Advanced Mathematical Quantum Mechanics – Homework 2

Mathematisches Institut der LMU – SS2009 Prof. Dr. L. Erdős, Dr. A. Michelangeli

To be discussed on: 13.05.2009, 8,30 – 10 a.m., lecture room B-132 (tutorial session) **Questions and infos:** Dr. A. Michelangeli, office B-334, michel@math.lmu.de

Exercise 2.1. Let $\rho \in L^1(\mathbb{R}^3) \cap L^{5/3}(\mathbb{R}^3)$. Prove that the function

$$\frac{1}{|x|} * \varrho \; : \; \mathbb{R}^3 \to \mathbb{R}$$

is a bounded continuous function vanishing as $|x| \to \infty$ and with

$$\left\|\frac{1}{|x|} * \varrho \right\|_{\infty} \leq (12/5)(5\pi^2)^{1/6} \|\rho\|_{5/3}^{5/6} \|\rho\|_1^{1/6}.$$

(*Hint:* density argument with approximating C_0^{∞} -functions to prove boundedness, continuity, and vanishing at infinity; Hölder for the estimate.)

Exercise 2.2. Let \mathcal{B}_R be the ball in \mathbb{R}^d centred at the origin ad with radius R > 0 and let $\Omega := \mathbb{R}^d \setminus \mathcal{B}_R$. Let $f, g : \Omega \to \mathbb{R}$ be two functions such that

- \diamond f and g are positive and continuous
- $\diamond \quad f(x) \to 0 \text{ and } g(x) \to 0 \text{ as } |x| \to \infty$
- $\diamond \quad \Delta f \geq 4\pi f^{3/2}$ (in the distributional sense)
- $\diamond \quad \Delta g \ \leqslant \ 4\pi g^{3/2} \ (\text{in the distributional sense})$
- $\diamond \quad g \ge f \text{ on } \partial \Omega \text{ (i.e., as } |x| = R).$

Prove that as a consequence of the above assumptions $g(x) \ge f(x)$ for all $x \in \Omega$. (*Hint:* use a maximum principle argument.)

Exercise 2.3. Let $E(\lambda) := \inf \{ \mathcal{E}^{\mathrm{TF}}(\rho) \mid \rho \in \mathcal{D}_{\lambda} \}$ be the lowest energy of the Thomas-Fermi functional $\mathcal{E}^{\mathrm{TF}}$ on its natural domain $\mathcal{D}_{\lambda} = \{ \rho \mid \rho \ge 0, \rho \in L^1 \cap L^{5/3}, \int \rho \le \lambda \}$, and let ρ_{λ} be its unique minimiser. Recall that $\lambda \mapsto E(\lambda)$ is convex, non-increasing, and bounded below, and that the domain \mathcal{D}_{λ} is convex and $\mathcal{E}^{\mathrm{TF}}$ is strictly convex on it. Define then

$$\lambda_c := \inf \{ \lambda \mid E(\lambda) = E(\infty) \} \leqslant +\infty.$$

- (i) Prove that on $[0, \lambda_c]$ the function $\lambda \mapsto E(\lambda)$ is *strictly* convex and *strictly* decreasing and that the unique minimiser ρ_{λ} of \mathcal{E}^{TF} on \mathcal{D}_{λ} has L^1 -norm given exactly by $\int \rho_{\lambda}(x) dx = \lambda$.
- (*ii*) Assume that $\lambda_c < \infty$.¹ Prove that on $(\lambda_c, +\infty)$ the function $\lambda \mapsto E(\lambda)$ is constant and that the minimiser ρ_{λ} never satisfies $\int \rho_{\lambda}(x) \, dx = \lambda$, instead it is always $\rho_{\lambda} = \rho_{\lambda_c}$.

¹In principle λ_c could be $+\infty$ and the condition $\lambda_c < \infty$ has to be assumed. Actually this is always the case in the TF theory, as it can be proved.