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1 A few remarks about the History of Quantum
Mechanics

The notes below are an extremely abbreviated history of quantum mechanics and are
neither complete nor presumably accurate. The point here is to present some of the
highlights that shaped our understanding of matter. At the end of the section a few
references are given that served as a basis for these notes.

In 1859 Gustav Kirchhoff from Heidelberg, using the Second law of Thermodynamics
derives a universal law for the emission-absorbtion ratio of a blackbody. A blackbody is
matter in equilibrium with radiation in which the body absorbs heat. It is reasonable to
imagine a burning furnace with an opening small enough that not much heat is lost and
in which burning material emits heat radiation that is in equilibrium with the walls of
the furnace.

Kirchhoff showed that ρ(T, ν) the energy that comes from the radiation, per unit vol-
ume with frequency in the interval [ν, ν+dν] must be a universal function of temperature
and frequency. Hence it does not depend on other, material properties of the blackbody.
Thus the challenge was posed to determine that function.

The total energy in a blackbody is

E(T ) = V

∫ ∞

0
ρ(T, ν)dν (1)

and it was experimentally observed by Josef Stefan in 1879 and derived from Maxwell’s
equations by Ludwig Boltzmann in 1884 that

E(T ) = aV T 4 , (2)

where a is a constant.
In 1893 Wilhelm Wien proved, again on the basis of thermodynamics, his displace-

ment law
ρ(T, ν) = ν3f(ν/T ) (3)

and thus reduces the problem of finding ρ to finding finding f , a function of a single
variable. It is interesting to note that ν/T has the dimension inverse time times inverse
temperature. It does not make sense to insert a quantity that carries a dimension into
a nonlinear function. f cannot be linear for otherwise the integral (1) would not exist.
Using Boltzmann’s constant k, kT has the dimension of an energy and hence ν/kT has
the dimension inverse time times inverse energy. Thus (3) makes sense if one introduces
an additional constant that has the dimensions of time times energy, e.g., e2c where e is
the value of the elementary charge and c the speed of light. (Note that from Coulombs
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1 A few remarks about the History of Quantum Mechanics

law the energy of two charges each having charge e and are a distance r apart is e2/r.
Hence e2c has the dimension time times energy.) There is no apparent reason why the
elementary charge should enter the considerations at this moment.

It should also be noted that Boltzmann’s constant k is related to the gas law

pV = RNT ,

where p is the pressure, V is the volume, T is the temperature and N is the number of
molecules per mol and R is the universal gas constant. The relation between R and k is
given by

R = N0k

where N0 is Avogadro’s number.
Wien in 1896 also proposed that

ρ = c1ν
3e−c2ν/T

but it was shown by Lummer and Pringsheim in 1900 that this law fails for small fre-
quencies, oddly enough this is outside what is nowadays called the quantum regime.

Based on this Plank [P1] proposes in October 1900 a new radiation law. Interpreting
the the energy density of blackbody radiation he had previously worked out the formula

ρ(T, ν) =
8πν2

c3
U(T, ν)

where U(T, ν) is, for given ν the total equilibrium energy at temperature T of the oscil-
lators. If one knows the entropy S(U) then

1
T

=
dS

dU

allows to calculate U as a function of T . Choosing

d2S

dt2
=
const.

U

leads to Wiens law. In [P1], Planck proposed instead

d2S

dT 2
=

α

U(β + U)

where α and β are constants. Fitting constants he arrived at his new radiation law below.
In [P2] he wrote it in the form

ρ(ν, T ) =
8πhν3

c3
1

e
hν
kT − 1

. (0)

Here k, as before, is Boltzmann’s constant and h is a new constant of the dimension time
times energy. He gave further theoretical reasons for it in December 1900 [P2] where
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he ‘derived’ his radiation law using the statistical method of Boltzmann but with two
additional twists. He assumes that the oscillators can have energies in integer multiples
of hν only and then proceeds in the following way. In how many ways can one distribute
K indistinguishable energy packets overN distinguishable oscillators. Think ofK+N−1
boxes in a row. Marking N − 1 boxes will subdivide this row into N sub-rows, some of
which may be empty. The number of boxes in the k-th sub-row counts the number of
energy packets of the k-th oscillator. In how many ways can we place N − 1 boxes,
obviously in

(N − 1 +K)!
K!(N − 1)!

ways. Using Boltzmann’s statistical method SN = k logW yields

SN = k(log(N − 1 +K)!− logK!− log(N − 1)!) .

With K = U
hνN and using Sterling’s approximation one obtains for the entropy S per

oscillator

S = k

[
(1 +

U

hν
) log(1 +

U

hν
)− U

hν
log

U

hν

]
.

Using the relation 1/T = dS/dU and solving for U as a function of T yields (0). This
way of counting the distribution of the energy packets is a precursor of what is now
known as Bose Einstein statistics and it is used here by Planck for the sole purpose to
arrive at the correct radiation law. An act of desperation as he admitted.

Using the experimental results of Kurlbaum and Lummer and Pringsheim he calculates
in [P2] k and hence Avogadro’s number and gets

N0 = 6.175× 1023

The best known value at that time was 6.41023 due to O.E. Meyer. Using Faradays
constant

F = N0e

he finds for the elementary charge

e = 4.6910−10 electrostaticunits

whereas the known value was somewhere between 1.2910−10 (F. Richarz) and 6.510−10

J.J Thompson. In SI units, Planck’s value is

4.6910−10 1
3
10−9 = 1.563× 10−19 C ,

The modern value of the elementary charge e is

e = 1.60217653(54)× 10−19 C ,

and for Avogadro’s constant

6.0221415(10)× 1023mol−1 .
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1 A few remarks about the History of Quantum Mechanics

For the new constant h which is now named after him, Planck gets the value

6.55× 10−27 ergsec

which is in SI units
6.55× 10−34 Js .

The modern value is
6.6260693(11)× 10−34 Js .

The digits in parenthesis are not certain.
It is rather surprising, and belongs into any elementary text book that by staring care-

fully into a stove one can actually determine the size of atoms. Avogadro’s constant
allows one to give an estimate of the size of N2 by freezing one mol of nitrogen and then
measuring the volume. Although this might not be easy this can be done in principle.

Planck’s work did not elicit any great reaction until Einstein took it up again in 1905
in his work on the photoelectric effect. He stated his ‘light quantum hypotheses’, namely
that in thermodynamic respects in the range where Wien’s law is valid, light behaves as
if it consists of mutually independent energy quanta of magnitude hν.

With this hypotheses he wrote down his law of the photoelectric effect

E = hν − Φ .

Here E is the energy of an electron that get kicked out of a metal under the impact of
a light quantum or, as we now say, a photon of frequency ν. Φ is the minimal energy
needed to remove the electron from the metal and depends on the type of metal. In
particular, the energy of the elctron does not depend on the intensity of the light beam
shining on the metal.

That light liberates electrons from metals was discovered by Gustav Hertz in the years
1886-1888, the same years in which he demonstrated electromagnetic waves.

This law in its ‘brutal’ simplicity was greeted with great skepticism. Here is a quote
of Millikan taken from [AP1]: “ I spent ten years of my life testing that 1905 equation
of Einstein’s and contrary to all my expectations, I was compelled in 1915 to assert
its unambiguous verification inspite of its unreasonableness, since it seemed to violate
everything we knew about the interference of light.”

So far some historical markers concerning the ‘prehistory’ of quantum theory. There
were discoveries on other fronts, unrelated to quantum theory at first. In 1899 J.J.
Thomson, using cathode rays discovered the electron and gives an estimate of its charge.
Previously, 1897, there were a number of people, Emilt Wiechert, Walter Kaufmann and
J.J Thomson who gave estimate on the charge to mass ratio of the hypothetical electron.
It became clear that the electron was involved in the constitution of atoms, although
there was no real proof of it. Planck before 1900 did not believe in atoms after 1900 he
did.

Solid evidence for the existence of atoms came in 1911 when Ernest Rutherford pro-
posed his atomic model, after experimenting with scattering of alpha particles on gold
foil. The atom consists of an almost point like nucleus with positive charge Ze| and
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which carries virtually the whole mass of the atom. This nucleus is surrounded by a
cloud of electrons. of charge −e usually Z electrons in order to render the atom charge
neutral. He proved this by showing that the observed scattering is consistent with scat-
tering of charged particles of a Coulomb potential. Thus, the force of the interaction
between these particles is given by Coulomb’s law, i.e., the force F that a charge Q at
the position X exerts on the charge q at position x is given by

F1,2 = qQ
(x−X)
|x−X|3

,

and the associated potential V , defined by F = −∇xV is given by

V = qQ
1

|x−X|
.

Physicists have toyed with the idea before that matter consists of interacting charged
particles, but faced the serious problem that there is no stable equilibrium position for
a system of charged particles. This is known in the physics literature as Earnshaw’s
theorem (Samuel Earnshaw,1805-1888) In modern terms this is known as the maximum
principle for harmonic function. A function, harmonic on some domain cannot have a
local maximum or local minimum in the domain. Since the Coulomb potential is a
harmonic function the only equilibrium positions for the charges are either on top of
each other or infinitely separated.

