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The star-graph

Hilbert space: Hg := @j\;l L2((0,00),ds;)
1 € Hg is a vector with N components
b= (Y1,...,¥N)

¥; € L*((0,00),ds;)

With scalar product

(¥, 0) =300 (55 95) 12((0.000)

N



Laplacian on Hg (see also, e.g., Kostrykin and Schrader ’99, Harmer ’00)
Let II be an orthogonal projection acting in CV
Let © be a selfadjoint operator in Ran (IT*) € CV, with II* =1 — II.

Define the operator —Ag’ez

AH ew ( ¢/1’77—¢§<7)

D(=AF®) = {4y = (1, ... ¥n) : ¥ € H*((0,00))
I3 (0) = 0
14’ (0) + O 4 (0) = 0}
with
$(0) = (11(0),...,¥n(0)) and  %'(0) = (11(0), ...,k (0))

Remark:

0=(, —Ag %) — (~AG°,¢) = (1(0),¢'(0))en — (¥'(0),$(0))cw



Too many free parameters in the coupling conditions in the vertex!

The coupling should be understood in terms of free parameters models!!
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Myp(0) =0  TIH¢'(0) + O 4(0) =0
Depending on a spectral property of the junction, we will obtain the

following two operators on the graph:
» The decoupling (or Dirichlet) Laplacian h9°®: 4(0) = 0, T =1
» The weighted Kirchhoff Laplacian h?: take i, ..., Sx with 8; € C
Bii(0) = Biv;(0)
N —
> Bii(0)=0
i=1
I=1-Aand ® =0
BiB;
(A)ij = N732 )
Zk:l |ﬁk|

When all the constants 3; are equal this defines the so called Kirchhoff
(or standard) Laplacian and the boundary conditions read

¥1(0) = ... = ¢ (0) and SN, 44(0) = 0.

i,j=1,..,N,



For any z € C\R denote by r%°°(z) and r(z) the resolvents of h9®® and h”

rdeC(z) _ (hdec _ Z)_l I‘B(Z) — (hﬁ _ Z)_l

For any vector f € Hg
9 (2) (fi, s IN) = (ro(2) f1, s m0(2) N 5

with ivz| | ivZzs i/zs'
oo el Z|S—S el Z«Sel zs , ,
(TO(Z)f)(S) 5:/0 (* NG + NG )f(s )ds
Then
rﬁ(z)(fl7 ot fN) = (TO(Z)fl + qlei\/g'7 ...,TQ(Z)fN + qul\/g) )
with
q1 p1
iA . /
v S (ro(2)5)"(0)
gN N
Note that



1d approximating problem for N = 2 (see also Golovaty and Hryniv ’10,
Exner and Manko ’13):

Consider the Hamiltonian h. : L?((0, 00)) @ L?((0, 00)) @ L*((—1,1), eds)
1" " 1 "
h.y = (*wl =y =5 (—u + V¢v))

3
1 € D(h.) satisfies the coupling conditions
¥1(0) = ¥u(=1)  12(0) = 1u(1)
GA0) = —PL(-1) w0 = 9l

For any
f=£2,0)  f€L*((0,00)

we look for

e = (he — Z)_lf



We denote by h, the “auxiliary” Hamiltonian in L?((—1,1))
D(h) == {¢s € H*((=1,1))| ¢ (£1) = 0}
d2

hy =——=+V
ds? +

For n =1,2,3,... we denote by ¢, the (real, orthonormal) eigenfunctions of
h, and by \,, the corresponding eigenvalues arranged in increasing order

For any z € C\R we denote by r,(z) the resolvent of h,,

ro(z;8,8) = (hy — z)_l(&s’) = Z %



Proposition
For any
f:(f17f270) fj ELQ((O7OO))
One has that 9. = (he — 2) 7' f is given by
P1,e(s) = (ro(2) 1) (s) + qu,ee’V™
ae(s) = (ro(2)f2)(s) + gz.ce’V™*
Po,e(s) = e[é1, srv(sQZ 8, —1) + &2.er0(e%28,1)]

