Gruppencharaktere

Lukas-Fabian Moser, SS 2013

Definition. Ist G eine endliche abelsche Gruppe, so ist ein *Charakter von* G ein Gruppenhomomorphismus $G \to \mathbb{C}^{\times}$. Ist m eine ganze Zahl, so ist ein *Charakter modulo* m ein Charakter von $(\mathbb{Z}/m\mathbb{Z})^{\times}$, also ein Gruppenhomomorphismus $(\mathbb{Z}/m\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$.

Der "triviale" Charakter, der also jedes Element der Gruppe auf $1 \in \mathbb{C}$ abbildet, heißt Hauptcha- rakter. Die Menge der Charaktere von G, notiert als \widehat{G} , bildet eine Gruppe mit der Verknüpfung, die durch punktweise Multiplikation gegeben ist, also $(\chi_1 \cdot \chi_2)(g) := \chi_1(g) \cdot \chi_2(g)$. In dieser sogenannten Charaktergruppe ist der Hauptcharakter das neutrale Element.

Proposition. Die Charaktere modulo m entsprechen eineindeutig den zahlentheoretischen Funktionen $\chi : \mathbb{N} \to \mathbb{C}$ mit folgenden Eigenschaften:

- i) $\chi(a) = \chi(b)$, falls $a \equiv b \pmod{m}$.
- ii) χ ist vollständig multiplikativ.
- iii) $\chi(a) = 0$, falls $ggT(a, m) \neq 1$.
- iv) $\chi(a) \neq 0$, falls ggT(a, m) = 1.

Häufig werden auch solche zahlentheoretischen Funktionen einfach als Charaktere modulo m bezeichnet.

Beweis. Ist eine Funktion $\chi: \mathbb{N} \to \mathbb{C}$ gegeben, so definiert χ wegen i) eine wohldefinierte Abbildung $\mathbb{Z}/m\mathbb{Z} \to \mathbb{C}$ (durch $[a] \mapsto \chi(a)$), deren Einschränkung auf die Einheitengruppe $(\mathbb{Z}/m\mathbb{Z})^{\times}$ wegen iv) nur Werte in \mathbb{C}^{\times} annimmt und wegen ii) ein Gruppenhomomorphismus ist.

Ist umgekehrt $\varphi: (\mathbb{Z}/m\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ ein Gruppenhomomorphismus, so definieren wir eine Abbildung $\chi: \mathbb{N} \to \mathbb{C}$ durch die Vorschrift

$$\chi(a) := \begin{cases} 0 & \text{falls } \operatorname{ggT}(a,m) \neq 1, \\ \varphi([a]) & \text{falls } \operatorname{ggT}(a,m) = 1. \end{cases}$$

Dies ist eine wohldefinierte Abbildung, weil $[a] \in \mathbb{Z}/m\mathbb{Z}$ genau dann in $(\mathbb{Z}/m\mathbb{Z})^{\times}$ liegt, wenn $\operatorname{ggT}(a,m)=1$ ist. Dann sind i), iii) und iv) nach Definition erfüllt; die vollständige Multiplikativität sieht man so: Sind a und b beide teilerfremd zu m, so auch ihr Produkt ab, und dann folgt $\chi(ab)=\varphi([ab])=\varphi([a])\cdot\varphi([b])=\chi(a)\cdot\chi(b)$, weil χ ein Gruppenhomomorphismus ist. Besitzt dagegen a oder b einen gemeinsamen Teiler mit m, so auch ab, und damit verschwinden sowohl $\chi(ab)$ als auch $\chi(a)\cdot\chi(b)$.

Außerdem sind die konstruierten Zuordnungen beider Klassen von Abbildungen zueinander invers (!), woraus die Behauptung folgt. $\hfill\Box$

Der Satz ist Spezialfall des folgenden allgemeinen Satzes (angewandt für $G = (\mathbb{Z}/m\mathbb{Z})^{\times}$):

Satz. Es ist $|\widehat{G}| = |G|$, die Gruppe G hat also ebensoviele Charaktere wie Elemente.