James Jeans in 1915 summarizes the situation as follows:
“There would be a very real difficulty in supposing that the (force) law 1/r2 held

down to zero values of r. For the force between two charges at zero distance would be
be infinite; we should have charges of opposite sign continually rushing together and,
when once together, no force would be adequate to separate them... . Thus the matter
of the universe would tend to shrink into nothing or to diminish indefinitely in size.”

The real impetus for the development of quantum mechanics was the accumulation
of a vast amount of spectral data. Systematic spectroscopy started with the work of
Kirchhoff and Bunsen. By placing various substances into a non-luminous burner and
measuring the wavelength of the emitted light they observed the spectral lines of atoms.
They found that these lines are fundamental attributes of an element, like its weight.
They proposed spectral analysis as a way of finding new elements (they found caesium
and shortly thereafter rubidium). Finally they also pointed out that spectral techniques
might be used to determine properties of the solar atmosphere and the brighter fixed
stars.

Among the vast spectral data the Balmer formula (Johann Jakob Balmer, 1825 -1898,
high school teacher in Basel) describing the spectral lines of Hydrogen stands out. The
frequencies of the discrete hydrogen spectrum are given by the formula

ν = R

(
1
n2

− 1
m2

)
.

where m,n are positive integers.
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1 A few remarks about the History of Quantum Mechanics

Interestingly, Bohr who proposed his model of the hydrogen atom in 1913, claims to
have learned of the Balmer formula only shortly before finishing his work on the atom.
(See [AP2] page 164.) Needless to say that Bohr’s model of the atom explained the
Balmer series.

Quantum theory took shape essentially within the two years 1925 and 1926. In 1925
Heisenberg discovered (with some help from Born and Jordan) matrix mechanics. To a
physically system he associated a Hamiltonian as an infinite matrix whose eigenvalues
where the allowed energy values of the system. Based on this theory, in the same year,
Wolfgang Pauli found in a purely algebraic fashion the eigenvalues of the Hamiltonian
of the hydrogen atom. This had the important consequence that the Balmer formula
merged as a consequence from this theory. In the same year, Pauli discovered his ‘Esclu-
sion Prinicle’, which will be of great importance and we shall talk about it in great detail
later.

This development culminated in January 1926 with Erwin Schrödinger’s discovery of
the equation now named after him. This equation for the first time many body prob-
lems which were until that moment completely untractable. The unknown function Ψ
is a complex valued function on the configuration space of the system and with Max
Born, |Ψ|2 is interpreted as a probability density of finding the system at some point in
configuration space.

All the theoretical ingredients are present to study the qualitative and quantitaive
properties of matter.

References:
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2 Quantum mechanics in a nutshell

The state of a classical particle moving in three space is determined by its position and
momentum, i.e., six coordinates. In quantum mechanics the state of a particle is given by
a complex valued function ψ(x), the wave function. The amount of information, how-
ever, is restricted; since Born we interpret |ψ(x)|2 as the p

¯
robability density of finding a

particle at the point x. Accordingly we have to require the normalization condition∫
R3

|ψ(x)|2dx = 1 . (1)

The kinetic energy for a classical particle is determined by its momentum and is given
by

p2

2m
, (2)

where m is the mass of the particle. In quantum mechanics the kinetic energy must be
determined by the state ψ and is given by

Tψ =
~2

2m

∫
R3

|(∇ψ)(x)|2dx . (3)

Any external potential V (x), i.e., −∇V (x) is the force acting on the particle at the point
x, has the quantum mechanical analog

Vψ =
∫
R3

V (x)|ψ(x)|2dx. (4)

Formula (4) can be interpreted as the expectation value of the potential V with respect to
the probability distribution |ψ(x)|2dx. Likewise the kinetic energy can also be interpreted
as an expectation value but that is a bit trickier.

Recall that the Fourier transform is defined by

ψ̂(k) =
∫
R3

e−2πik·xψ(x)dx ,

and its inverse is given by

ψ(x) =
∫
R3

e2πik·xψ̂(k)dk .

Also recall Plancherel’s theorem which says that

‖ψ̂‖2
2 = ‖ψ‖2

2 .
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2 Quantum mechanics in a nutshell

A simple calculation leads to∫
R3

|(∇ψ)(x)|2dx = 4π2

∫
R3

|k|2|ψ̂(k)|2dk

and hence

Tψ =
~2

2m
4π2

∫
R3

|k|2|ψ̂(k)|2dk =
h2

2m

∫
R3

|k|2|ψ̂(k)|2dk ,

since ~ = h/2π. Thus Tψ can be interpreted as the expectation value of the quantity
h2

2m |k|
2 with respect to the probability distribution |ψ̂(k)|2, the probability density for the

particle to have momentum p = hk. Note our conventions for the Fourier transform
differ somewhat from the one usually used.

Classically the total energy of the particle is given by

p2

2m
+ V (x) (5)

and its quantum analog is then
Eψ = Tψ + Vψ . (6)

While the potential V (x) can be fairly general, let us for the moment consider the case
where

V (x) = −Ze
2

|x|
which is the Coulomb potential of an electron of charge −e moving in the field of an
infinitely heavy nucleus of charge Ze. Note that classically the kinetic energy (5) associ-
ated with this force law can have any value between −∞ and ∞. I we move the particle
towards the origin, the Coulomb potential drowns the potential energy an makes the
total energy as large negative as we please.

This is not the case with the quantum mechanical analog given by (6) as we now
prove. First let us choose our units. If we replace the wavefunction ψ(x) by ψλ(x) =
λ3/2ψ(λx) we see that the normalization is preserved. A simple calculation, changing
variables leads to

Eψλ = λ2 ~2

2m

∫
R3

|(∇ψ)(x)|2dx− λe2
∫
R3

1
|x|
|ψ(x)|2dx .

Pick λ so that

λ2 ~2

2m
= λe2

which leads to

λ =
2me2

~2

and hence

Eψλ =
2me4

~2

[∫
R3

|(∇ψ)(x)|2dx−
∫
R3

1
|x|
|ψ(x)|2dx

]
.
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Note that the constant λ has the dimension of an inverse length.
The constant 2me2

~2 can be written as

2mc
~

e2

~c
=

2mc
~
α

where

α =
e2

c~
≈ 1

137.03599911(46)

is a dimensionless number, the fine structure constant. In other words the unit of
length in which we measure an atom is given by

1
2

~
mc

1
α

where
~
mc

= 386.1592678(26)× 10−15 m

is the Compton wavelength divided by 2π. Hence our atomic length scale is

2× 0.5291772108× 10−10 m,

which is twice the Bohr radius. Likewise 2me4

~2 can be written as

2mc2
e4

c2~2
= 2mc2α2

The energy
2mc2α2 = 4 Ry

where 1 Ry = 13.6 eV. mc2 is, of course the rest energy of the electron which is approxi-
mately 0.5 MeV. From now on we take as our unit of energy 4 Ry and our unit of length
twice the Bohr radius. In this units the functional Eψ becomes

Eψ =
∫
R3

|(∇ψ)(x)|2dx− Z

∫
1
|x|
|ψ(x)|2dx .

We shall often use the abbreviation

‖∇ψ‖2
2 =

∫
R3

|(∇ψ)(x)|2dx .

Recall again the main issue, that in contrast to the classical case, Eψ cannot be too neg-
ative. At the root of this fact is an uncertainty principle. Quite generally, an uncertainty
principle says that one cannot localize a state in x space and Fourier space, i.e., p space
simultaneously. There is a host of those, the most famous being Heisenberg’s uncertainty
principle. Here we state another one, namely
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2 Quantum mechanics in a nutshell

Theorem 1 Theorem 1: Coulomb uncertainty principle Let ψ be a square integrable
function and assume that its gradient is also square integrable. Then∫

R3

1
|x|
|ψ(x)|2dx ≤ ‖∇ψ‖2‖ψ‖2 , (6)

where equality holds only if ψ is of the form

const. e−c|x| .

where c > 0 is a constant.

Proof It is a standard fact of analysis that the smooth compactly supported functions
are dense in the set of all function with

∫
|∇ψ|2dx < ∞. A proof can be found in many

text books.
We shall use the abbreviation

(f, g) =
∫
R3

f(x)g(x)dx .

Using integration by parts it follows that

2(ψ,
1
|x|
ψ) =

∑
j

(ψ, [∂xj ,
xj
|x|

]ψ) = −
∑
j

[
(∂xjψ,

xj
|x|
ψ) + (

xj
|x|
ψ, ∂xjψ)

]

= −2<
∑
j

(∂xjψ,
xj
|x|
ψ) <∼ 2|(∂xjψ,

xj
|x|
ψ)| .

