Advanced Mathematical Quantum Mechanics – Homework 3

Mathematisches Institut der LMU – SS2009 Prof. Dr. L. Erdős, Dr. A. Michelangeli

To be discussed on: 20.05.2009, 8,30 – 10 a.m., lecture room B-132 (tutorial session) **Questions and infos:** Dr. A. Michelangeli, office B-334, michel@math.lmu.de

Exercise 3.1. Let $E(\lambda) := \inf \{ \mathcal{E}^{\mathrm{TF}}(\rho) : \rho \in \mathcal{D}_{\lambda} \}$ be the lowest energy of the Thomas-Fermi functional $\mathcal{E}^{\mathrm{TF}}$ on its natural domain \mathcal{D}_{λ} .¹ Prove the following:

- For every $\lambda > 0$ the function $\lambda \mapsto E(\lambda)$ is differentiable.
- If $0 < \lambda \leq \lambda_c$ then $\frac{\mathrm{d}E}{\mathrm{d}\lambda} = -\mu(\lambda)$, where $\mu(\lambda)$ is the constant (the "chemical potential") entering the Thomas-Fermi equation $\gamma \rho^{2/3}(x) = \left[-V(x) \frac{1}{|x|} * \rho \mu(\lambda)\right]_+$ that determines the minimiser ρ_{λ} .
- If $\lambda \ge \lambda_c$ then $\frac{\mathrm{d}E}{\mathrm{d}\lambda} = 0$.
- The function $\lambda \mapsto \frac{dE}{d\lambda}$ is continuous. In other words, $\lambda \mapsto E(\lambda)$ is continuously differentiable.

¹Recall from the class: the energy $E(\lambda)$ is a monotone decreasing function. It is strictly monotone for $0 \leq \lambda \leq \lambda_c$ and constant for $\lambda \geq \lambda_c$. It is strictly convex for $0 \leq \lambda \leq \lambda_c$. If $0 \leq \lambda \leq \lambda_c$ there exists a unique minimiser ρ_{λ} satisfying $\int \rho_{\lambda} dx = \lambda$. If $\lambda > \lambda_c$ there is no minimiser satisfying $\int \rho_{\lambda} dx = \lambda$: in other words, any minimiser with $\int \rho_{\lambda} dx \leq \lambda$ is given by ρ_{λ_c} .