With the constants g1, g2,c, €1, and &2 ¢ fixed by the relations

bo=(m+ivzae); pi=(ro(2)f1)(0)
oe = (p2+ivzgee); p2= (ro(2)f2) (0)

qi,e ery(e22;—1,—1)  ery(e?z;—1,1) &1,e
G2, ery(e22;1, —1) ery(e22;1,1) &a.e

and



We distinguish two cases:
Case 1. Zero is not an eigenvalue of the Hamiltonian h,,.
Then (£1)pn (1
o (e22; £1, £1) Z M =0(1)

*EZ

Case 2. Zero is an eigenvalue of the Hamiltonian h,. Denote by ¢* the
eigenfunction corresponding to the eigenvalue zero. One has
¢*'(£1) = 0, moreover the constants

fri=¢"(—1); fai=¢"(1).

are real and we assume that they are not both equal to zero.
Then

ro(e?z;—1,—1) = Z ¢" x Pn(=1) _ _ Bif +o()

g2z 24

ro(e?2;1,1) = Z n 1_¢:(1) _ _DB2pe + o)

z 2z

ro(e%2;—1,1) = Z¢" _Enz _ 5152 o)

2z

€2z 2z

ro(e°2;1,—1) :Z ¢”}\ f“(* ) __Bap Lo
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Theorem

Case 1.

Case 2.

qi1,e iA pP1
=— + 0(e)
) -2C)

where we denoted by A the projection

1 B Bife
A= mim
! 2 \B1B2 B3

Corollary
Let e = (he — 2) "' f. Then
Case 1.
(1,6, 2,6) = T9°°(2) (f1, f2)[lg — O
Case 2.

(W1.e,¥2.6) — v (2) (f1, f2)llg — 0



We consider two straight tubes (the edges) of width ¢ connected by a
smooth junction (the vertex) of uniform width ¢ and length of order ¢

- The “edges”: F1,s and F> s to which is associated the Hilbert space
L*((0,00) x (0,1), dsdu)

s € (0,00) and u € (0,1)

S



- The “vertex”: V5.
Take a curve C' : (—1,1) — R?
Os) = (n(s)m2(s)) 27 (s) +75°(s) = 1
Vs = {(2.9) € R st (2,9) = (11(5),72(5)) + ud/e(s)
with s € (—1,1),u € (0, 1)}
Then Vs . = €Vs/.. In this way 0. = 0
Moreover the associated Hilbert space is
L*((—1,1) x (0,1),eps/-dsdu)
The function ps/. = ps/e(s,u) is defined by
pE/E(Sa U) =1+ ’U‘5/€’Y(S) )
v is the signed curvature
() = 7a(s)n (s) = 1 ()5 (s)

The waveguide is obtained by identifying the boundary of Ei s
corresponding to s = 0 with the boundary of V5. corresponding to s = —1
and the boundary of E» s corresponding to s = 0 with the boundary of Vj .
corresponding to s = 1.



We denote by Hs . the complex Hilbert space

Hs,. := L*((0,00) % (0,1))®L*((0,00) x (0, 1)) ®L*((—1,1)x (0, 1), eps  dsdu)

In Hs,. we define the quadratic form Qs,c

Q6€[© \I/ / / |:8<I>k A i@@k a\I/k:|dd
k=1,2

0s Os 52 ou Ou

// 18<I>B\I/+18<I>8\I/E dsd
—1 62/75/ ds 0s 02 du ou | P

Let C™ be the set

C® = {U = (U1, Vs, ¥,)| Uy, ¥s € C°(E), ¥, € C(V);
\I}|u:0,1 =0;
[051](0,u) = [(—&) *0E W] (—1,u)
[05W5](0,u) = [¢7*0¥W,](1,u), Vk € No},
We denote by —A?,E the unique selfadjoint operator in Hs . associated to
the quadratic form Qs



The Operator —Ags is unitarily equivalent to
Hs,e : L?((0,00) x (0,1)) & L*((0,00) x (0,1)) & L*((—1,1) x (0,1), edsdu)
defined by

