal{H} \otimes \mathcal{H}$.

SOLUTION:

PROBLEM 3. ($\mathbf{1 5}$ points) The purpose of this problem is to show that the ground state of a single-well potential has only a single peak. Consider the Hamiltonian $H=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}-V(x)$ acting on $L^{2}(\mathbb{R})$, where $V \in L^{1}(\mathbb{R}) \cap L^{\infty}(\mathbb{R}) \cap C^{1}(\mathbb{R}), V \geqslant 0, V^{\prime}(x)>0 \forall x \in(-\infty, 0)$, $V^{\prime}(x)<0 \forall x \in(0,+\infty)$.
(i) Show that H admits a ground state ψ_{0} with ground state energy $E_{0}<0$. (Recall that in this case ψ_{0} can be assumed to be strictly positive.)
(ii) Show that ψ_{0} has only one local maximum (which then, of course, is global). I.e., show that ψ_{0} cannot have a shape of, e.g., two peaks as in Fig (a), the correct behaviour is depicted in Fig (b).

Figure (a)

Figure (b)

SOLUTION:

PROBLEM 4 (15 points). Consider the one-body wave-functions $\varphi, \psi \in L^{2}\left(\mathbb{R}^{d}\right)$ such that $\|\varphi\|_{L^{2}\left(\mathbb{R}^{d}\right)}=\|\psi\|_{L^{2}\left(\mathbb{R}^{d}\right)}=1$ and $\langle\varphi, \psi\rangle_{L^{2}\left(\mathbb{R}^{d}\right)}=0$ (d is a given positive integer). For a given integer $N \geqslant 2$ consider the bosonic N-body wave functions $\Phi_{N}, \Psi_{N} \in L^{2}\left(\mathbb{R}^{N d}\right)$ defined by

$$
\Phi_{N}:=\varphi^{\otimes N}, \quad \Psi_{N}:=\left(\psi \otimes \varphi^{\otimes(N-1)}\right)_{\mathrm{sym}}
$$

Recall the notation: $\left(\psi \otimes \varphi^{\otimes(N-1)}\right)_{\text {sym }}=\frac{1}{\sqrt{N}} \sum_{j=1}^{N}(\varphi \otimes \cdots \otimes \varphi \otimes \psi \otimes \varphi \otimes \cdots \otimes \varphi)$, where in the j-th summand the function ψ occupies the j-th entry of the tensor product.
(i) Show that $\left\|\Phi_{N}\right\|_{L^{2}\left(\mathbb{R}^{N d}\right)}=\left\|\Psi_{N}\right\|_{L^{2}\left(\mathbb{R}^{N d}\right)}=1$.
(ii) Show that $\left\langle\Phi_{N}, \Psi_{N}\right\rangle_{L^{2}\left(\mathbb{R}^{N d}\right)}=0$ and compute $\left\|\Phi_{N}-\Psi_{N}\right\|_{L^{2}\left(\mathbb{R}^{N d}\right)}$.
(iii) Compute $\operatorname{Tr}\left|\gamma_{\Phi_{N}}^{(1)}-\gamma_{\Psi_{N}}^{(1)}\right|$, where $\gamma_{\Theta}^{(1)}$ denotes the one-body reduced density matrix associated with an N-body state $\Theta \in L^{2}\left(\mathbb{R}^{N d}\right),|A|$ denotes the absolute value of an operator A, and Tr is the trace of non-negative operators on $L^{2}\left(\mathbb{R}^{d}\right)$.

SOLUTION:

Name

PROBLEM 5. (15 points) Let $V=\left(V_{1}, V_{2}, V_{3}\right) \in C_{0}^{\infty}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)$.
(i) Prove that there exists a constant C, depending on V, such that

$$
\left\|\frac{1}{1-\Delta} V \cdot \nabla f\right\|_{2} \leqslant C\|f\|_{2}
$$

for all $f \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$. Recall the notation: $V \cdot \nabla=\sum_{j=1}^{3} V_{j} \partial_{x_{j}}$, where $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$.
(ii) Show that the operator $\frac{1}{1-\Delta} V \cdot \nabla$ extends to a bounded operator T on $L^{2}\left(\mathbb{R}^{3}\right)$.
(iii) Show that T is compact.

