Grundlagen der Mathematik II Lösungsvorschlag zum 4. Tutoriumsblatt

Aufgabe 1. Dem Hinweis folgend, gehen wir in mehreren Schritten vor:

a) 1. Schritt: Lösung der ersten Gleichung $\overline{9} \cdot \overline{x} \stackrel{!}{=} \overline{6}$ in \mathbb{Z}_{12} .

Zunächst ist diese Gleichung lösbar, denn 6 ist ein Vielfaches von $d:=\operatorname{ggT}(9,12)=3$. Eine partikuläre Lösung läßt sich erraten: Denn es ist $\overline{9}\cdot\overline{2}=\overline{18}=\overline{6}$ in \mathbb{Z}_{12} , also ist $\overline{2}$ eine partikuläre Lösung der Gleichung. Alle weiteren Lösungen ergeben sich daraus durch Addition aller Klassen von Vielfachen von $\frac{12}{d}=4$. Damit ergibt sich laut Vorlesung:

$$x \in \mathbb{Z} \text{ ist eine L\"osung von } \overline{9} \cdot \overline{x} \stackrel{!}{=} \overline{6} \text{ in } \mathbb{Z}_{12}$$

$$\left(\iff \overline{x} \in \left\{ \overline{2}, \ \overline{2} \pm \overline{4}, \ \overline{2} \pm \overline{2} \cdot \overline{4}, \ \dots \right\} \subset \mathbb{Z}_{12} \right)$$

$$\iff x \in \left\{ 2, \ 2 \pm 4, \ 2 \pm 2 \cdot 4, \ \dots \right\} \subset \mathbb{Z}$$

$$\iff x \in \left\{ 2 + 4k \mid k \in \mathbb{Z} \right\}.$$

b) 2. Schritt: Welche der gefunden Lösungen lösen auch die zweite Gleichung $\overline{5} \cdot \overline{x} \stackrel{!}{=} \overline{15}$ in \mathbb{Z}_{25} ?

Wir nehmen eine allgemeine Lösung $x \in \mathbb{Z}$ der ersten Gleichung – also ist x = 2 + 4k mit einem beliebigen $k \in \mathbb{Z}$ – und überprüfen, für welche Werte von k dieses x auch die zweite Gleichung löst. Wir möchten also

$$\overline{15} \stackrel{!}{=} \overline{5} \cdot \overline{x} = \overline{5} \cdot \overline{2 + 4k} = \overline{10} + \overline{20} \cdot \overline{k} \quad \text{in } \mathbb{Z}_{25}$$

$$\iff \overline{5} \stackrel{!}{=} \overline{20} \cdot \overline{k} \quad \text{in } \mathbb{Z}_{25}.$$

Dies ist eine lineare Gleichung für die Zahl k, die mit dem schon verwendeten Verfahren zu lösen ist:

Sie ist lösbar, weil $\overline{5}$ ein Vielfaches von $d':=\operatorname{ggT}(25,\underline{20})=5$ ist. Eine partikuläre Lösung können wir wieder raten: Wegen $\overline{20}=-\overline{5}$ sieht man, daß $\overline{-1}$ eine Lösung ist. Alle anderen Lösungen ergeben sich durch Addition von Vielfachen von $\frac{25}{d'}=5$, so daß laut Vorlesung gilt:

$$k \in \mathbb{Z} \text{ ist eine L\"osung von } \overline{20} \cdot \overline{k} \stackrel{!}{=} \overline{5} \text{ in } \mathbb{Z}_{25}$$

$$\left(\iff \overline{k} \in \{\overline{-1}, \overline{-1} \pm \overline{5}, \overline{-1} \pm \overline{2} \cdot \overline{5}, \dots \} \subset \mathbb{Z}_{25} \right)$$

$$\iff k \in \{-1, -1 \pm 5, -1 \pm 2 \cdot 5, \dots \} \subset \mathbb{Z}$$

$$\iff k \in \{-1 + 5\ell \mid \ell \in \mathbb{Z}\}.$$

c) 3. Schritt: Zusammensetzen der Lösungen.

Insgesamt besagen die gewonnenen Erkenntnisse:

$$x \in \mathbb{Z} \text{ ist eine L\"osung von } \overline{9} \cdot \overline{x} \stackrel{!}{=} \overline{6} \text{ in } \mathbb{Z}_{12} \text{ \underline{und}} \text{ von } \overline{5} \cdot \overline{x} \stackrel{!}{=} \overline{15} \text{ in } \mathbb{Z}_{25}$$

$$\iff x = 2 + 4k \quad \text{f\"ur ein } k \in \mathbb{Z}, \quad \text{und es ist } k = -1 + 5\ell \quad \text{f\"ur ein } \ell \in \mathbb{Z}$$

$$\iff x = 2 + 4(-1 + 5\ell) \quad \text{f\"ur ein } \ell \in \mathbb{Z}$$

$$\iff x = -2 + 20\ell \quad \text{f\"ur ein } \ell \in \mathbb{Z}.$$

$$L = \{20\ell - 2 \mid \ell \in \mathbb{Z}\}.$$

Aufgabe 2.

a) Diese Relation ist symmetrisch, reflexiv und transitiv. Sie ist nicht antisymmetrisch (sind nämlich x und y Geschwister, so gilt $x \sim y$ und $y \sim x$, jedoch $x \neq y$).

