Grundlagen der Mathematik I – 13. Übungsblatt

Aufgabe 1 (Kombinatorik). Seien M und N Mengen mit |M|=4 und |N|=7. Man bestimme die Anzahl

- a) der injektiven bzw. surjektiven Abbildungen $f: M \to N$.
- b) der injektiven bzw. surjektiven Abbildungen $f: N \to M$.

Aufgabe 2 (Permutationen). In der symmetrischen Gruppen S_8 seien die beiden Permutationen

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 4 & 5 & 8 & 7 & 6 & 3 & 2 \end{pmatrix} \quad \text{und} \quad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 7 & 6 & 8 & 5 & 2 & 1 & 4 \end{pmatrix}$$

gegeben.

- a) Man berechne σ^{2014} sowie σ^{-1} und τ^{-1} .
- b) Man bestimme α und $\beta \in S_8$ mit $\sigma \circ \alpha = \tau$ und $\beta \circ \sigma = \tau$.
- c) Man stelle σ und τ als Produkt von Transpositionen dar und bestimme $sign(\sigma)$ und $sign(\tau)$. Gibt es ein $\psi \in S_8$ mit $\sigma \circ \psi = \psi \circ \tau$?

Aufgabe 3 (Fixpunkte von Permutationen). Man bestimme die Anzahl der Permutationen in S_6 mit genau k Fixpunkten (k = 0, ..., 6).

Aufgabe 4 (Die alternierende Gruppe). Für $n \in \mathbb{N}$ bezeichne $A_n \subset S_n$ die Teilmenge aller geraden Permutationen, also $A_n = \{ \sigma \in S_n \mid \text{sign}(\sigma) = 1 \}$.

- a) Man zeige, daß (A_n, \circ) eine Gruppe ist. (Man nennt A_n die *alternierende Gruppe*.) Für welche n ist A_n abelsch?
- b) Man zeige, daß für $n \ge 2$ durch

$$\sigma \mapsto \sigma \circ (1 \ 2)$$

eine bijektive Abbildung $f:A_n\to S_n\setminus A_n$ definiert wird, und berechne damit die Mächtigkeit $|A_n|$ von A_n .