Now, using Schwarz’ inequality

|(∂xjψ,
xj
|x|
ψ)| <∼ ‖∂xjψ‖2‖

xj
|x|
ψ‖2

with equality only if
∂xjψ = cj

xj
|x|
ψ .

Using Schwarz’ inequality once more but this time for sums we get∑
j

(∂xjψ,
xj
|x|
ψ) <∼ ‖∇ψ‖2‖ψ‖2

with equality only if

∇ψ = c
~x

|x|
ψ . (7)

This proves the uncertainty principle (6). Since only the real part is involved the constant
c must be real in order to have equality. Further (7) implies that

ψ(x) = const.ec|x|

and hence c < 0 for otherwise ψ would not be square integrable. �
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We use now the uncertainty principle to deal with the ground state energy of the
hydrogenic atom.

Theorem 2 Theorem 2: Ground state energy for the hydrogenic atom
Consider the minimization problem

E0 := inf{Eψ :
∫
R3

|(∇ψ)(x)|2dx <∞ ,

∫
1
|x|
|ψ(x)|2dx <∞ ,

∫
R3

|ψ(x)|2dx = 1} .

Then E0 = −Z2/4 and the function

ψ0(x) =
Z3/2

√
8π
e−Z|x|/2

is the unique minimizer, i.e.,
Eψ0 = −Z2/4 .

Remark 3 Note that instead of talking about the constraint ‖ψ‖2 = 1 we may instead
consider the minimization problem

inf{Eψ/‖ψ‖2 :
∫
R3

|(∇ψ)(x)|2dx <∞ ,

∫
1
|x|
|ψ(x)|2dx <∞ } ,

which leads to the same answer as the one stated in theorem. (Why?)

Proof Using the Coulomb uncertainty principle we obtain the lower bound

‖∇ψ‖2 − Z‖∇ψ‖

which is a quadratic function in the ‘variable’ ‖∇ψ‖ wich has its minimal value precisely
at Z/2 and its value is Z/4. Using what we know about the cases of equality yields the
result. �

Some elementary facts about Lp-spaces Fix 1 <∼ p < ∞. The set of complex valued
functions f on Rn whose p-th power is summable, i.e.,∫

Rn
|f(x)|pdx <∞ ,

is denoted by Lp(Rn) and we denote

‖f‖p = (
∫
Rn
|f(x)|pdx)1/p .

The integral is the Lebesgue integral. Further we denote by L∞(Rn) the space of func-
tions whose essential supremum is finite, i.e., there exists a positive number K so that

{x ∈ Rn : |f(x)| > K}
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2 Quantum mechanics in a nutshell

has measure zero. The infimum among all such numbers is denoted by

‖f‖∞ .

The two important inequalities are Hölder’s inequality and Minkowsi’s inequality. Hölder’s
says that

|
∫
f(x)g(x)dx| ≤ ‖f‖p‖g‖q

provided 1 <∼ p, q <∼ ∞ and 1/p + 1/q = 1. Minkowski’s is essentially the triangle
inequality

‖f + g‖p ≤ ‖f‖p + ‖g‖p
provided 1 <∼ p <∼ ∞. Thus, Lp(Rn) is a normed linear space with norm ‖f‖p.

Exercises

1. Prove Hölder’s and Minkowski’s inequality.

2. Show that for f ∈ ∩p>∼p0L
p(Rn)

lim
p→∞

‖f‖p = ‖f‖∞ .

One of the key points about Lp spaces is that they are examples of Banach spaces, i.e.,
complete normed linear spaces. Concretely this means that for any Cauchy sequence
fn ∈ Lp(Rn) there exists f ∈ Lp(Rn) such that ‖fn − f‖ → 0 as n→∞.

Let us finally remark that one can define Lp spaces over any measure space (Ω,Σ, µ)
where Ω is a set, Σ is a sigma algebra and µ is a measure.

It is clear from the discussion that the space L2(Rn) plays a special role because it
carries an inner product

(f, g) :=
∫
Rn
f(x)g(x)dx ,

and hence its norm can be expressed as

‖f‖2 =
√

(f, f) .

We say that two function f, g are orthogonal to each other if (f, g) = 0.

Exercises

1. Prove the parallelogram identity

‖f − g‖2
2 + ‖f + g‖2

2 = 2‖f‖2
2 + 2‖g‖2

2 .

2. Prove Schwarz’ inequality in the following strong from

|(f, g)| <∼ ‖f‖2‖g‖2

with equality if and only if f and g are proportional.
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3. Why is the notion of completeness usefull?

4. Show Heisenberg’s uncertainty principle in Rn which says that

n‖ψ‖ <∼ ‖∇ψ‖2‖~xψ‖2 ,

and deduce from it the ground state energy for the minimization problem

Hψ =
∫
R3

|(∇ψ)(x)|2dx+
∫
|x|2|ψ(x)|2dx

as well as the normalized minimizer.

The Schrödinger equation for the hydrogenic atom It is now a simple exercise to verify
that the function ψ0 satisfies the partial differential equation

−∆ψ0 −
Z

|x|
ψ0 = −Z

2

4
ψ0 . (8)

Thus the value E0 = Z2/4 appears as an eigenvalue which is no coincidence since by a
perturbing ψ0 by a smooth and compactly supported function f one obtains that

F (ε) :=
Eψ0+εf

‖ψ0 + εf‖2
2
>∼

Eψ0

‖ψ‖2
2

.

Since the derivative of F (ε) at ε = 0 with respect to ε vansishes we get that∫
R3

(∇ψ)(x) · (∇f)(x)dx− Z

∫
1
|x|
ψ(x)f(x) = Eψ0

∫
ψ(x)f(x)dx = 0 , (9)

for all f smooth and with compact support. Note that from this one cannot conclude that
equation (8) holds everywhere on R3 directly. It is, however, possible starting from (9)
and in particular not knowing what the explicit solution is, to show that the solution is
in fact smooth and decays fast enough so that the equations make sense. This is known
as the ‘regularity theory’ for partial differential equations.
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2 Quantum mechanics in a nutshell
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3 The Sobolev inequality, a general uncertainty
principle

The uses of the Coulomb Uncertainty principle are restricted to problems related to the
hydrogenic atom. For more general potentials V (x) the Sobolev inequality serves as a
very effective uncertainty principle.

Theorem 4 Theorem 1: Sobolev’s inequality
For n >∼ 3 let f be a function in C1(Rn) with compact support. Then there exists a

constant Cn depending only on the dimension but not on f so that

‖f‖p <∼ Sn‖∇f‖2

where
p =

2n
n− 2

,

which is called the Sobolev index.

Remark 5 Note that inequality requires n >∼ 3. It does not make a statement in 2 and 3
dimensions.

Remark 6 The value of the Sobolev index can be understood as follows. Assuming that
the inequality holds, pick any function f and consider its scaled verion f(λx) with λ > 0
arbitrary. Then, by changing variables(∫

Rn
|f(λx)|pdx

)1/p

= λ−n/p
(∫

Rn
|f(x)|pdx

)1/p

which is

<∼ Cn

(∫
Rn
|∇(f(λx))|2dx

)1/2

= λ1−n/2Cn

(∫
Rn
|∇(f(x))|2dx

)1/2

.

Thus, the λ powers must necessarily be the same, i.e., n/p = n/2− 1.

Remark 7 The best possible constant in Sobolev’s inequality is known and it has the
value.

n(n− 2)
4

|Sn|2/n

where |Sn| is the surface area of the unit n-sphere in Rn+1, i.e.,

|Sn| = 2π(n+1)/2

Γ(n+1
2 )

.

19



3 The Sobolev inequality, a general uncertainty principle

The functions which yield equality are of the form

const.
(µ2 + |x− a|2)(n−2)/2

.

This result is due to Talenti [T] and Aubin[A] and its proof is somewhat more involved.
See also [L] and [CL] for other proofs.

Exercise For which values of p is it possible for the inequality

‖f‖p <∼ Cn,q‖∇f‖q , (1)

to hold.
ANSWER:

p =
qn

n− q
.

In particular for q = 1, p = n/(n− 1).

Proof We present the standard proof found in the textbooks, which is due to Gagliardo
and Nirenberg, and prove the more general inequality (1). In order to present the ideas
as clearly as possible we do it in 3-space and leave the general argument as an exercise.

Using the fundamental theorem of calculus

f(x, y, z) =
∫ x

−∞
∂xf(r, y, z)dr

and in particular

|f(x, y, z)| <∼
∫ ∞

−∞
|∂xf(r, y, z)|dr =: g1(y, z) .

Similarly, repeating the same argument in the other variables

|f(x, y, z)|3 <∼ g1(y, z)g2(x, z)g3(x, y) ,

and hence

‖f‖3/2 <∼
(∫ √

g1(y, z)
√
g2(x, z)

√
g3(x, y)dxdydz

)2/3

.

