Übungen zur Mathematischen Statistik Blatt 3

1. Die Gammaverteilung $P_{s,\alpha}$ zum Formparameter s>0 und dem Skalenparameter $\alpha>0$ ist die Verteilung

$$P_{s,\alpha}(d\vartheta) = \frac{\alpha^s}{\Gamma(s)} \vartheta^{s-1} e^{-\alpha\vartheta} d\vartheta$$

auf \mathbb{R}^+ . Zeigen Sie, dass $\{P_{s,\alpha}|\ s,\alpha>0\}$ eine Exponentialklasse bildet, und identifizieren Sie eine natürliche Statistik und natürliche Parameter.

2. (a) Es seien $N_1, \ldots N_n$ unabhängige poissonverteilte Zufallsvariablen mit Parametern $\lambda_1, \ldots, \lambda_n > 0$ auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) . Weiter sei $T = \sum_{j=1}^n N_j$. Zeigen Sie, dass $(N_1, \ldots N_n)$ bedingt auf T = t (mit $t \in \mathbb{N}_0$) multinomialverteilt mit den Parametern t und $(p_1, \ldots p_n)$ ist, wobei $p_j = \lambda_j / \sum_{i=1}^n \lambda_i$. Mit anderen Worten gesagt: Für alle $k_1, \ldots, k_n \in \mathbb{N}_0$ mit $\sum_{j=1}^n k_j = t$ gilt

$$P(N_1 = k_1, \dots, N_n = k_n | T = t) = \frac{t!}{\prod_{j=1}^n k_j!} \prod_{j=1}^n p_j^{k_j}.$$

Insbesondere hängt diese bedingte Verteilung im Spezialfall, dass alle λ_j gleich sind, sagen wir gleich λ , nicht von λ ab.

(b) Folgern Sie, dass $T: \mathbb{N}_0^n \to \mathbb{N}_0$, $(k_1, \dots, k_n) \mapsto \sum_{j=1}^n k_j$ suffizient für das statistische Modell

$$(\mathbb{N}_0^n, \mathcal{P}(\mathbb{N}_0^n), \{\operatorname{Poisson}(\lambda)^n | \lambda > 0\})$$

ist, ohne die Neyman-Faktorisierung zu verwenden.

- 3. (a) Es sei $(\Omega, \mathcal{A}, \mathcal{P})$ ein statistisches Modell mit *überabzählbarem* \mathcal{P} . Je zwei verschiedene $P, Q \in \mathcal{P}$, $P \neq Q$, seien singulär zueinander, d.h. es existiere $A_{P,Q} \in \mathcal{A}$ mit $P(A_{P,Q}) = 1$ und $Q(A_{P,Q}) = 0$. Zeigen Sie, dass es kein dominierende Maß zu \mathcal{P} gibt.
 - (b) Nun sei $\Omega = C_0(\mathbb{R}_0)$ der Raum aller stetigen Funktionen $\omega : \mathbb{R}_0 \to \mathbb{R}$ mit $\omega_t = 0$, und A die von den Auswertungsfunktionalen $\omega \mapsto \omega_t$, $t \geq 0$, erzeugte σ -Algebra. Weiter sei für $r \in \mathbb{R}$ sei P_r die Verteilung von $(B_t + rt)_{t \geq 0}$ auf (Ω, \mathcal{A}) , wobei $(B_t)_{t \geq 0}$ eine standard Brownsche Bewegung bezeichnet, und $\mathcal{P} = \{P_r | r \in \mathbb{R}\}$. Zeigen Sie für reelle $r \neq s$, dass P_r und P_s singulär zueinander sind. Insbesondere ist \mathcal{P} nicht dominiert.

Keine Abgabe. Studierende sollen ihre Lösungen in der Übungsstunde 4 präsentieren. Wegen des Feiertags am 1. Mai findet die Übungsstunde 4 erst am 8. Mai statt.