Advanced Mathematical Quantum Mechanics – Homework 5

Mathematisches Institut der LMU – SS2009 Prof. Dr. L. Erdős, Dr. A. Michelangeli

To be discussed on: 10.06.2009, 8,30 – 10 a.m., lecture room B-132 (tutorial session) **Questions and infos:** Dr. A. Michelangeli, office B-334, michel@math.lmu.de

Exercise 5.1. (Instability of matter for Bosons). Consider the standard three-dimensional many-body non-relativistic spinless molecular Hamiltonian H with M nuclei and N electrons. Assume for simplicity that each nucleus has the same positive charge Z. The goal of this exercise is to prove that there exists a (normalised) many-body wave function Ψ_N of N boson coordinates and there exists a choice of positions (R_1, \ldots, R_M) of the nuclei such that

$$\langle \Psi_N, H\Psi_N \rangle \leqslant -C\alpha^2 Z^{4/3} \min\{N, ZM\}^{5/3} \tag{1}$$

for some constant C > 0. This shows that non-relativistic matter made out of bosons is unstable of the second kind.

(a) Introduce the bosonic trial function $\Psi_N(x_1, \ldots, x_N) := \prod_{i=1}^N \phi_\lambda(x_i)$ with some one-body wave function $\phi_\lambda(x) := \lambda^{3/2} \phi(\lambda x)$ and some scaling parameter $\lambda > 0$ to be optimised later. Assume that the unscaled ϕ is a normalised ($\|\phi\|_2 = 1$) smooth and compactly supported function. Prove by direct computation that

$$\langle \Psi_N, H\Psi_N \rangle = N\lambda^2 \int_{\mathbb{R}^3} |\nabla \phi(x)|^2 \mathrm{d}x + \lambda \alpha \left\{ \frac{N(N-1)}{2} \iint_{\mathbb{R}^2 \times \mathbb{R}^3} \frac{|\phi(x)|^2 |\phi(y)|^2}{|x-y|} \mathrm{d}x \, \mathrm{d}y - ZN \sum_{k=1}^M \int_{\mathbb{R}^3} \frac{|\phi(x)|^2}{|x-R_k|} \mathrm{d}x + U(\underline{R}) \right\}.$$

$$(2)$$

(b) Let $W_{N,\underline{R}} := \{\cdots\}$ the potential term in (2). Show that if there exists an <u>R</u> such that

$$W_{N,R} \leqslant -CZ^{2/3}N^{4/3}$$
 (3)

for some constant C > 0 then by optimising on λ in (2) one gets the desired bound (1).

(c) In order to obtain (3), divide the support of ϕ in M cells $\Gamma_1, \ldots, \Gamma_M \subset \mathbb{R}^3$ in such a way that $\int_{\Gamma_k} |\phi(x)|^2 dx = \frac{1}{M}$. Place one nucleus in each cell Γ_k , and in the expression (2) for $W_{N,\underline{R}}$ average each nuclear coordinate R_k with respect to the weight $M|\phi(x)|^2$, restricted to Γ_k . The quantity you get this way is certainly above $W_{N,\underline{R}}$ for some choice of \underline{R} because an average is never less than the minimum. Under the assumption N = ZM, show that you can drop a number of negative terms in the estimate of $W_{N,\underline{R}}$ from above so to obtain

$$W_{N,\underline{R}} \leqslant -\frac{1}{2} Z^2 M^2 \sum_{k=1}^{M} \iint_{\Gamma_k \times \Gamma_k} \frac{|\phi(x)|^2 |\phi(y)|^2}{|x-y|} \mathrm{d}x \,\mathrm{d}y \,. \tag{4}$$

(d) In order to estimate $\frac{1}{2} \iint_{\Gamma_k \times \Gamma_k} \frac{|\phi(x)|^2 |\phi(y)|^2}{|x-y|} dx dy$ from below, observe that this quantity is certainly larger than the smallest possible self-energy of a charge distribution of total charge 1/M confined to the smallest ball containing Γ_k (denote by r_k its radius). Thus, prove that

$$\frac{1}{2}Z^2 M^2 \sum_{k=1}^M \iint_{\Gamma_k \times \Gamma_k} \frac{|\phi(x)|^2 |\phi(y)|^2}{|x-y|} \mathrm{d}x \,\mathrm{d}y \ \geqslant \ \frac{1}{2}Z^2 \sum_{k=1}^M \frac{1}{r_k} \,. \tag{5}$$

(e) Use Jensen's inequality in the r.h.s. of (5) and show that (3) reads

$$W_{N,\underline{R}} \leqslant -\frac{1}{2}Z^2 M \frac{1}{\frac{1}{M}\sum_{k=1}^M r_k} \,. \tag{6}$$

(f) You are then left with estimating $\frac{1}{M} \sum_{k=1}^{M} r_k$, the mean value of the radius of the smallest ball containing Γ_k . Show that the freedom that you still have in choosing the decomposition of the support of ϕ into the Γ_k 's with the constraint $\int_{\Gamma_k} |\phi(x)|^2 dx = \frac{1}{M}$ allows you to organise the cells so that

$$\frac{1}{M} \sum_{k=1}^{M} r_k \leqslant C \frac{1}{M^{1/3}}.$$
(7)

Conclude the proof, showing that (6) and (7) yield the desired bound (3).

Exercise 5.2. (Instability of relativistic matter for large α) Consider the standard threedimensional many-body pseudo-relativistic spinless molecular Hamiltonian H with M nuclei and N electrons. Assume for simplicity that each nucleus has the same positive charge Z. The goal of this exercise is to prove that there exists a constant $D < 128/(15\pi)$ such that if $\alpha > D$ then the system is unstable of the first kind for N and M large enough.

- (a) Show by a scaling argument that to prove instability it suffices merely to show that the energy can be made negative.
- (b) To this aim, pick $\phi \in H^{1/2}(\mathbb{R}^3)$ with $\|\phi\|_2 = 1$. Let N = 1 and compute the expectation value $\langle \phi, H\phi \rangle$ in terms of α, Z, \underline{R} .
- (c) For an upper bound on $\langle \phi, H\phi \rangle$, average it over the nuclear positions, with weight given by $\prod_{k=1}^{M} |\phi(R_k)|^2$ and show that

$$\langle \phi, H\phi \rangle \leqslant \langle \phi, |p|\phi \rangle - \left(Z\alpha M - \frac{1}{2} Z^2 \alpha M(M-1) \right) \underbrace{\iint_{\mathbb{R}^2 \times \mathbb{R}^3} \frac{|\phi(x)|^2 |\phi(y)|^2}{|x-y|} \mathrm{d}x \, \mathrm{d}y}_{=:\mathcal{I}} . \tag{8}$$

(d) Show that for a given value of Z you can choose M so that the above bound reads

$$\langle \phi, H\phi \rangle \leqslant \langle \phi, |p|\phi \rangle - \frac{1}{2} \alpha \mathcal{I}$$
 (9)

(e) Complete the proof of the main statement by plugging the trial function $\phi(x) = \frac{1}{\sqrt{\pi}}e^{-|x|}$ in.