Using Schwarz’ inequality on the x- variable yields the upper bound(∫ √
g1(y, z)

√∫
g2(x, z)dx

√∫
g3(x, y)dxdydz

)2/3

Applying Schwarz’ inequality once more in the y-variable yields(∫ √∫
g1(y, z)dy

√∫
g2(x, z)dx

√∫
g3(x, y)dxdydz

)2/3

,
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and finally in the z-variable(√∫
g1(y, z)dydz

√∫
g2(x, z)dxdz

√∫
g3(x, y)dxdy

)2/3

,

=
(∫

g1(y, z)dydz
∫
g2(x, z)dxdz

∫
g3(x, y)dxdy

)1/3

,

= (‖∂xf‖1‖∂yf‖1‖∂zf‖1)1/3 ,

<∼ ‖∇f‖1 .

Thus we have established that

‖f‖3/2 ≤ ‖∇f‖1 . (2)

To arrive at the general inequality, replace f by |f |s for a number s > 0 to be chosen
later and calculate

‖fs‖3/2 ≤ s‖|∇f ||f |s−1‖1

Using Hölder’s inequality on the right side yields the estimate

‖fs‖3/2 ≤ s‖|∇f |‖q‖|f |s−1‖q′ (3)

where 1/q + 1/q′ = 1 or q′ = q/(q − 1). Now if we choose s = 2q/(3− q) so that

3s/2 = (s− 1)q/(q − 1) =
3q

3− q
= p ,

we get from (3)
‖f‖2p/3

p ≤ 2q/(3− q)‖|∇f |‖q‖f‖p(q−1)/q
p

and upon dividing both sides by ‖f‖p(q−1)/q
p we obtain

‖f‖2p/3−p(q−1)/q
p ≤ 2q/(3− q)‖|∇f |‖q ,

which is our desired inequality. Note, as a check, that

p[2/3− (q − 1)/q] = 1 .

Exercise By setting up a careful induction argument prove inequality (2) in any dimen-
sion. Then preceed to prove (1) for all 1 <∼ q < n,

Remark 8 The sharp constant in (2) is strongly related to the isoperimetric inequality.
This is a substantial subject all by itself and we just touch it with a few remarks. The
inequality (2) on Rn in its sharp form reads as

‖f‖ n
n−1

≤ n
−(n−1)

n |Sn−1|−1/n‖∇f‖1 .
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3 The Sobolev inequality, a general uncertainty principle

In other words, we claim that

supf 6=0

‖f‖ n
n−1

‖∇f‖1
= n

−(n−1)
n |Sn−1|−1/n .

The constant is precisely the surface area of a ball divided by the (n− 1)/n-th power of
its volume. The constant is not attained by any function whose gradient is integrable
but we can get arbitrarily close as the following calculation shows. Define the function
fε(x) = uε(|x|) where

uε(r) =


1 for r < 1
0 for r > 1 + ε

1 + ε− r

ε for 1 <∼ r <∼ 1 + ε

.

We have immediately (please check) that limε→0 ‖fε‖n/(n−1) = (|Sn−1|/n)(n−1)/n. Next
∇fε = u′ε(x/|x|) where

u′ε(r) =


0 for r < 1
0 for r > 1 + ε

1
ε for 1 <∼ r <∼ 1 + ε

.

Hence, using polar coordinates (please check)

‖∇fε‖1 = |Sn−1|
∫ 1+ε

1

1
ε
rn−1dr = |Sn−1| 1

n

1
ε

[(1 + ε)n − 1]n ,

which tends to |Sn−1| in the limit as ε → 0. Hence we get from this example that the
sharp constant

Cn >∼ n−(n−1)/n|Sn−1|−1/n .

That Cn <∼ n−(n−1)/n|Sn−1|−1/n is much more difficult to see. One way of getting at it is
using the co-area formula. Imagine that f is a nice positive, smooth function, that has
no flat spots, i.e., ∇f vanishes only at isolated points, the critical points. Thus, the level
surfaces {x : f(x) = α} consist either of critical points or otherwise are n−1 dimensional
surfaces perpendicular to ∇f which does not vanish on these surfaces.

For any given funcition g we shall rewrite the integral∫
g(x)|(∇f)(x)|dx

‘using f as a variable’. Imagine a point on {x : f(x) = α} the level surface of f at height
α. Pick a small cube of volume ‘(∆x)n’ by choosing n−1 edges of length ∆s1, . . . ,∆sn−1

tangential and one edge of length ∆p perpendicular to the surface. The change in f
along the perpendicular edge is up to an error of higher order |∆f | = |∇f |∆p and hence

(∆x)n =
1

|∇f |
|∆f |∆s1 · · ·∆sn−1 .
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Note that ∆s1 · · ·∆sn−1 corresponds to the surface area element and hence we can write

dx =
1

|∇f |
dαdS

and ∫
g(x)|(∇f)(x)|dx =

∫ ∞

0
dα

∫
{x:f(x)=α}

g(x)dS , (4)

where dα is the change in height of the level surface and dS is the area element on the
level surface {x : f(x) = α}. For a rigorous proof of this formula see [BZ]. Equation
(4) is known as the co-area formula. If one replaces the measure dS by the Hausdorff
measure then the co-area formula holds in great generality for Sobolev functions, i.e.,
functions whose weak derivative is p-summable for some p. In particular we have that∫

|(∇f)(x)|dx =
∫ ∞

0
dα

∫
{x:f(x)=α}

dS =
∫ ∞

0
dα|{x : f(x) = α}| , (5)

where |{x : f(x) = α}| is the surface area of the level set.

Thus we have now some geometric understanding of the L1 norm of the gradient.
Let us emphasize that these considerations are somewhat heuristic but can be made
rigorous. They belong properly to geometric measure theory.

Let us try to write the
∫
|f(x)|pdx in a similar fashion. Start with

|f(x)| =
∫ |f(x)|

0
dα =

∫ ∞

0
χ{|f(x)|>α}(x)dα , (6)

where χA(x) is the characteristic function of the set A, i.e., it is equals 1 if x ∈ A and
equals 0 if x /∈ A. It is a straightforward computation to see that∫

|f(x)|pdx = p

∫ ∞

0
αp−1|{x : |f(x)| > α}|dα , (7)

where |A| denotes Lebesgue measure of the set A. In essence this is a possible definition
of the Lebesgue integral of the function |f(x)|p.

As a consequence we see that the Lp norm of a function is entirely determined by the
volume of the regions that are enclosed by the level surfaces {x : |f(x)| = α}.

From (5) and (7) we can draw an interesting conclusion. The equation (5) says
that the L1-norm of ∇f depends only on the surface area of the level surfaces. Hence
it is natural to try to minimize these areas but keeping the volumes fixed. Using the
isoperimetric inequality the best arrangement is to deform the level sets {x : |f(x)| >
α} into balls centered at some common point, say the origin and choosing the radius
in such a way that the volume of these balls is the same as |{x : |f(x)| > α}|. To
these rearranged level sets corresponds also a function, which is called f∗ the symmetric
decreasing rearrangement of f . This function has the value α on the boundary of the
open ball whose volume is |{x : |f(x)| > α}|.

23



3 The Sobolev inequality, a general uncertainty principle

Returning to our Sobolev inequality (2), but in Rn, we see among all functions the
spherically symmetric functions deliver the worst constant. Thus, we may assume that
all the level sets are rearranged into balls with radius

[
n

|Sn−1|

] 1
n

|{x : |f(x)| > α}|1/n

and hence this inequality reads

Cn >∼
[

1
n− 1

]n−1
n

|Sn−1|−1/n sup
f 6=0

[∫∞
0 α1/(n−1)λ(α)

n
n−1dα

]n−1
n∫∞

0 λ(α)dα
(8)

where λ(α) = |{x : |f(x)| > α}|
n−1
n . Two observations about the function λ(α): it is a

non increasing function and we may assume that
∫∞
0 λ(α)dα = 1 as well as λ(0) = 1,

since the scaling λ(α) → Cλ(Dα) leaves the ratio in (8) fixed. To maximize

[∫ ∞

0
α1/(n−1)λ(α)

n
n−1dα

]n−1
n

over all such functions λ(α) we proceed as follows. The functional

λ(α) 7→ F(λ) =
[∫ ∞

0
α1/(n−1)λ(α)

n
n−1dα

]n−1
n

is convex. Now restrict the set over which to maximize to consist of non-increasing
functions that have the value 1 at α = 0, whose integral equals 1 and are zero outside
the interval [0, N ] for some N large. Call this set TN and note that TN is a convex set
and

F (N) = sup
λ∈TN

F(λ)

is non decreasing as a function of N .
Since our functional is convex it attains its maximum on the set TN at the extreme

points which consists of functions that take only zero and 1 as values. Since the function
is non-increasing, has the value 1 at α = 0 and integrates to 1 it must be

λopt(α) = χ[0,1](α) . (9)

which does not depend on the value of N as long as N > 1. and hence inserting this
into (8) we have that

Cn >∼ |Sn−1|−1/nn−(n−1)/n ,

which demonstrates our claim.
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4 Some remarks about Sobolev spaces

We have been talking about functions that are square integrable and have a square
integrable gradient. In this context the standard notion of differentiability of a function
is not adequate. The key property of any space of functions in analysis is completeness
and while it is possible to construct Banach spaces using the usual definition of the
derivative, they are not easy to handle. Lp spaces are fine, since it is easy to identify
bounded linear functionals via the Riesz representation theorem.