Folgerung. Die Anzahl der Charaktere modulo m ist genau $\varphi(m)$.

Beweis des Satzes. Wir argumenieren in zwei Schritten:

- i) Ist G sogar zyklisch von der Ordnung n, so entsprechen (laut einem Resultat der Algebravorlesung) die Homomorphismen $G \to \mathbb{C}^\times$ genau den Elementen von \mathbb{C}^\times , deren Ordnung ein Teiler von n ist (indem nämlich, nach Wahl eines Erzeugers $g \in G$ mit $G = \langle g \rangle$, ein Homomorphismus $\varphi: G \to \mathbb{C}^\times$ vollständig beschrieben ist durch das Bild $\varphi(g)$, und dessen Ordnung ist ein Teiler von n wegen $\varphi(g)^n = \varphi(g^n) = \varphi(e_G) = 1$). Dies sind aber genau die Lösungen der Gleichung $x^n = 1$ in \mathbb{C}^\times , also die n-ten Einheitswurzeln, von denen es genau n Stück gibt.
- ii) Im allgemeinen Fall ist *G* nach dem Satz über die Struktur endlicher abelscher Gruppen isomorph zu einem Produkt zyklischer Gruppen:

$$G \cong G_1 \times \ldots \times G_n$$

mit endlichen zyklischen Gruppen G_i der Ordnung n_i . Wegen $|G|=g_1\cdot\ldots\cdot g_n$ genügt es nun zu zeigen, daß die Anzahl der Homomorphismen $\left|\widehat{G}\right|=\prod_{i=1}^n \widehat{G}_i$ ist. Um das zu beweisen, genügt es (mittels eines induktiven Arguments), den Fall n=2 zu betrachten, und dann hilft das nächste Lemma.

Lemma. Sind G_1, G_2, H abelsche Gruppen, so entsprechen die Homomorphismen $G_1 \times G_2 \to H$ eineindeutig den Paaren von Homomorphismen $G_1 \to H$ und $G_2 \to H$.

Beweis. In formaler Notation suchen wir eine bijektive Zuordnung zwischen den Mengen

$$\operatorname{Hom}(G_1 \times G_2, H)$$
 und $\operatorname{Hom}(G_1, H) \times \operatorname{Hom}(G_2, H)$.

Ist $\varphi: G_1 \times G_2 \to H$ gegeben, so definieren wir $\varphi_1: G_1 \to H$ durch $\varphi_1(g_1) := \varphi(g_1, e_{G_2})$ und $\varphi_2: G_2 \to H$ durch $\varphi_2(g_2) := \varphi(e_{G_1}, g_2)$. Beides sind, wie man mühelos nachrechnen kann, Homomorphismen.

Sind umgekehrt $\varphi_1:G_1\to H$ und $\varphi_2:G_2\to H$ gegeben, so definieren wir $\varphi:G_1\times G_2\to H$ durch $\varphi(g_1,g_2):=\varphi_1(g_1)\cdot \varphi_2(g_2)$. Daß dies wieder ein Homomorphismus ist, ist mühelos nachzurechnen (wobei die Kommutativität von H wesentlich ist).

Beide Zuordnungen sind zueinander invers: Sind nämlich φ_1, φ_2 gegeben und φ definiert wie oben angegeben, so ist $\varphi(g_1, e_{G_2}) = \varphi_1(g_1) \cdot \varphi_2(e_{G_2}) = \varphi_1(g_1)$ und ebenso $\varphi(e_{G_1}, g_2) = \ldots = \varphi_2(g_2)$, wie behauptet. Ist umgekehrt φ gegeben und φ_1, φ_2 definiert wie ganz oben, φ_1, φ_2 oben, φ_1, φ_2 definiert wie ganz oben, $\varphi_1, \varphi_2, \varphi_3$ definiert wie ganz oben, $\varphi_1, \varphi_2, \varphi_3$

$$\varphi_1(g_1) \cdot \varphi_2(g_2) = \varphi(g_1, e_{G_2}) \cdot \varphi(e_{G_1}, g_2) = \varphi((g_1, e_{G_2}) \cdot (e_{G_1}, g_2)) = \varphi(g_1, g_2),$$

was zu beweisen war.

