Advanced Mathematical Quantum Mechanics - Homework 5

Mathematisches Institut der LMU - SS2009
Prof. Dr. L. Erdős, Dr. A. Michelangeli

To be discussed on: 10.06.2009, 8,30-10 a.m., lecture room B-132 (tutorial session)
Questions and infos: Dr. A. Michelangeli, office B-334, michel@math.Imu.de

Exercise 5.1. (Instability of matter for Bosons). Consider the standard three-dimensional many-body non-relativistic spinless molecular Hamiltonian H with M nuclei and N electrons. Assume for simplicity that each nucleus has the same positive charge Z. The goal of this exercise is to prove that there exists a (normalised) many-body wave function Ψ_{N} of N boson coordinates and there exists a choice of positions $\left(R_{1}, \ldots, R_{M}\right)$ of the nuclei such that

$$
\begin{equation*}
\left\langle\Psi_{N}, H \Psi_{N}\right\rangle \leqslant-C \alpha^{2} Z^{4 / 3} \min \{N, Z M\}^{5 / 3} \tag{1}
\end{equation*}
$$

for some constant $C>0$. This shows that non-relativistic matter made out of bosons is unstable of the second kind.
(a) Introduce the bosonic trial function $\Psi_{N}\left(x_{1}, \ldots, x_{N}\right):=\prod_{i=1}^{N} \phi_{\lambda}\left(x_{i}\right)$ with some one-body wave function $\phi_{\lambda}(x):=\lambda^{3 / 2} \phi(\lambda x)$ and some scaling parameter $\lambda>0$ to be optimised later. Assume that the unscaled ϕ is a normalised $\left(\|\phi\|_{2}=1\right)$ smooth and compactly supported function. Prove by direct computation that

$$
\begin{align*}
\left\langle\Psi_{N}, H \Psi_{N}\right\rangle=N \lambda^{2} \int_{\mathbb{R}^{3}}|\nabla \phi(x)|^{2} \mathrm{~d} x+\lambda \alpha\{ & \frac{N(N-1)}{2} \iint_{\mathbb{R}^{2} \times \mathbb{R}^{3}} \frac{|\phi(x)|^{2}|\phi(y)|^{2}}{|x-y|} \mathrm{d} x \mathrm{~d} y \\
& \left.-Z N \sum_{k=1}^{M} \int_{\mathbb{R}^{3}} \frac{|\phi(x)|^{2}}{\left|x-R_{k}\right|} \mathrm{d} x+U(\underline{R})\right\} . \tag{2}
\end{align*}
$$

(b) Let $W_{N, \underline{R}}:=\{\cdots\}$ the potential term in (2). Show that if there exists an \underline{R} such that

$$
\begin{equation*}
W_{N, \underline{R}} \leqslant-C Z^{2 / 3} N^{4 / 3} \tag{3}
\end{equation*}
$$

for some constant $C>0$ then by optimising on λ in (2) one gets the desired bound (1).
(c) In order to obtain (3), divide the support of ϕ in M cells $\Gamma_{1}, \ldots, \Gamma_{M} \subset \mathbb{R}^{3}$ in such a way that $\int_{\Gamma_{k}}|\phi(x)|^{2} \mathrm{~d} x=\frac{1}{M}$. Place one nucleus in each cell Γ_{k}, and in the expression (2) for $W_{N, \underline{R}}$ average each nuclear coordinate R_{k} with respect to the weight $M|\phi(x)|^{2}$, restricted to Γ_{k}. The quantity you get this way is certainly above $W_{N, \underline{R}}$ for some choice of \underline{R} because an average is never less than the minimum. Under the assumption $N=Z M$, show that you can drop a number of negative terms in the estimate of $W_{N, \underline{R}}$ from above so to obtain

$$
\begin{equation*}
W_{N, \underline{R}} \leqslant-\frac{1}{2} Z^{2} M^{2} \sum_{k=1}^{M} \iint_{\Gamma_{k} \times \Gamma_{k}} \frac{|\phi(x)|^{2}|\phi(y)|^{2}}{|x-y|} \mathrm{d} x \mathrm{~d} y \tag{4}
\end{equation*}
$$

