Issued: Monday 28 June 2010
Due: Monday 5 July 2010 by 12 p.m. in the designated "Funktionalanalysis" box on the 1st floor Students who will be attending the Mon 5 July tutorial have to hand in their solution sheets at 10:15 in class.
Info: www.math.lmu.de/~~michel/SS10_FA.html

The full mark in each exercise is 10 points. Correct answers without proofs are not accepted. Each step should be justified. You can hand in the solutions either in German or in English.

Exercise 33. Consider the Banach spaces

$$
\begin{aligned}
c & =\left\{x=\left(x_{1}, x_{2}, x_{3}, \ldots\right) \mid x_{n} \in \mathbb{R} \forall n \text { and } \exists \lim _{n \rightarrow \infty} x_{n}\right\} \\
c_{0} & =\left\{x=\left(x_{1}, x_{2}, x_{3}, \ldots\right) \mid x_{n} \in \mathbb{R} \forall n \text { and } \lim _{n \rightarrow \infty} x_{n}=0\right\} \subset c
\end{aligned}
$$

with the standard norm $\|x\|_{\infty}=\sup _{n}\left|x_{n}\right|$.
(i) Prove that c_{0} and c are not isomorphic as Banach spaces, i.e., are not isometrically isomorphic. (Hint: a point x in a convex set X is called an extremal point if one cannot represent x as a non-trivial convex combination

$$
x=\alpha_{1} x_{1}+\alpha_{2} x_{2}, \quad \alpha_{1}, \alpha_{2}>0, \quad \alpha_{1}+\alpha_{2}=1,
$$

of two other points x_{1}, x_{2} of the set X. In other words, if $x=\alpha_{1} x_{1}+\alpha_{2} x_{2}$ with $x_{1}, x_{2} \in X$, $\alpha_{1}, \alpha_{2} \in[0,1]$, and $\alpha_{1}+\alpha_{2}=1$, then necessarily either $\alpha_{1}=1$ or $\alpha_{2}=1$. Find the extremal points of the unit ball in each space.)
(ii) Prove that $c^{*} \simeq c_{0}^{*} \simeq \ell^{1}$. (Hint: consider the linear functional $\phi_{\lim }$ on c defined by

$$
\phi_{\lim }(x)=\lim _{n \rightarrow \infty} x_{n}, \quad x=\left(x_{1}, x_{2}, \ldots\right)
$$

and prove that $\left.c^{*}=\phi_{\lim } \oplus c_{0}^{*}.\right)$

Exercise 34.

(i) Let $p \in(1, \infty)$. Let $x_{1}, x_{2} \in \ell^{p}$ with $\left\|x_{1}\right\|_{p}=\left\|x_{2}\right\|_{p}=1$. Show that

$$
\left\|\frac{x_{1}+x_{2}}{2}\right\|_{p}=1 \quad \Rightarrow \quad x_{1}=x_{2}
$$

(Hint: consider the case when Minkowski's inequality in ℓ^{p} becomes an equality.)
(ii) Show that the space $C([0,1])$ (with the usual supremum norm) cannot be embedded isometrically into ℓ^{p}.
(iii) Give an isometric embedding of $C([0,1])$ into ℓ^{∞}.

Exercise 35. Consider the Banach space ℓ^{∞} of real bounded sequences, the subspace $c=$ $\left\{x=\left(x_{1}, x_{2}, x_{3}, \ldots\right) \mid x_{n} \in \mathbb{R} \forall n\right.$ and $\left.\exists \lim _{n \rightarrow \infty} x_{n}\right\}$, and the points

$$
\begin{array}{ll}
x_{1}=(0,1,0,1,0,1,0,1, \ldots) & \text { (i.e., alternating } 0 \text { and } 1) \\
x_{2}=(0,0,0,1,0,1,0,1, \ldots) & \text { (i.e., alternating } 0 \text { and } 1 \text { from the third position) } \\
x_{3}=(1,0,1,0,1,0,1,0, \ldots) & \text { (i.e., alternating } 1 \text { and } 0) .
\end{array}
$$

(i) Show that there exist bounded linear functionals λ and μ in $\left(\ell^{\infty}\right)^{*}$ such that $\lambda(x)=$ $\mu(x)=\lim _{n \rightarrow \infty} x_{n} \forall x \in c$ and $\lambda\left(x_{1}\right)=\frac{1}{2}, \mu\left(x_{1}\right)=-2010$.
(ii) Can it happen that the functional λ (resp. μ) considered in (i) satisfies the further condition $\lambda\left(x_{2}\right)=\frac{1}{3}\left(\right.$ resp. $\left.\mu\left(x_{3}\right)=\frac{1}{3}\right)$?
(iii) Show that there exists a bounded linear functional $\lambda \in\left(\ell^{\infty}\right)^{*}$ such that
(•) $\liminf _{n} x_{n} \leqslant \lambda(x) \leqslant \lim \sup _{n} x_{n} \forall x \in \ell^{\infty}$ (and therefore $\lambda(x)=\lim _{n \rightarrow \infty} x_{n} \forall x \in c$)
(••) $\lambda(L x)=\lambda(x) \forall x \in \ell^{\infty}$ where $L: \ell^{\infty} \rightarrow \ell^{\infty}$ is the left-shift operator $L\left(x_{1}, x_{2}, x_{3}, \ldots\right)=$ $\left(x_{2}, x_{3}, x_{4}, \ldots\right)$
(Hint: apply the Hahn-Banach theorem to the subspace of the sequences $y=\left(y_{1}, y_{2}, y_{3}, \ldots\right)$ with $y_{n}=x_{n+1}-x_{n}$.)

Exercise 36. Let $f \in L^{2}(\mathbb{R})$. Show that each of the following sequences converges weakly to 0 in $L^{2}(\mathbb{R})$:
(i) $\left\{g_{n}\right\}_{n=1}^{\infty}$ with $g_{n}(x)=f(x-n)$
(ii) $\left\{h_{n}\right\}_{n=1}^{\infty}$ with $h_{n}(x)=\sqrt{n} f(n x)$
(iii) $\left\{k_{n}\right\}_{n=1}^{\infty}$ with $k_{n}(x)=f(x) e^{i n x}$.

