Numerischer Vergleich beim fairen Münzwurf

Schranke nach quadratischer Tschebyscheff-Ungleichung:

$$P\left[\left|\frac{S_n}{n}-p\right| \ge \epsilon\right] \le \frac{p(1-p)}{n\epsilon^2}$$

Schranke nach exponentieller Tschebyscheff-Ungleichung:

$$P\left[\left|\frac{S_n}{n}-p\right| \ge \epsilon\right] \le \exp(nh(p,p+\epsilon)) + \exp(nh(p,p-\epsilon)),$$

wobei

$$h(p,q) = q \log \frac{p}{q} + (1-q) \log \frac{1-p}{1-q}$$

Exakt:

$$P\left[\left|\frac{S_n}{n} - p\right| \ge \epsilon\right] = \sum_{k=0}^n \binom{n}{k} p^k (1-p)^{n-k} \mathbf{1}_{\left\{\left|\frac{k}{n} - p\right| \ge \epsilon\right\}}$$

Numerisches Beispiel: $p = \frac{1}{2}$, $\epsilon = \frac{1}{10}$:

n	quadrat.	exp.	exakt
10	2.5	1.63524	0.753906
100	0.25	0.267027	0.0568879
1000	0.025	$3.59988\cdot 10^{-9}$	$2.72846\cdot 10^{-10}$
10000	0.0025	$7.13848\cdot 10^{-88}$	$1.74043\cdot 10^{-89}$

Es fällt auf, dass hier die Schranke nach der exponentiellen Tschebyscheff-Ungleichung die richtige Größenordnung liefert, während die quadratische Tschebyscheff-Ungleichung hier oft um viele Größenordnungen gröber ist.