A notion of derivative that is much better adapted to our purposes is the notion of
weak derivative.

Definition 9 A function f ∈ L2(Rn) is in H1(Rn) if there exist n functions gi ∈ L2(Rn)
such that for all φ ∈ C∞

c (Rn)∫
Rn
f(x)

∂φ

∂xi
(x)dx = −

∫
Rn
gi(x)φ(x)dx

for all i = 1, 2, . . . n.

Of course we should think of the functions gi as the partials of f and we shall use this
notation. However, please remember that ∂f∂xi is defined as the function that satisfies
the infinite set of equations given by∫

Rn
f(x)

∂φ

∂xi
(x)dx = −

∫
Rn

∂f

∂xi
(x)φ(x)dx

Note that the function ∂f
∂xi

(x) is uniquely defined since the set C∞
c (Rn) is dense in

L2(Rn).
We can endow the set H1(Rn) with the inner product

(u, v)H1 :=
∫
Rn
u(x)v(x)dx+

∫
Rn
∇u(x)∇v(x)dx .

The wonderful thing about the notion of weak derivative is that H1(Rn) is a Hilbert
space, i.e., it is complete. To see this pick a Cauchy sequence uj . Since uj is a Cauchy
sequence in L2 it converges to an element u ∈ L2(Rn). Likewise, the partials ∂uj/∂xi
converge to functions vi ∈ L2(Rn). All we have to show that vi is the weak derivative of
u. Using Schwarz’ inequality we learn that

lim
j→∞

∫
Rn
uj(x)

∂φ

∂xi
(x)dx =

∫
Rn
u(x)

∂φ

∂xi
(x)dx ,
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4 Some remarks about Sobolev spaces

and

lim
j→∞

∫
Rn

∂uj
∂xi

(x)φ(x)dx =
∫
Rn

∂u

∂xi
(x)φ(x)dx .

Since ∫
Rn
uj(x)

∂φ

∂xi
(x)dx = −

∫
Rn

∂uj
∂xi

(x)φ(x)dx

the same holds for u.
A sequence of functions uj converges to u weakly in H1(Rn) if for every bounded

linear functions L, limj→∞(uj) = L(u). Using the Riesz representation theorem, an
equivalent formulation is that (uj , v)H1 → (u, v)H1 . One of the really important theo-
rems is

Theorem 10 Every bounded sequence in H1(RN ) has a weakly convergent subsequence,
i.e., for every uj ∈ H1(Rn), with ‖uj‖H1 <∼ C there exists u ∈ H !(Rn) and a subsequence
ujk so that ujk → u weakly in H1(Rn).

All the results about the Sobolev space H1(Rn) so far have been on an abstract level.
Nowhere did we make any specific use of the derivative. This will change dramatically
in the next theorem.

Theorem 11 Rellich-Kondrachev Let uj be a bounded sequence in H1(Rn) which we can
assume to converge weakly to the function u ∈ H1(Rn). Then for any measurable set B
with finite measure and any q < p = 2n/(n− 2) we have that∫

B
|uj(x)− u(x)|qdx→ 0

as j →∞.

Proof Quite generally for f ∈ H1(Rn) we have that for any h ∈ Rn∫
|f(x+ h)− f(x)|2dx <∼ ‖∇f‖2|h|2 . (1)

A simple way to see this is to use Plancherel’s theorem to calculate∫
|f(x+h)−f(x)|2dx =

∫
|e2πip·h−1|2|f̂(p)|2dp <∼ 4π2

∫
|p|2f̂(p)|2dp|h|2 = ‖∇f‖2|h|2 .,

where the inequality
|e2πip·h − 1| <∼ 2π|p||h|

has been used. Further for any smooth function φ of compact support with
∫
φ(y)dy = 1

and
∫
|φ(y)|y|dy <∞ we calculate

‖f ∗ φ− f‖2 <∼
∫
|φ(y)|y|dy‖∇f‖2 , (2)
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where
(f ∗ φ)(x) =

∫
f(x− y)φ(y)dy .

To see this write

‖f ∗ φ− f‖2 =
[∫

|
∫
f(x− y)φ(y)dy −

∫
f(x)φ(y)dy|2dx

]1/2

.

Minkowski’s inequality allows to pull the y integration outside the x integration to yield
the bound ∫

|φ(y)|‖f(· − y)− f(·)‖2

which together with (1) proves (2).
Now we consider the sequence uj and pick ε arbitrary but fixed. Set

φm(y) = mnφ(ym)

and note that
∫
φm = 1 and∫

|φm(y)||y|dy =
1
m

∫
|φ(y)||y|dy .

Since ‖∇uj‖ <∼ C we have uniformly in j that

‖uj ∗ φm − uj‖2 <∼
1
m
C

∫
|φ(y)|y|dy < ε ,

for some fixed m sufficiently large. This follows from (2).
Next since uj → u weakly in H1(Rn) and hence in L2(Rn) we get that

uj ∗ φm(x) → u ∗ φm(x)

for every x. Morover
|uj ∗ φm(x)| <∼ ‖uj‖2‖φm‖2 <∼ C ′

uniformly in j. Thus we conclude using the dominated convergence theorem that∫
B
|uj ∗ φm(x)− u ∗ φm(x)|2dx→ 0 (3)

as j →∞. Hence

‖uj − u‖L2(B) <∼ ‖uj − uj ∗ φm‖L2(B) + ‖uj ∗ φm − u ∗ φm‖L2(B) + ‖uj ∗ φm − u‖L2(B)

< 2ε+ ‖u ∗ φm − u‖L2(B)

and using (30 we conclude that

lim sup
j→∞

‖uj − u‖L2(B) < 2ε .
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4 Some remarks about Sobolev spaces

Since ε is arbitrary this proves the theorem for q = 2 and since B is bounded it holds for
all 1 <∼ q <∼ 2.

For q < p we use Hölders inequality

‖uj − u‖q <∼ ‖uj − u‖θ2‖uj − u‖1−θ
p

where θ = n(1/q − 1/p) > 0. By Sobolev’s inequality

‖uj − u‖p <∼ Sn(‖∇uj‖2 + ‖∇u‖2) <∼ 2CSn

and the general theorem follows from the case q = 2. �
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5 Higher eigenvalues and eigenfunctions, the
Exclusion Priniciple

Consider again the quadratic form Eψ under the same assumptions as in the previous
section, i.e., that V ∈ Ln/2(Rn) + L∞(Rn) and V vanish at infinity in measure. The
existence of a ground state has been established in the previous section, i.e., we know
that there is a function ψ0 ∈ H1(Rn) such that

Eψ0 = E0

where
E0 = inf{Eψ : ψ ∈ H1(Rn), ‖ψ‖2 = 1} .

Also note that for any f ∈ H1(Rn)

F (ε) :=
Eψ0+εf

‖ψ0 + εf‖2 >
∼ Eψ0

‖ψ0‖2
= E0

and hence F ′(0) = 0 which reads as∫
∇ψ0 · ∇fdx+

∫
V (x)ψ0(x)f(x)dx = E0

∫
ψ0(x)f(x)dx .

In the language of partial differential equations one says that ψ0 is a weak solution of
the eigenvalue problem

−∆ψ0(x) + V (x)ψ0(x) = E0ψ0(x) .

Likewise we can find the next higher eigenfunction as follows. Consider the minimiza-
tion problem

E1 = inf{Eψ : ψ ∈ H1(Rn), ‖ψ‖2 = 1, (ψ,ψ0) = 0} .

As in the previous section we see that a minimizer exists for this problem under the
condition that E1 < 0. The only new thing to check is that the for the minimizing
sequence, call it φj with φj ⇀ ψ1,

lim
j→∞

(φj , φ0) = (ψ1, φ0) = 0

which follows immediately from the definition of weak convergence. Consider again a
function

F (ε) :=
Eψ1+εf

‖ψ1 + εf‖2
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5 Higher eigenvalues and eigenfunctions, the Exclusion Priniciple

where f ∈ H1(rn) such that (f, ψ0) = 0. Since F (ε) >∼ E1 = F (0) we by differentiating
that

L1(f) :=
∫
∇ψ1 · ∇fdx+

∫
V (x)ψ1(x)f(x)dx = E0

∫
ψ1(x)f(x)dx ,

for all f ∈ H1(Rn) with (f, ψ0) = 0. From that it follows that there exists a constant µ
so that L1(f)− E0(ψ1, f) = µ(ψ0, f) for all f ∈ H1(Rn). In particular choosing f = ψ0

we get ∫
∇ψ1 · ∇ψ0dx+

∫
V (x)ψ1(x)ψ0(x)dx = µ‖ψ0‖2

while at the same time∫
∇ψ1 · ∇ψ0dx+

∫
V (x)ψ1(x)ψ0(x)dx = E0(ψ1, ψ0) = 0 .

