Advanced Mathematical Quantum Mechanics – Homework 7

Mathematisches Institut der LMU – SS2009 Prof. Dr. L. Erdős, Dr. A. Michelangeli

To be discussed on: 26.06.2009, 10 a.m. – 12 p.m., lecture room B-132 (tutorial session) **Questions and infos:** Dr. A. Michelangeli, office B-334, michel@math.lmu.de

Exercise 7.1. Let $\boldsymbol{\sigma} := (\sigma_1, \sigma_2, \sigma_3)$ be the "vector" whose components are the three Pauli matrices. This notation is to express a sum like $v_1\sigma_1 + v_2\sigma_2 + v_3\sigma_3$ with weights $v_j \in \mathbb{C}$ in the compact symbolic form $\overrightarrow{v} \cdot \boldsymbol{\sigma}$ where $\overrightarrow{v} := (v_1, v_2, v_3) \in \mathbb{C}^3$. With this convention, prove that

$$(\overrightarrow{v} \cdot \boldsymbol{\sigma})(\overrightarrow{w} \cdot \boldsymbol{\sigma}) = (\overrightarrow{v} \cdot \overrightarrow{w})\mathbb{1} + i(\overrightarrow{v} \times \overrightarrow{w}) \cdot \boldsymbol{\sigma}$$

for every $\overrightarrow{v}, \overrightarrow{w} \in \mathbb{C}^3$.

Exercise 7.2. [*The Aharonov-Casher theorem.*] Consider a Schrödinger particle with spin $\frac{1}{2}$ confined on a plane and coupled with a magnetic field *B* orthogonal to the plane (set $2m = \hbar = 1$). With the notation discussed in the class, the Hamiltonian is

$$H = (-i\nabla + A)^2 \mathbb{1} + \sigma_3 B = \left[\boldsymbol{\sigma} \cdot (p+A)\right]^2$$

acting on $L^2(\mathbb{R}^2) \otimes \mathbb{C}^2$. Here $A = (A_1, A_2)$, $B = \partial_{x_1} A_2 - \partial_{x_2} A_1$, $\mathbb{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $p = -i\nabla$, and $\boldsymbol{\sigma} = (\sigma_1, \sigma_2)$.¹ Assume that $B \in C_0^{\infty}(\mathbb{R}^2)$ and denote by $\Phi_B := \int_{\mathbb{R}^2} B(x) dx$ the flux of B. Prove that if $|\Phi_B| > 2\pi$ then 0 is an *eigenvalue* of H with degeneracy equal to the the largest integer strictly less than $\frac{1}{2\pi} |\Phi_B|$, otherwise the zero-eigenvalue is absent. Prove also that if $\Phi_B > 0$ then the zero-eigenstates have the form $\begin{pmatrix} 0 \\ \psi \end{pmatrix}$ ("spin down") while if $\Phi_B < 0$ then the zero-eigenstates have the form $\begin{pmatrix} \psi \\ 0 \end{pmatrix}$ ("spin up"). That is, the ground state is always anti-parallel to the (flux of the) magnetic field.

Here are some hints:

- Given B, show that as a vector potential A you may choose $A = (A_1, A_2) = (\partial_{x_2}\phi, -\partial_{x_1}\phi)$ where $\phi(x) := -\frac{1}{2\pi} \int_{\mathbb{R}^2} \ln(|x - x'|) B(x') dx'$.
- To solve the zero-energy equation $H\Psi = \left[\boldsymbol{\sigma} \cdot (p+A)\right]^2 \Psi = 0$, look for solutions $\Psi = \begin{pmatrix} \psi_+ \\ \psi_- \end{pmatrix}$ in $L^2(\mathbb{R}^2) \otimes \mathbb{C}^2$ of the simpler equation $\boldsymbol{\sigma} \cdot (p+A)\Psi = 0$. This yields two distinct PDE's for $\psi_+(x_1, x_2)$ and $\psi_-(x_1, x_2)$ that you can read as Cauchy-Riemann conditions of analyticity.
- Such conditions will force one of the component of Ψ to be zero (recall that there are no analytic functions in L^2) and the other component to have the expected multiplicity.

Exercise 7.3. Warm-up: let T be a $n \times n$ matrix and prove that TT^* and T^*T have the same eigenvalues with the possible exception of the eigenvalue 0. Let H be as in Exercise 7.2. Prove that $H = H_+ \oplus H_-$ with $H_{\pm} = (-i\nabla + A)^2 \pm B$ acting on $L^2(\mathbb{R}^2)$ and that H_+ and H_- have the same spectrum except perhaps at 0.

¹It is understood that A is chosen so to guarantee that H is essentially self-adjoint on a suitable subspace.