(d) In order to estimate $\frac{1}{2} \iint_{\Gamma_{k} \times \Gamma_{k}} \frac{|\phi(x)|^{2}|\phi(y)|^{2}}{|x-y|} \mathrm{d} x \mathrm{~d} y$ from below, observe that this quantity is certainly larger than the smallest possible self-energy of a charge distribution of total charge $1 / M$ confined to the smallest ball containing Γ_{k} (denote by r_{k} its radius). Thus, prove that

$$
\begin{equation*}
\frac{1}{2} Z^{2} M^{2} \sum_{k=1}^{M} \iint_{\Gamma_{k} \times \Gamma_{k}} \frac{|\phi(x)|^{2}|\phi(y)|^{2}}{|x-y|} \mathrm{d} x \mathrm{~d} y \geqslant \frac{1}{2} Z^{2} \sum_{k=1}^{M} \frac{1}{r_{k}} \tag{5}
\end{equation*}
$$

(e) Use Jensen's inequality in the r.h.s. of (5) and show that (3) reads

$$
\begin{equation*}
W_{N, \underline{R}} \leqslant-\frac{1}{2} Z^{2} M \frac{1}{\frac{1}{M} \sum_{k=1}^{M} r_{k}} . \tag{6}
\end{equation*}
$$

(f) You are then left with estimating $\frac{1}{M} \sum_{k=1}^{M} r_{k}$, the mean value of the radius of the smallest ball containing Γ_{k}. Show that the freedom that you still have in choosing the decomposition of the support of ϕ into the Γ_{k} 's with the constraint $\int_{\Gamma_{k}}|\phi(x)|^{2} \mathrm{~d} x=\frac{1}{M}$ allows you to organise the cells so that

$$
\begin{equation*}
\frac{1}{M} \sum_{k=1}^{M} r_{k} \leqslant C \frac{1}{M^{1 / 3}} \tag{7}
\end{equation*}
$$

Conclude the proof, showing that (6) and (7) yield the desired bound (3).

Exercise 5.2. (Instability of relativistic matter for large α) Consider the standard threedimensional many-body pseudo-relativistic spinless molecular Hamiltonian H with M nuclei and N electrons. Assume for simplicity that each nucleus has the same positive charge Z. The goal of this exercise is to prove that there exists a constant $D<128 /(15 \pi)$ such that if $\alpha>D$ then the system is unstable of the first kind for N and M large enough.
(a) Show by a scaling argument that to prove instability it suffices merely to show that the energy can be made negative.
(b) To this aim, pick $\phi \in H^{1 / 2}\left(\mathbb{R}^{3}\right)$ with $\|\phi\|_{2}=1$. Let $N=1$ and compute the expectation value $\langle\phi, H \phi\rangle$ in terms of α, Z, \underline{R}.
(c) For an upper bound on $\langle\phi, H \phi\rangle$, average it over the nuclear positions, with weight given by $\prod_{k=1}^{M}\left|\phi\left(R_{k}\right)\right|^{2}$ and show that

$$
\begin{equation*}
\langle\phi, H \phi\rangle \leqslant\langle\phi,| p|\phi\rangle-\left(Z \alpha M-\frac{1}{2} Z^{2} \alpha M(M-1)\right) \underbrace{\iint_{\mathbb{R}^{2} \times \mathbb{R}^{3}} \frac{|\phi(x)|^{2}|\phi(y)|^{2}}{|x-y|} \mathrm{d} x \mathrm{~d} y}_{=: \mathcal{I}} . \tag{8}
\end{equation*}
$$

(d) Show that for a given value of Z you can choose M so that the above bound reads

$$
\begin{equation*}
\langle\phi, H \phi\rangle \leqslant\langle\phi,| p|\phi\rangle-\frac{1}{2} \alpha \mathcal{I} \tag{9}
\end{equation*}
$$

(e) Complete the proof of the main statement by plugging the trial function $\phi(x)=\frac{1}{\sqrt{\pi}} e^{-|x|}$ in.