Hence µ = 0. Therefore, we conclude that∫
∇ψ1 · ∇fdx+

∫
V (x)ψ1(x)f(x)dx = E0

∫
ψ1(x)f(x)dx

for all f ∈ H1(Rn). Hence ψ1 is a weak solution of the eigenvalue equation

−∆ψ1(x) + V (x)ψ1(x) = E1ψ1(x) .

We have, tacitly, assumed that the functions ψ0 and ψ1 are real. Please show that they
can be chosen to be real.

In a similar fashion we can now define the other higher eigenvalues and eigenfunc-
tions recursively by minimizing

Ek == inf{Eψ : ψ ∈ H1(Rn), ‖ψ‖2 = 1, (ψ,ψl) = 0, l = 0, 1, . . . k − 1} .

As before we find that Lk(f) = Ek(ψk, f) for all f ∈ H1(Rn) with (f, ψl) = 0, l =
0, 1, . . . , k−1. Again from this it follows that Lk(f) =

∑k−1
l=0 µk(f, ψl) for all f ∈ H1(Rn)

for some numbers µ0, µ1, . . . µk−1. Assuming inductively that Ll(f) = El(ψl, f) for all
f ∈ H1(Rn) we get that on the one hand Lk(ψm) = µm‖ψm‖2

2, while on the other
Lk(ψm) = Lm(ψk) = Ek(ψm, ψk) = 0. Hence µl = 0, l = 0, . . . , k − 1.

Continuing this way we get a sequence of negative numbers Ek together with function
ψk. About this sequence we can state the following theorem.

Theorem 12 Higher eigenvalues and eigenfunctions
The sequence Ek is either finite or infinite in which case it can only accumulate at 0. In

particular the eigenvalues can only be finitely degenerate.

Proof Assume that the sequence of eigenvalues Ek is not finite. We may also assume
that the eigenfunctions are normalized to one and are orthogonal to each other. We have
to show that the sequence Ek converges to zero. Suppose not, i.e., there exists a number
−A so that infinitely many eigenvalues are below that number. This means that

Eψk = Ek‖ψk‖2 < −A‖ψk‖2 . (1)
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and since the energy dominates the kinetic energy we get

‖∇ψk‖2
<∼ 2Eψk + Λ‖ψk‖2

2 <∼ (Λ−A) .

In other words, the sequence ψk is a bounded sequence in H1(Rn). Since the sequence
is orthonormal it converges weakly to zero. Pick A > ε > 0 and recall that

|
∫
V (x)|ψk(x)|2dx| <∼ |

∫
N>|V |>ε

V (x)|ψk(x)|2dx|+

+|
∫
|V |>∼N

V (x)|ψk(x)|2dx|+ |
∫
|V |<∼ε

V (x)|ψk(x)|2dx|

<∼ N |
∫
N>|V |>ε

|ψk(x)|2dx|+

(∫
|V |>∼N

|V (x)|n/2dx

)2/n

‖ψk‖2
2n/(n−2) + ε‖ψk|22 .

By the Sobolev inequality the second factor in the second term is uniformly bounded.
Fix N large enough can make the seond term less than ε uniformly in k. Since {x :
|V (x)| > ε} has finite measure we learn from the Rellich Kondrachev Theorem that the
first term tends to zero as k →∞. Hence

lim sup
k→∞

|
∫
V (x)|ψk(x)|2dx| < 2ε

and hence
lim
k→∞

|
∫
V (x)|ψk(x)|2dx| = 0 . (2)

But this contradicts equation (1). �

In quantum mechanics, the state of many particles is described a wave function on the
configuration space of these particles. More precisely given N particles with coordinates
x1, . . . , xN then the wave function

Ψ(x1, . . . , xN )

is a function in L2(R3N ) and its interpretation is that

|Ψ(x1, . . . , xN )|2

is the probability density of finding the first particle at x1 the second particle at x2 etc.
It is a fundamental law that wave functions of identical elementary particles come in

two flavors.

Fermions The wave function
Ψ(x1, . . . , xN )

is antisymmetric under exchange of particle labels, i.e.,

Ψ(xπ(1), . . . , xπ(N)) = (−)πΨ(x1, . . . , xN ) ,

where π is any permutation of N objects and (−)π is the signature of the permutation,
that is −1 for odd permutation and +1 for even parmutations.
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5 Higher eigenvalues and eigenfunctions, the Exclusion Priniciple

Bosons The wave function
Ψ(x1, . . . , xN )

is symmetric under exchange of particle labels, that is

Ψ(xπ(1), . . . , xπ(N)) = Ψ(x1, . . . , xN ) ,

where π is any permutation of N objects. If we have K bosons and N fermions then the

wave function of the combined system is given by

Ψ(R1, . . . , RK , x1, . . . , xN )

where the function is symmtric und permutation of the first K labels and antisymmetric
under permutations of the other N labels. There is an added complication because of

the spin but we neglect this possibility for the moment. As in the one particle case we

can now write down an energy for a system of N non- interacting particles

EΨ = TΨ + VΨ

where

TΨ =
N∑
j=1

∫
R3N

|∇xjΨ(x1, . . . , xN )|2dx1 · · · dxN ,

and

VΨ =
N∑
j=1

∫
R3N

V (xj)|Ψ(x1, . . . , xN )|2dx1 · · · dxN .

We shall make the same assumption about the potential as in the case of one particle.
The problem is now to find

E0(N) = inf{EΨ : Ψ ∈ H1(R3N ), ‖Ψ‖L2(R3N ) = 1} .

Theorem 13 Minimization for non interacting bosons
The gound state energy for N noninteracting bosons is given by

E0(N) = NE0

and the corresponding minimmizer is given by

N∏
j=1

ψ0(xj)

where ψ0 is the normalized ground state wave function of the single particle problem.
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Proof Clearly by using
∏N
j=1 ψ0(xj) as a normalized trial function we see right away

that E0(N) <∼ NE0. To see the converse is a bit more difficult. Define the one particle
density associated with Ψ by

ρ(x) = N

∫
R3(N−1)

|Ψ(x, x2, . . . , xN )|2dx2 · · · dxN .

Note it is immaterial over which variable we integrate since the function |Ψ(x1, . . . , xN |2
is symmetric. this definition holds for bosonic wave functions as well as for fermionic
wave functions. For our boson wave function we calculate

|∇√ρ(x)|2 = N

[
1

√
ρ(x)

∫
R3(N−1)

Ψ(x, x2, . . . , xN )∇xΨ(x, x2, . . . , xN )dx2 · · · dxN
]2

and by Schwarz’s inequality we obtain the bound

|∇√ρ(x)|2 <∼
[

1
√
ρ(x)

N
√
ρ(x)

∫
|∇xΨ(x, x2, . . . , xN )|2dx2 · · · dxN

]
= N

∫
|∇xΨ(x, x2, . . . , xN )|2dx2 · · · dxN ,

and upon integrating over x, using the symmetry of the wave function we get the
Hoffmann-Ostenhof inequality ∫

R3

|∇√ρ(x)|2dx <∼ TΨ .

In particular we learn that
√
ρ ∈ H1(R3). Note that a simple calculation reveals that

VΨ =
∫
R3

V (x)ρ(x)dx .

Thus, we see that

EΨ >∼
∫
R3

|∇√ρ(x)|2dx+
∫
R3

V (x)ρ(x)dx

which we have to minimize over all
√
ρ ∈ H1(R3) with

∫
ρ = N . Put it differently, we

can define
√
Nψ(x) =

√
ρ(x) and have to minimize the one particle problem NEψ over

all ψ ∈ H1(R3) with ‖ψ‖ = 1 which equals NE0. Hence have that E0(N) = E0 and∏N
j=1 ψ0(xj) is a minimizer. If Ψ0 is any other minimizer there must be equality in all

the above inequalities. In particular equality in Schwarz’s inequality leads to

λj(x)Ψ(x, x2, . . . , xN ) = ∇jΨ(x, x2, . . . , xN )

for a.e. x2, . . . xN . Because of the symmetry of the function under prmutation, Ψ must be
a product function of the form

∏N
j=1 φ(xj) and insering this function into the functional

we get that
N [Tφ + Vφ] = NE0

and hence φmust be the ground state of the one body problem which, as we have argued
somewhere else is unique. �
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5 Higher eigenvalues and eigenfunctions, the Exclusion Priniciple

Theorem 14 Minimization for non interacting fermions
The gound state energy for N noninteracting fermions is given by

E0(N) =
N−1∑

j=0,Ej<∼0

Ej (3)

and the corresponding minimmizer is given by a slater determinant

1√
N !

det(ψi(xj))

where ψi is the normalized eigenfunctions associated with the eigenvaluesE0, E−1, . . . , EN−1

of the single particle problem. If the number of non-positive eigenvalues is strictly less than
N there is no minimizer but the energy is just the sum over the available non positive
eigenvalues.

