Lineare Algebra und analytische Geometrie I 7. Zentralübungsblatt

Man kreuze richtig an:

1) Es sei
$$V=\mathbb{R}^2$$
 und $u=\begin{pmatrix}2\\5\end{pmatrix}$ sowie $v=\begin{pmatrix}-2\\3\end{pmatrix}$. Dann gilt $\alpha u+\beta v=\begin{pmatrix}0\\8\end{pmatrix}$ für ...

a) $\alpha=2,\ \beta=-2$ b) $\alpha=1,\ \beta=-1$ c) $\alpha=1,\ \beta=1$ d) $\alpha=-1,\ \beta=1$

- 2) Man betrachte die folgenden beiden Eigenschaften einer Teilmenge $U \subset \mathbb{R}^2$:
 - (*) Die Summe zweier beliebiger Elemente von U liegt stets wieder in U.
 - (**) Jedes skalare Vielfache eines beliebigen Elementes von U liegt stets wieder in U.

Welche der folgenden Mengen hat die Eigenschaft (*), welche die Eigenschaft (**)?

a)
$$U = \left\{ x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 \mid x_1 \ge 0 \right\}$$

b) $U = \left\{ x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 \mid x_1 \cdot x_2 \ge 0 \right\}$
c) $U = \left\{ x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 \mid x_1 = 3x_2 \right\}$
d) $U = \left\{ x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 \mid x_1^2 + x_2^2 = 1 \right\}$

- 3) Es sei $A \in \mathbb{R}^{m \times n}$ und $b \in \mathbb{R}^m$. Dann ist die Lösungsmenge L des linearen Gleichungssystems $A \cdot x = b \dots$
 - a) stets ein Untervektorraum von \mathbb{R}^n
 - b) stets ein Untervektorraum von \mathbb{R}^m
 - c) nur im Fall $L \neq \emptyset$ ein Untervektorraum von \mathbb{R}^n
 - d) nur im Fall b=0 ein Untervektorraum von \mathbb{R}^n
 - e) nur im Fall $L \neq \emptyset$ ein Untervektorraum von \mathbb{R}^m
 - f) nur im Fall b=0 ein Untervektorraum von \mathbb{R}^m
- 4) Welche der folgenden Mengen sind Untervektorräume von $Pol(\mathbb{R})$?

a)
$$\{f \in \operatorname{Pol}(\mathbb{R}) \mid \operatorname{Grad}(f) = 2\}$$

b)
$$\{f \in \operatorname{Pol}(\mathbb{R}) \mid \operatorname{Grad}(f) \geq 2 \text{ oder } f = 0\}$$

c)
$$\{ f \in \operatorname{Pol}(\mathbb{R}) \mid f = aX^2 + aX + a \text{ mit } a \in \mathbb{R} \}$$

d)
$$\{f \in \operatorname{Pol}(\mathbb{R}) \mid f = aX^3 + bX \text{ mit } a, b \in \mathbb{R} \}$$