
Mathematical Quantum Mechanics
TMP Programme, Munich – Winter Term 2010/2011

EXERCISE SHEET 5, issued on Tuesday 23 November 2010
Due: Tuesday 30 November 2010 by 8,15 a.m. in the designated “MQM” box on the 1st floor
Info: www.math.lmu.de/~michel/WS10_MQM.html

Each exercise is worth a full mark as specified below. Correct
answers without proofs are not accepted. Each step should be
justified. You can hand in the solutions either in German or
in English. The exercise marked with F is for extra credit.

Exercise 17 [10 points]. Let d be a positive integer, let α > 0, and define

Hα(Rd) :=
{
f ∈ L2(Rd) | ‖f‖2

Hα :=

∫

Rd

(
1 + (2π|k|)2α

)|f̂(k)|2 dk < ∞
}
.

By analogy with the proof of the Sobolev inequality for the space H1(R2) (Theorem 12.3 of
the handout “Crash course in Analysis”), prove that if d > 2α and p ∈ [2, 2d

d−2α
) then

‖f‖p 6 C ‖f‖Hα ∀f ∈ Hα(Rd)

for some constant C depending on d, p, and α, but independent of f .

Exercise 18 [15 points]. Recall the notation

|α| := α1 + · · ·+ αd , Dα :=
∂|α|

∂xα1
1 · · · ∂xαd

d

, xα := xα1
1 · · · xαd

d

for any d-dimensional multi-index α = (α1, . . . , αd) (x = (x1, . . . , xd) ∈ Rd). Recall also that
for any positive integer k

Dk :=
∑

multi-indices α
with |α|=k

Dα

(In particular, there are d(d+1)
2

terms in D2 =
∑

i6j
∂2

∂xi∂xj
and only d terms in ∆ =

∑d
j=1

∂2

∂x2
j
.)

(i) Prove that ‖∇f‖2
2 6 ‖∆f‖2‖f‖2 ∀f ∈ S(Rd).

(ii) Prove that ‖D2f‖2 6
√

d(d+1)
2

‖∆f‖2 ∀f ∈ S(Rd).

(iii) Prove that for any multi-index α there exists a constant Cd,|α| such that

‖D|α|f‖2
2 6 Cd,|α| ‖∆|α|f‖2 ‖f‖2 ∀f ∈ S(Rd) .

(iv) Let d > 2, p ∈ [2, 2d
d−2

], a := d(1
2
− 1

p
). Prove that there exists a constant Cd,p such that

‖f‖p 6 Cd,p ‖∇f‖a
2 ‖f‖1−a

2 ∀f ∈ S(Rd) .
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(v) Let d > 2, p ∈ [2, 2d
d−2

], b := d
2
(1

2
−1

p
). Deduce from (i) and (iv) that there exists a constant

Cd,p such that
‖f‖p 6 Cd,p ‖∆f‖b

2 ‖f‖1−b
2 ∀f ∈ S(Rd) .

Exercise 19 [15 points]. Consider the Hamiltonian of the Helium atom in normalised units,
i.e.,

HHe = −∆x1 −∆x2 −
2

|x1| −
2

|x2| +
1

|x1 − x2| .

Note that there are two electrons moving around a nucleus with charge Z = 2; HHe acts
therefore on wave functions ψ(x1, x2) with xj ∈ R3, j = 1, 2. (Neglect the fact that electrons
are fermions: in this case this is justified since we also neglected spins.)

(i) Assume first that the electron-electron interaction is absent, that is, consider HHe
0 :=

HHe − 1
|x1−x2| . Compute the ground state energy E0 of HHe

0 .

(ii) Compute an upper bound E+ of the ground state energy of HHe by means of the trial
function that has the same form of the ground state wave function of HHe

0 but with a
generic charge Z to be optimised. (The optimal value Z = Zeff turns out to be smaller
than 2, which accounts for the physical intuition that each electron is effectively subject
to a nuclear charge Zeff < 2 due to the “screening effect” of the other.)

(iii) Compute the relative (i.e., percentage) error of the approximate results E0 and E+ above
with respect to the experimental value for the Helium ground state energy, that in nor-
malised units amounts to Eexp = −1.45 (Eexp = −78.8 eV in physical units).

F Exercise 20 [15 points]. Consider the three-dimensional system made of two nuclei, both
of charge Z, one placed at the origin and one placed at some point at distance R very far
away from the origin, and 2 electrons subject to their mutual repulsion and to the attraction
of the nuclei. The nuclei are fixed, the repulsion among them is neglected in this problem. Let
EGS(R) be the ground state energy of such a system. Prove that

lim
R→∞

EGS(R) = − Z2

2
.

(Hint: a good trial function for the upper bound, an IMS-type localisation in both variables
for the lower bound, i.e., write 1 = χ2

0(xj) + χ2
R(xj) + χ2(xj), j = 1, 2, for suitable χ0, χR, χ.)
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