This Theorem is quite a bit trickier. Note that we can write

N∑
i=1

∫
|∇xiΨ(x1, . . . , xN )|2dx1 · · · dxN = N

∫
|∇x1Ψ(x1, . . . , xN )|2dx1 · · · dxN

=
∫

[∇x∇yρ] (x, x)dx (4)

where the one particle density matrix ρ is given by

ρΨ(x, y) = N

∫
Ψ(x, . . . , xN )Ψ(y, . . . , xN )dx2 · · · dxN .

Likewise,

N∑
i=1

∫
V (xi)|Ψ(x1, . . . , xN )|2dx1 · · · dxN = N

∫
V (x1)|Ψ(x1, . . . , xN )|2dx1 · · · dxN

=
∫
V (x)ρΨ(x, x)dx .

Note that
ρΨ(y, x) = ρΨ(x, y)

and hence ρ(x, y) defines a selfadjoint operator. Denote its eigenfunctions by φj(x)
which we can choose to be orthonormal, i.e.,

(φi, φj) = δi,j .

We denote its eigenvalues by λj . The following Lemma (which I learned from Elliott
Lieb) is important.
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Lemma 15 The operator defined by the kernel ρΨ(x, y) has non-negative eigenvalues and
is trace class, in particular ∑

j

λj = N .

Moreover, we have the surprising fact that all the eigenvalues are less than 1.

Proof It is a standard fact that the kernel has an complete set of orthonormal eigenfunc-
tions φj , and we can write

ρΨ(x, y) =
∞∑
j=1

λjφj(x)φj(y) .

The trace of the associated operator is defined by integrating∫ ∞∑
j=1

λj |φj(x)|2dx = N

∫
|Ψ(x1, . . . , xN )|2dx1 · · · dxN = N .

To see that the eigenvalues are less than one we have to use the antisymmetry of Ψ. It
suffice to show that for any f ∈ L2(Rn) we have that∫

f(x)ρΨ(x, y)f(y)dxdy <∼ ‖f‖2
2 .

Consider now the integral kernel

K(x1, . . . , xN , y1, . . . , yN ) =
N∑
j=1

f(xj)f(yj)

It is a sum of rank one projections. To describe the eigenfunctions we complement f to
an orthonormal basis and denote it by fj . The eigenfunctions of K are now all products
of the form

fj1(x1) · · · fjN (xN ) .

(Note that we use here the spectral theorem of the operator K which is elementary in
this case). The function Ψ can be expanded in terms of products of fj

Ψ(x1, . . . , xN ) =
∑

j1,...,jN

C(j1, . . . , jN )fj1(x1) . . . f(xjN ) .

Since Ψ is antisymmetric, the coefficients C are antisymmetric in their variables. This
means that C vanishes if any two indices are the same. Moreover, since Ψ is normalized
we have that ∑

j1,...,jN

|C(j1, . . . , jN )|2 = 1 .
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5 Higher eigenvalues and eigenfunctions, the Exclusion Priniciple

Now we compute for j1, . . . , jN different indices

(
∏
k

fjk ,K
∏
k

fjk) =
N∑
k=1

|(f, fjk)|
2

and since all the indices are different, at most one term is not zero. Hence

(
∏
k

fjk ,K
∏
k

fjk) <∼ 1

and
(Ψ,KΨ) <∼

∑
j1,...,jN

|C(j1, . . . , jN )|2 = 1 .

But
(Ψ,KΨ) = N(f, ρΨf) ,

and this proves the lemma. �

Now we return to (4) and note that∫
[∇x∇yρ] (x, x)dx =

N∑
j=1

λj

∫
|∇ψj(x)|2dx

and hence

EΨ =
N∑
j=1

λj

[∫
|∇ψj(x)|2dx+

∫
V (x)|φj(x)|2dx

]
and since the functions are all orthonormal we get that

E0(N) ≥
N∑
j=1

λjEj . (5)

The Ej are negative and all the 0 <∼ λj <∼ 1 and, moreover,
∑

j λj = N . Thus, we have to
minimize over all values of λj satisfying the above two constraints. The solution of that
minimization problem is achieved by choosing λj = 1, j = 1, . . . , N and λj = 0, j > N .
This is nothing but the bathtub principle (see ‘Analysis’ on p. 28). In this case

E0(N) ≥
N∑

j=1,Ej<∼0

Ej .

The converse follows from a direct computation using the the slater determinant.
Note that the previous theorem is a precise version of what we mean by filling the

energy levels.
Another important result concerning higher eigenfunctions is the min-max principle

which we discuss next.
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Theorem 16 Min-Max principle
Let φ0, . . . , φk−1 be any k orthonormal functions in H1(Rn). Consider the matrix

hi,j =
∫
∇φ·∇φjdx+

∫
V (x)φiφj .

denote by λj , j = 0, . . . , k−1 the eigenvalues ordered increasingly of the matrix H = (hi,j).
Then we have that

Ej <∼ λj , j = 0, . . . k − 1 .

Proof Denote by ~cj the eigenvectors of the matrix H. Clearly χ0 =
∑

i c
i
0φi satisfies

(χ0, χ0) = 1 and

E0 ≤
∫
|∇χ0|2dx+

∫
V (x)|χ0(x)|2dx = λ0 .

Now we proceed by induction and assume that

Ej <∼ λj , j = 0, . . . k − 2 .

The space spanned by the linear combinations of φ0, . . . , φk−1 is k-dimensional and
hence there exists χ =

∑
diφi, with (χ, χ) = 1 such that

(χ, ψi) = 0 , i = 0, 1, . . . k − 2 .

Hence, by the definition of Ek−1 we have that

Ek−1 <∼
∫
|∇χ|2dx+

∫
V (x)|χ(x)|2dx = (~d,H ~d) <∼ λk−1 ,

since λk−1 is the largest eigenvalue. This proves the theroem. �

This theorem allows us to compare eigenvalues of various operators. E.g., assume that
W (x) is another potential satisfying the same assumptions as V but with V (x) <∼ W (x)
for a.e. x. Denote by µj the eigenvalues associated with the quadratic form∫

|∇ψ|2dx+
∫
W (x)|ψ|2dx .

Then
λj <∼ µj

for all j. Note that there maybe fewer eigenvalues for the W problem then for the V
problem but in this case µj = 0 for j sufficiently large. The proof follows immediately
from the min-max priniciple.
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5 Higher eigenvalues and eigenfunctions, the Exclusion Priniciple
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6 Semiclassical estimates, some heuristics

In the previous section we have learned about higher eigenvalues and how to compute
the ground state energy of a number of non-interacting fermions. We have seen that the
Sobolev inequality is sufficient to estimate the ground state energy of a single particle.
The tool that allows us to estimate the ground state energy of fermionic systems is the
Lieb-Thirring inequality, or rather a whole family of Lieb-Thirring inequalities.

The following heuristic principle is, sometimes, a good guide for inventing such kind
of inequalities for quantum mechanical systems.

Theorem 17 Semiclassical picture of quantum states
A quantum state occupies a classical phase space volume of size 1

(2π)n . Thus, given a
volume P in classical phase space of dimension 2n then the function

1
(2π)n

χP (x, p) (1)

serves as a distribution for these states.

Remark 18 Note, that one should really consider

1
hn
χP (2)

as our distribution but since in our units ~ = 1, (2) reduces to (1).

Remark 19 There are refinements to this principle. True quantum states occupy not
just any volume but they have a certain shape in the form of a brick. Hence if we have a
set that is very irregular so that very few bricks fit inside this set, the set will carry few
quantum states, despite having a large volume.

Consider a the n-dimensional Schrödinger problem. We denote the eigenvalues of the
quadratic form ∫

Rn
[|ψ′|2 + V (x)|ψ|2]dx ,

∫
|ψ|2dx = 1 (3)

by −λ1 < −λ2 <∼ −λ3 · · · . The classical phase space of our system is R2n and the
probability measure for the negative energy quantum states is given by

1
(2π)n

χ{p2+V (x)<∼0}(x, p) .
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6 Semiclassical estimates, some heuristics

To apply the heuristic principle we can ask whether one relate the sum∑
k

(λk)γ

to some expression involving the potential. Here γ is any nonnegative constant. If γ = 0
then we interpret the left side as the number of negative eigenvalues of the quadratic
form.

According to the heuristic principle it should be

1
(2π)n

∫
{p2+V (x)<∼0}

(p2 + V (x))γ−dxdp .

Integrating first over p, this expression can be simplified to yield

1
(2π)n

|Sn−1|
∫ 1

0
(1− s2)γsn−1ds

∫
Rn

[V (x)]γ+n/2− dx .

Here [V (x)]− denotes the negative part of V (x), i.e., [V (x)]− = min(−V (x), 0). Likewise
the positive part we denote by [V (x)]+ so that

V (x) = [V (x)]+ − [V (x)]− .