Insgesamt ist diese Relation also keine Ordnung, aber eine Äquivalenzrelation.

b) Diese Relation ist reflexiv (nach Definition) und transitiv, jedoch *nicht* symmetrisch (ist nämlich x der Sohn von y, so gilt $x \sim y$, jedoch nicht $y \sim x$), dafür jedoch antisymmetrisch.

Damit ist diese Relation keine Äquivalenzrelation, aber eine Ordnung. Sie ist jedoch keine totale Ordnung, denn es gibt Menschen x, y, für die weder $x \sim y$ noch $y \sim x$ gilt (zum Beispiel der Dozent und der Assistent dieser Vorlesung: Sie sind verschiedene Menschen, und keiner ist Nachkomme des anderen).

c) Diese Relation ist symmetrisch und reflexiv, jedoch nicht transitiv: Für die Menschen

Elvis Costello, Elvis Presley, Priscilla Presley
$$\in M$$

gilt Elvis Costello \sim Elvis Presley und Elvis Presley \sim Priscilla Presley, jedoch Elvis Costello $\not\sim$ Priscilla Presley. Die Relation ist nicht antisymmetrisch (beispielsweise gilt ja auch Elvis Presley \sim Elvis Costello, aber Elvis Costello \neq Elvis Presley).

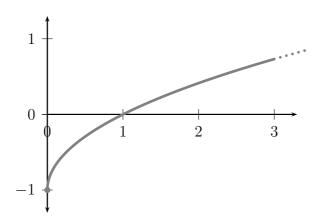
Damit ist diese Relation weder eine Äquivalenzrelation noch eine Ordnung.

d) Diese Relation ist *nicht* reflexiv (nach Definition), dafür aber symmetrisch. Sie ist nicht transitiv und nicht antisymmetrisch.

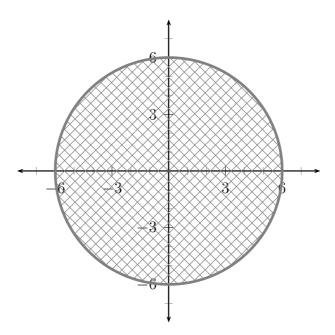
Insgesamt ist auch diese Relation damit weder eine Äquivalenzrelation noch eine Ordnung.

Aufgabe 3.

a) Es gilt genau dann $(x, y) \in R_1$, wenn $y = \sqrt{x} - 1$ ist. Damit erhält man die graphische Darstellung von R_1 :



b) Es gilt genau dann $(x,y) \in R_2$, wenn $x^2 \le 36 - y^2$ ist, was äquivalent ist zu $x^2 + y^2 \le 6^2$. Nach dem Satz von Pythagoras ist $x^2 + y^2$ das Quadrat des Abstands des Punktes (x,y) vom Ursprung; damit gilt genau dann $x^2 + y^2 \le 6^2$, wenn der Punkt (x,y) um höchstens 6 Längeneinheiten vom Ursprung entfernt ist. Damit besteht R_2 also aus dem (gefüllten) Kreis mit Radius 6 um den Ursprung:



c) Die Relation R_1 ist eine Funktion $\mathbb{R}_0^+ \to \mathbb{R}$: Denn zu jedem $x \in \mathbb{R}_0^+$ gibt es genau ein y mit $(x,y) \in R_1$, nämlich $y = \sqrt{x} - 1$. Wenn man R_1 jedoch als Relation auf \mathbb{R} auffaßt, so ist sie keine Funktion mehr, denn dann gibt es x-Werte (genauer alle negativen Zahlen), für die kein y mit $(x,y) \in R_1$ existiert.

Die Relation R_2 ist keine Funktion $\mathbb{R} \to \mathbb{R}$, denn für geeignete $x \in \mathbb{R}$ gibt es kein (für |x| > 6) bzw. auch unendlich viele (für |x| < 6) Werte $y \in \mathbb{R}$ mit $(x, y) \in R_2$.

Aufgabe 4.

- a) Das Problem sind die aus dem Nichts auftauchenden Symbole x und y. Das Argument lautet (für eine Relation auf einer Menge M) in korrekter Form: Sei $x \in M$ gegeben. Wenn es dann ein passendes $y \in M$ gibt mit $x \sim y$, so folgt aufgrund der Symmetrie auch $y \sim x$ und aufgrund der Transitivität weiter $x \sim x$, so daß für dieses x dann tatsächlich $x \sim x$ gilt. Wenn es jedoch kein y gibt mit mit $x \sim y$, so kann man weiter nichts aussagen!
- b) Wie in a) gesehen, sollte man eine symmetrische und transitive Relation suchen, für die ein Element x existiert, das mit *keinem einzigen* Element in Relation steht (denn wenn wir ein y finden mit $x \sim y$, so folgt ja, wie gezeigt, $x \sim x$). Ein solches Beispiel wurde bereits in der Vorlesung, 9.4 g), angegeben.

Ein anderes, gleichzeitig besonders einfaches und einigermaßen abnormes Beispiel ist die *leere* Relation $R=\emptyset$ auf irgendeiner nichtleeren Menge M. Sie ist symmetrisch (wenn $x\sim y$ gilt, dann gilt auch $y\sim x$: Diese Implikation ist wahr, weil die Voraussetzung immer falsch ist) und transitiv (aus einem ähnlichen Grund), jedoch nicht reflexiv, denn für jedes $x\in M$ gilt $x\not\sim x$.