¹Gleichung numerieren!

- **0.1 Satz** (Orthogonalitätsrelationen). *Es sei G eine endliche abelsche Gruppe.*
 - i) Für jeden Charakter χ von G gilt

$$\sum_{g \in G} \chi(g) = \begin{cases} |G| & \textit{falls } \chi \textit{ der Hauptcharakter ist,} \\ 0 & \textit{sonst.} \end{cases}$$

ii) Für jedes Element $g \in G$ gilt

$$\sum_{\chi \in \widehat{G}} \chi(g) = \begin{cases} |G| & \text{falls } g = e_G \text{ ist,} \\ 0 & \text{sonst.} \end{cases}$$

Beweis.

i) Ist χ der Hauptcharakter, so ist die Aussage klar wegen $\sum_{g \in G} 1 = |G|$. Andernfalls gibt es ein g_0 mit $\chi(g_0) \neq 1$. Aber es ist

$$\sum_{g \in G} \chi(g) = \sum_{g \in G} \chi(g_0 \cdot g) = \chi(g_0) \cdot \sum_{g \in G} \chi(g),$$

da auch $g_0 \cdot g$ für laufendes g alle Elemente von G durchläuft. Wegen $\chi(g_0) \neq 1$ muß dann die Summe verschwinden.

ii) Ist $g=e_G$, so ist die Aussage wiederum klar wegen $\chi(e_G)=1$ für jeden Charakter. Andernfalls gibt es nach dem nächsten Lemma einen Charakter χ_0 mit $\chi_0(g)\neq 1$. Nun gilt

$$\sum_{\chi \in \widehat{G}} \chi(g) = \sum_{\chi \in \widehat{G}} (\chi_0 \cdot \chi)(g) = \chi_0(g) \cdot \sum_{\chi \in \widehat{G}} \chi(g),$$

da auch $\chi_0 \cdot \chi$ mit laufendem χ alle Elemente der Charaktergruppe \widehat{G} durchläuft. Wie im letzten Beweis muß dann aber wegen $\chi_0(g) \neq 1$ die Summe verschwinden.

Lemma. Ist G eine endliche abelsche Gruppe, und ist $g \in G$ nicht das neutrale Element, so gibt es einen Charakter χ von G mit $\chi(g) \neq 1$.

Beweis. Es sei $H=\langle g\rangle$ die von g erzeugte Untergruppe von G. Wir zählen die Charaktere von G und von G/H und betrachten das zu die "Einschränkungsabbildung"

$$r: \widehat{G/H} = \{ \text{Charaktere von } G/H \} \rightarrow \{ \text{Charaktere von } G \} = \widehat{G},$$

die aus einem Charakter $\chi:G/H\to\mathbb{C}^\times$ den Charakter $g\mapsto \chi([g])$ von G macht (also die komponierte Abbildung $G\to G/H\xrightarrow{\chi}\mathbb{C}^\times$).

Die Abbildung r ist injektiv (formal deswegen, weil die Projektion $G \to G/H$ surjektiv ist). Hat nun g die Eigenschaft, daß für jeden Charakter χ gilt $\chi(g)=1$, so gilt auch $\chi(H)=1$, so daß χ nach dem Homomorphiesatz einen Homomorphismus $G/H \to \mathbb{C}^\times$ definiert. In diesem Fall ist die Abbildung r also surjektiv und damit insgesamt bijektiv. Damit folgt aber $\left|\widehat{G/H}\right| = \left|\widehat{G}\right|$, also nach dem Satz über die Anzahl der Charaktere |G/H| = |G|, und das bedeutet |H| = 1, d.h. $g = e_G$.