Lineare Algebra und analytische Geometrie I 6. Zentralübungsblatt

Man kreuze richtig an:

Dann ist $\widetilde{a}_{23} = \dots$

1) Es sei $A =$	$\begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$	1 1 3	$\begin{pmatrix} -2 \\ -1 \\ 0 \end{pmatrix}$	$f\in \mathbb{R}^{3 imes 3}$ und $\widetilde{A}=(\widetilde{a}_{ij})_{1\leq i,j\leq 3}$ die Komplementärmatrix zu A
-----------------	---	-------------	---	---

a) 1 b) -1 c) 4 d) -4

2) Es sei $A = \begin{pmatrix} 0 & 1 & 2 & 2 \\ 1 & 0 & 2 & 3 \\ 1 & 2 & 0 & 3 \\ 0 & 1 & 2 & 0 \end{pmatrix} \in \mathbb{R}^{4\times 4}$ und $B = (b_{ij})_{1 \leq i,j \leq 4}$ die zu A inverse Matrix. Dann ist $b_{14} = \dots$

a) 0 b) 1/2 c) 5/6 d) 2

3) Es sei $(V,+,\cdot)$ ein $\mathbb R$ -Vektorraum. Dann ist die skalare Multiplikation " \cdot " eine Abbildung \dots

a) $V \times V \to \mathbb{R}$ b) $\mathbb{R} \times V \to \mathbb{R}$ c) $\mathbb{R} \times V \to V$ d) $V \times V \to V$

4) Ist $(V, +, \cdot)$ ein \mathbb{R} -Vektorraum, und sind $u, v \in V$, so sind die folgenden Ausdrücke sinnvoll (d.h. sie sind definiert):

a) u-v b) $u \cdot v$ c) $\frac{u}{v}$ d) $\frac{u}{v}$, falls $v \neq 0$ e) 1+v f) $v \cdot 2$

5) Es seien $p(x), q(x) \in \text{Pol}(\mathbb{R})$ zwei Polynome vom Grad 3. Dann hat das Polynom p(x) + q(x) den Grad . . .

a) = 6 b) = 3 c) ≤ 3 d) > 3

Aufgaben Es sei $n \geq 2$ und $A \in \mathbb{R}^{n \times n}$ eine Matrix.

1) Man zeige: Ist A nicht invertierbar, so ist $A \cdot \widetilde{A} = 0$.

2) Man folgere: Ist A nicht invertierbar, so ist auch \widetilde{A} nicht invertierbar. (Tip: Widerspruchsbeweis!)

3) Man folgere: Ist $\det A=0$, so ist auch $\det \widetilde{A}=0$.

4) Man folgere: Die Beziehung

$$\det(\widetilde{A}) = (\det A)^{n-1}$$

(die auf dem 6. Tutoriumsblatt, Aufgabe T-4 a), für invertierbares A bewiesen wird) gilt auch, wenn A nicht invertierbar ist.

Lösungen

- 1) Da A nicht invertierbar ist, ist $\det A=0$; aber damit ist $A\cdot \widetilde{A}=\det(A)\cdot E_n=0\cdot E_n=0.$
- 2) Angenommen, A sei nicht invertierbar, \widetilde{A} dagegen schon. Dann gilt nach 1) die Beziehung $A \cdot \widetilde{A} = 0$; durch Multiplikation mit \widetilde{A}^{-1} folgt A = 0. Dann ist aber auch $\widetilde{A} = 0$, im Widerspruch zur Invertierbarkeit von \widetilde{A} .
- 3) Da "nicht invertierbar" gleichbedeutend ist mit "Determinante ist 0", ist 3) nur eine Umformulierung von 2).
- 4) Ist A nicht invertierbar, so gilt nach dem soeben Bewiesenen $\det A = 0 = \det \widetilde{A}$. Die Gleichung $\det(\widetilde{A}) = (\det A)^{n-1}$ ist also deshalb erfüllt, weil beide Seiten den Wert 0 haben.