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Exercise 4. Prove that any bounded measurable function on R can be uniformly approximated
by a step function that has finitely many levels.1 In other words, pick a bounded measurable
function f : R → R (for a generic f : R → C one just repeats the argument for the real and
imaginary part of f) and fix an arbitrarily small error ε > 0: then prove that there exists a
step function fε : R → C, with finitely many levels, such that ‖f − fε‖∞ 6 ε. (Hint: the
natural way to proceed is to construct explicitly the approximating step function. To this aim,
observe that the range of f can be covered by a finite and conveniently large number of balls.
Consider the pre-image of these balls to define the steps of fε. This also shows you that the
number of levels depend on ε.)

Exercise 5. (The discrete Laplacian on Zd.) Recall that the space

`2(Zd) :=
{
φ : Zd → C :

∑

x∈Zd

|φ(x)|2 < ∞}

is a Hilbert space with the scalar product 〈φ, ξ〉 =
∑

x∈Zd φ(x)ξ(x). You may think of an
element φ in `2(Zd) just as an assignment of complex numbers, one at each point of the
infinite lattice Zd, such that they are square summable. (You should be familiar with the
one-dimensional version of it, namely `2 = `2(Z).) The goal of this problem is to introduce a
self-adjoint operator on `2(Zd) which is the discrete analogue of the usual Laplacian on L2(Rd),
with the key difference that the discrete version is bounded. As a consequence, by means of the
spectral theory for bounded operators that you are supposed to know until know, you should
be able to determine its spectrum.

• Recall first the following basic facts (if you did not know them already, you are strongly
encouraged to prove them separately, although this is not part of the exercise). The
operator R : `2(Z) → `2(Z) such that (Rφ)(x) = φ(x− 1) for all x ∈ Z is called the right
shift operator. R is unitary and its adjoint L := R∗ : `2(Z) → `2(Z) is just the left shift
operator, that is, (Lφ)(x) = φ(x + 1) for all x ∈ Z. Moreover Spec(R) = Spec(L) = {λ ∈
C : |λ| = 1}.

1With this nomenclature one means, for instance, that the R→ R function

g(x) =

(
1 x ∈ [2k, 2k + 1)

0 x ∈ [2k + 1, 2k + 2)
(k ∈ Z)

is a step function with of course two “levels” only (0 and 1), but with an infinite number of “steps”.
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Here the problem starts.

5.1) By definition the discrete Laplacian is the operator ∆ : `2(Zd) → `2(Zd) acting on any
element φ ∈ `2(Zd) as

(∆φ)(x) :=
∑

y ∈Zd

|x−y|=1

(
φ(x)− φ(y)

)
, x ∈ Zd. (∗)

In the notation above |x − y| is the Euclidean distance between x and y as points of
Rd with integer coordinates. How many terms are there in the r.h.s. of (∗)? Rearrange
the summands in the r.h.s. of (∗) so to express the operator ∆ in terms of the identity
operator and a number of shift operators.

5.2) Prove that ∆ is bounded with norm ‖∆‖ = 4d. Prove also that ∆ = ∆∗. (Hint: one can
certainly prove both statements from the scratch and this would be fully graded as well,
but it is a pain for you! (and for the grader too.) Alternatively, note that, at least for
proving self-adjointness and ‖∆‖ 6 4d, the rearrangement in point (5.1) above does the
job.)

5.3) Prove the operator inequality 0 6 ∆ 6 4d.

5.4) Prove that Spec(∆) ⊆ [0, 4d].

5.5) Prove that actually Spec(∆) = [0, 4d]. (Hint: if you have completed the previous point,
you are left with proving that Spec(∆) ⊇ [0, 4d]. A possible way is to take any λ ∈ [0, 4d]
and to prove that λ satisfies the Weyl’s criterion (→ Exercise 3). To this aim, you need to
identify one Weyl sequence, namely a sequence {φn}∞n=1 ⊂ `2(Zd) such that ‖(∆−λ)φn‖ →
0 as n →∞. Here is a suggestion to construct φn explicitly. Consider the Zd → C function
ϕ̃k(x) = eik·x in the variable x = (x1, . . . , xd) ∈ Zd, where k = (k1, . . . , kd) ∈ Rd is fixed
and k · x =

∑d
j=1 kjxj is the Euclidean scalar product of k times x as points of Rd.

Observe that ϕ̃k /∈ `2(Zd), nevertheless compute the formal action of ∆ on ϕ̃k, i.e., do the
computation just by means of the prescription (∗). This way you should see that given
any λ ∈ [0, 4d] you can always choose k depending on λ such that “∆ϕ̃k = λϕ̃k”. Hence
the “eigenvalue” λ is in the spectrum of ∆. Of course this is formal because ϕ̃k does not
belong to the domain of ∆ but it should give you a hint on how to construct the Weyl
sequence {φn}∞n=1 you are looking for. More concretely, what is the difference if in the
formal argument above you modify ϕ̃k setting it to give zero for all x ∈ Zd outside a large
cube centred at the origin?)
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