0% 1 9° 9> 1 92 1
Hs e (Y1,v2,%0) = ({_7_7 ]11117 {—@—ﬁﬁ}%’?%/a%)

where Ls/. has the “expansion”

Spectrum

2
Ucont(Hé,s) = [%, OO)



Denote by x(u) the “transverse” eigenfunction
x(u) == v/2sin(mu)
We note that

1 d? 2
x(0) =x(1) =0 and — X = X

For any vector E = (f1x, f2x,0) with f1, f2 € L*((0,00)) we look for an
approximate solution of the resolvent equation

72 -1
o= <H576—6—2—z> =

16



Definition
For any vector Z = (f1x, fax,0) with fi, f2 € L*((0,0)) we denote by ¥
the vector U, = (VU1 ,, Vo, U, ), with
W e(s,u) = ¥1.(s)x(u)
Wae(s,u) = ¥2.(s)x(u)
Voo (8,u) = oe(8)x(u),
Where ¥ = (11,6, 92,6, %s,e) was defined before.

The “auxiliary” Hamiltonian is

D(h) = {t» € H*((=1,1))| ¢, (£1) = 0}



Theorem
For any Z = (f1x, fax, 0) with f1, f2 € L*((0,00)), ¥e € D(Hs,), moreover
for all z € C\R the following estimates hold true:

Case 1. ) )
T 1
H\Ilg—(Hg,e—g—Q—z> :H <ec

< Eg,WHEHHE;
2 —1
T 1) 1
U R R S
H 52 . 23/2 " 25/2

where ¢ is a constant which does not depend on ¢, f1, fo.

Case 2.




Theorem
Take § = 0(e) < €. Define the function

2 -t
Do = (P16, P2, Bouye) = (Hé,a sz Z) (f1x; f2x0)
Then the projection of ®. on the edges of the graph

#1,6(5) = (X, P1,e(5,)) L2¢(=1.1)) $2,6(5) = (X, P2,¢(5,°)) 2((=1,1))

Then, as € — 0,
Case 1.
(1,65 b2.0) = x4 (2)(f1, fo) g — O
Case 2.
(1,65 D2.2) = x°(2)(f1, fo) g — O



Define the auxiliary Hamiltonian as the operator —A(;D/;' in the junction of
width 6/e
L*((—1,1) x (0,1), ps/edsdu)

where functions in D(—A(;D/;' ) satisfy the mixed boundary conditions

s =0

s==1

0
—0; 2Ly
u=0,1 0; 0s

The Case 2 is associated to the existence of &5, s.t.

DN *
( Asje — (5/ E )‘1)5/5 A5/ Ps e

with
Xsse = O(0/¢)

and

5. = bix @5 = Pax
s=—1 s=1

Then study the limit as e — 0 of

(- 288 - Pz =)

s,s'=%1



Remark:
Neumann conditions on the external boundary of the waveguide

[Freidlin and Wentzel '93, Raugel '95, Kosugi ’00, Saitd '01, Kuchment and
Zeng ’01, Rubinstein and Schatzman 01, Exner and Post '05 '07 ’09 12,
Post ’06, Bonciocat '08, Kuroda ’11]

No rescaling of the energy is needed, o(—Aj.) = [0, 00)

The limit operator on the graph is characterized by Kirchhoff conditions in
the vertex. In general there is no decoupling case (Case 1)

The auxiliary Hamiltonian —Aév/gv has a zero eigenvalue (also for § = ¢).

The corresponding eigenfuction is the constant function. This gives 81 = (2.
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Consider the Hamiltonian h, : L*((0, 00)) @ L*((0,00)) & L*((—1,1),eds)

h.t = (—w’{, —wé’,g% (=g +(1+ Ale)Wv))

1 € D(h.) satisfies the coupling conditions
P1(0) = Pu(=1)  ¢2(0) = ¢ (1)
GA0) = —Ph(-1) w0 = 9l

For any
f=(f 12,00 f; € L*((0,00))
we look for
Ye = (hs - Z)ilf
Then in Case 2 the limit is h®* defined by the boundary conditions

Bathr(0) = Prepa(0) Vi

R

with L
o= )\1/ V|gs|*ds
—1