SOLUTION:

PROBLEM 6. (15 points) The purpose of this problem is to show that there exist L^{2} normalisable approximate eigenstates to any positive energy. Consider the Hamiltonian $H=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+V(x)$, where $V \in L^{\infty}(\mathbb{R})$ and $\lim _{x \rightarrow \pm \infty} V(x)=0$. For any given $E>0$ construct a sequence $\left\{\psi_{n}\right\}_{n=1}^{\infty}$ in $C_{0}^{\infty}(\mathbb{R})$ such that $\left\|\psi_{n}\right\|_{2}=1$ for any n and

$$
\lim _{n \rightarrow \infty}\left\|(H-E) \psi_{n}\right\|_{2}=0
$$

SOLUTION:

PROBLEM 7. (15 points) Consider the Hamiltonian $H=-\Delta-V(x)$ in three dimensions, where

$$
V(x)=Z|x|^{-1} e^{-|x|}, \quad x \neq 0
$$

and Z is a positive parameter. (You may think of H as the Hamiltonian of an hydrogenic atom where the Coulomb interaction is exponentially suppressed at large distances.)
(i) Prove that there exists a universal constant $Z_{0}>0$ such that if $Z<Z_{0}$ then the ground state energy E_{0} of H is non negative (i.e., V does not bind any electron).
(ii) Prove that there exists a universal constant $C_{0}>0$ such that the ground state energy $E_{0}^{f}(N)$ of a system of N non-interacting fermions, each subject to the same potential V, is bounded below by $E_{0}^{f}(N) \geqslant-C_{0} Z^{5 / 2}$ uniformly in N.

SOLUTION:

Name

PROBLEM 8. (20 points) The purpose of this problem is to establish certain properties of the non-linear Hartree potential. Throughout the problem p shall be a fixed index in $[1, \infty]$, $V \in L^{p}\left(\mathbb{R}^{3}\right)$, and $q:=\frac{4 p}{2 p-1}$.
(i) Show that for any $f, g, h \in L^{q}\left(\mathbb{R}^{3}\right)$ one has

$$
\|(V *(f g)) h\|_{q^{\prime}} \leqslant C_{q}\|V\|_{p}\|f\|_{q}\|g\|_{q}\|h\|_{q},
$$

the constant C_{q} depending on q only. Here q^{\prime} is the Hölder conjugate of q, that is, $q^{\prime}=\left(1-\frac{1}{q}\right)^{-1}, f g$ is the pointwise product of f and g, and $*$ is the convolution.
(ii) Show that $G(f):=\left(V *|f|^{2}\right) f$ defines a continuous map $G: L^{q}\left(\mathbb{R}^{3}\right) \rightarrow L^{q^{\prime}}\left(\mathbb{R}^{3}\right)$. (Warning: G is not a linear map, so it is useless to check whether G is bounded.)

SOLUTION:

PROBLEM 9. (25 points) Consider a potential $V \in C\left(\mathbb{R}^{3}\right)$ such that $V \geqslant 0, V(x) \rightarrow 0$ as $|x| \rightarrow \infty$, and the ground state energy E_{0} of the Hamiltonian $h=-\Delta-V$ is negative. Let $U \in C\left(\mathbb{R}^{3}\right)$ be such that $U \geqslant 0, U(x)=U(-x)$, and $U(x) \rightarrow 0$ as $|x| \rightarrow \infty$. Consider the two-body Hamiltonian

$$
H=-\Delta_{1}-\Delta_{2}-V\left(x_{1}\right)-V\left(x_{2}\right)+U\left(x_{1}-x_{2}\right)
$$

acting on wave-functions of two variables $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{3} \times \mathbb{R}^{3}$.
(i) Prove that the fermionic ground state energy of H is bounded above as $E_{0}^{f} \leqslant E_{0}$.
(ii) Prove that the bosonic ground state energy of H is bounded above as $E_{0}^{b} \leqslant E_{0}$.

SOLUTION:

