Advanced Mathematical Quantum Mechanics - Homework 7

Mathematisches Institut der LMU - SS2009
Prof. Dr. L. Erdős, Dr. A. Michelangeli

To be discussed on: 26.06.2009, 10 a.m. - 12 p.m., lecture room B-132 (tutorial session)
Questions and infos: Dr. A. Michelangeli, office B-334, michel@math.Imu.de

Exercise 7.1. Let $\boldsymbol{\sigma}:=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ be the "vector" whose components are the three Pauli matrices. This notation is to express a sum like $v_{1} \sigma_{1}+v_{2} \sigma_{2}+v_{3} \sigma_{3}$ with weights $v_{j} \in \mathbb{C}$ in the compact symbolic form $\vec{v} \cdot \boldsymbol{\sigma}$ where $\vec{v}:=\left(v_{1}, v_{2}, v_{3}\right) \in \mathbb{C}^{3}$. With this convention, prove that

$$
(\vec{v} \cdot \boldsymbol{\sigma})(\vec{w} \cdot \boldsymbol{\sigma})=(\vec{v} \cdot \vec{w}) \mathbb{1}+i(\vec{v} \times \vec{w}) \cdot \boldsymbol{\sigma}
$$

for every $\vec{v}, \vec{w} \in \mathbb{C}^{3}$.

Exercise 7.2. [The Aharonov-Casher theorem.] Consider a Schrödinger particle with spin $\frac{1}{2}$ confined on a plane and coupled with a magnetic field B orthogonal to the plane (set $2 m=\hbar=1$). With the notation discussed in the class, the Hamiltonian is

$$
H=(-i \nabla+A)^{2} \mathbb{1}+\sigma_{3} B=[\boldsymbol{\sigma} \cdot(p+A)]^{2}
$$

acting on $L^{2}\left(\mathbb{R}^{2}\right) \otimes \mathbb{C}^{2}$. Here $A=\left(A_{1}, A_{2}\right), B=\partial_{x_{1}} A_{2}-\partial_{x_{2}} A_{1}, \mathbb{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \sigma_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, $\sigma_{2}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right), \sigma_{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), p=-i \nabla$, and $\boldsymbol{\sigma}=\left(\sigma_{1}, \sigma_{2}\right) .{ }^{1}$ Assume that $B \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$ and denote by $\Phi_{B}:=\int_{\mathbb{R}^{2}} B(x) \mathrm{d} x$ the flux of B. Prove that if $\left|\Phi_{B}\right|>2 \pi$ then 0 is an eigenvalue of H with degeneracy equal to the the largest integer strictly less than $\frac{1}{2 \pi}\left|\Phi_{B}\right|$, otherwise the zero-eigenvalue is absent. Prove also that if $\Phi_{B}>0$ then the zero-eigenstates have the form $\binom{0}{\psi}$ ("spin down") while if $\Phi_{B}<0$ then the zero-eigenstates have the form $\binom{\psi}{0}$ ("spin up"). That is, the ground state is always anti-parallel to the (flux of the) magnetic field.

Here are some hints:

- Given B, show that as a vector potential A you may choose $A=\left(A_{1}, A_{2}\right)=\left(\partial_{x_{2}} \phi,-\partial_{x_{1}} \phi\right)$ where $\phi(x):=-\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} \ln \left(\left|x-x^{\prime}\right|\right) B\left(x^{\prime}\right) \mathrm{d} x^{\prime}$.
- To solve the zero-energy equation $H \Psi=[\boldsymbol{\sigma} \cdot(p+A)]^{2} \Psi=0$, look for solutions $\Psi=\binom{\psi_{+}}{\psi_{-}}$ in $L^{2}\left(\mathbb{R}^{2}\right) \otimes \mathbb{C}^{2}$ of the simpler equation $\boldsymbol{\sigma} \cdot(p+A) \Psi=0$. This yields two distinct PDE's for $\psi_{+}\left(x_{1}, x_{2}\right)$ and $\psi_{-}\left(x_{1}, x_{2}\right)$ that you can read as Cauchy-Riemann conditions of analyticity.
- Such conditions will force one of the component of Ψ to be zero (recall that there are no analytic functions in L^{2}) and the other component to have the expected multiplicity.

Exercise 7.3. Warm-up: let T be a $n \times n$ matrix and prove that $T T^{*}$ and $T^{*} T$ have the same eigenvalues with the possible exception of the eigenvalue 0. Let H be as in Exercise 7.2. Prove that $H=H_{+} \oplus H_{-}$with $H_{ \pm}=(-i \nabla+A)^{2} \pm B$ acting on $L^{2}\left(\mathbb{R}^{2}\right)$ and that H_{+}and H_{-}have the same spectrum except perhaps at 0 .

[^0]
[^0]: ${ }^{1}$ It is understood that A is chosen so to guarantee that H is essentially self-adjoint on a suitable subspace.