The constant in front of the integral involving the potential can be computed in terms of
the Gamma function and is given by

2−nπ−n/2
Γ(γ + 1)

Γ(γ + n/2 + 1)
. (4)

We denote this constant by Lc(n, γ), the semiclassical Lieb-Thirring constant.
The interpretation
Thus, a number of questions come up.

1. For which values of γ is an inequality of the type∑
λγk <∼ C(n, γ)

∫
Rn

[V (x)]γ+n/2− dx (5)

true for some universal constant C(n, γ), independent of V .

2. Assuming the answer to 1) is yes. Denote the best constant, i.e., the smallest
constant for which (2) holds, by L(n, γ). Can we calculate L(n, γ), or can we
estimate it reasonably close?

3. In general Lc(n, γ) <∼ L(n, γ) in all dimension and for all values of γ. This fact is
by no means trivial and is related to the Weyl asymptotics for the eigenvalues.
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We shall see that this leads to very difficult questions in Analysis and a number of tools
have been invented for investigating this questions.

One aspect is that semiclassical estimates are not always a good guide. E.g., the
inequality ∑

j

λγj <∼ L(γ)
∫

[V (x)]γ+1/2
− dx

is false for all γ < 1/2 in the one dimensional problem. To see this fix α > 0 and consider
the function

f(x) =
1

coshα(x)
.

An elementary calculation shows that

−f ′′ − α(α+ 1)
1

cosh2(x)
f = −α2f .

Assuming that the Lieb-Thirring inequality holds we must have that

αγ−1/2

(α+ 1)γ+1/2 <
∼ const.

∫
1

cosh2γ+1(x)
dx ,

which is obvously falls for γ < 1/2 as can be readily seen by letting α tend to zero. On
the opposite end is the following result due to Lieb and Thirring again in one dimension.
Note that the semiclassical constant for γ = 3/2 in one dimension is 3/16.

Theorem 20 In one dimension the inequality∑
j

λ
3/2
j <∼

3
16

∫
[V (x)]2−dx .

holds.

Proof We shall establish this result using ‘commutation’, an idea that goes back to an-
cient times. We appeal here a bit to functional analysis, e.g., we expect the reader to
know a bit about adjoints etc. Also, we shall assume that the potential is nice, i.e.,
smooth, compact support and everywhere negative. As a result, there are only finitely
many negative eigenvalues. It suffices to show the above inequality for such potentials.
Denote by φ0(x) the ground state of our quadratic form and in this case it is quite easy
to see that

−φ′′0 + V (x)φ0 = −λ0φ0 ,

since all the functions involved are smooth. The function φ0 can be chosen to be non-
negative and hence it is strictly positive. Hence it makes sense and hence setting F0 =
φ′0/φ0 we calculate that F0 satisfies a Riccati equation

F ′
0 + F 2

0 = λ0 + V (x) . (6)
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6 Semiclassical estimates, some heuristics

Since V has compact support we see that outside the support of V

F0(x) =

{√
λ0 for x large negative

−
√
λ0 for x large positive.

(7)

This follows right away from the fact that φ′′0 = λ0φ0 outside the support of V and that
φ0 has to decay at infinity. Further,

(−d/dx− F0)(d/dx− F0) = −d2/dx2 + F ′
0 + F 2

0 = −d2/dx2 + V (x) + λ0 . (8)

Set A = (d/dx− F0) and A∗ = (−d/dx− F0). Obviously

A∗Aφ0 = 0 ,

since
Aφ0 = (d/dx− F0)φ0 = 0 .

In other words, the operator A∗A has zero as a non degenerate eigenvalue. Now we
consider the new operator that results by commuting the two differential expressions in
(8)

AA∗ .

This new operator is strictly positive since

(f,AA∗f) = ‖A∗f‖2

and it cannot be equal to zero since in that case A∗f = 0 or

f ′ =
√
λ0f

for x large which is impossible, since f has to decay at infinity. On the other hand, take
any other eigenfunction φk of our problem,i.e.,

A∗Aφk = (λ0 − λk)φk

where (λ0 − λk) 6= 0. Since

AA∗Aφk = (λ0 − λk)Aφk

we have that
AA∗ψk = (λ0 − λk)ψk .

Note that
ψk = Aφk

is not identically equals to zero. In other words if A∗A has an eigenvalue λ0 − λk then
AA∗ has the same eigenvalue for k 6= 0. Next we calculate that

AA∗ = −d2/dx2 − F ′
0 + F 2

0 = −d2/dx2 + F ′
0 + F 2

0 − 2F ′
0 = −d2/dx2 + V (x)− 2F ′

0 + λ0 .
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Thus we have a nw Schrödinger problem with another potential

V (x)− 2F ′
0(x)

which is smooth and has compact support, in fact the same as the original potential. The
Hamiltonian, i.e., the operator

−d2/dx2 + V (x)− 2F ′
0

has the same eigenvalues as the old one, except for the ground state eigenvalue λ0. Our
goal is now to show that ∑

j=0

λ
3/2
j − 3

16

∫
[−V (x)]2dx <∼ 0 .

To see this, write this expression in the form∑
j=1

λ
3/2
j − 3

16

[∫
[−V (x)]2dx− 16

3
λ

3/2
0

]
.

Now we claim that ∫
[−V (x)]2dx− 16

3
λ

3/2
0 =

∫
[−V (x) + 2F ′

0]
2dx

or ∫
[−V (x)]2dx−

∫
[−V (x) + 2F ′

0]
2dx =

16
3
λ

3/2
0 .

Clearly, ∫
[−V (x)]2dx−

∫
[−V (x) + 2F ′

0]
2dx =

∫
[4V (x)F ′

0(x)− 4F ′2
0 ]dx

and eliminating the potential with the help of (7) yields

=
∫

[4(F ′
0 + F 2

0 − λ0)F ′
0 − 4F ′2

0 ]dx = 4
∫

[F 2
0 − λ0]F ′

0dx =
16
3
λ

3/2
0

using the boundary condition (4). Thus∑
j=0

λ
3/2
j − 3

16

∫
[−V (x)]2dx =

∑
j=1

λ
3/2
j − 3

16

∫
[−V (x) + 2F ′

0]
2dx

and repeating the arument removes all the eigenvalues leaving a non-positive expres-
sion. �

This result has been extended for any power γ >∼ 1 in one dimension by Lieb and
Aizenman [AL]. In fact they show that if the for some n and some γ0 the Lieb-Thirring
inequality holds with the semiclassical constant then it holds again with the semiclassical
constant for all γ >∼ γ0.

Another, relatively recent extension is due to Laptev and Weidl [LW] who proved that
the sharp Lieb-Thirring constant for γ >∼ 3/2 in all dimension is given by the semiclassical
constant. We shall discuss their ideas in more detail later.

Unfortunately, the cases γ >∼ 3/2 is not often used in the applications. The important
cases are γ = 1 (see below) and γ = 1/2.
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6 Semiclassical estimates, some heuristics

Summary The Lieb-Thirring inequality holds in the following cases

1. n = 1 and all γ < 1/2 due to Lieb and Thirring [LT], n = 1, γ = 1/2 due to Weidl
[W].

2. n = 2 and all γ > 0 due to Lieb and Thiriing [LT2]

3. n >∼ 3 and all γ > 0 due to Lieb and Thirring [LT2]

4. n >∼ 3, γ = 0, Cwikel [C], Lieb [L], Rosenbljum [R]

More can be said about the constants but we come to that later
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7 The Birman-Schwinger Prinicple

All the proofs of the general inequalities involve in one way or another the Birman-
Schwinger principle. To state, we shall from now consider only negative potentials of
the form V (x) = −U(x) with U nonnegative. ForE > 0 introduce the Birman-Schwinger
operator

KE = U1/2(−∆ + E)−1U1/2 .

This operator has an integral kernel given by

U1/2(x)(−∆ + E)−1(x, y)U1/2(y) ,

where (−∆ + E)−1(x, y) is the kernel of the Greens functions of the Laplacian. That
this operator exists can be seen from the Riesz representation theorem. For every fixed
g ∈ H−1(Rn) there exists a unique u ∈ H1(Rn) so that∫

∇u · ∇f + λ

∫
uf =

∫
gf

holds for all f ∈ H1(Rn). Moreover the connection between u and g is linear. Further it
is also bounded from H−1(Rn) to H1(Rn) since

‖u‖2
H1(Rn) <∼

1
λ

(
∫
|∇u|2 + λ

∫
u2) =

∫
gu <∼ ‖g‖H−1(Rn)‖u‖H1(Rn) .

We denote this u by
u = (−∆ + λ)−1g .

This operator has a kernel that can calculated. In one dimension it is given by

(−∂2 + E)−1(x, y) =
1

2
√
E
e−

√
E|x−y| .

In three dimension it is given by

1
4π

e−
√
E|x−y|

|x− y|
.

One can work out the expressions in all the other dimensions. In odd dimensions it is
given by elementary function and in even dimension it is given by Bessel functions. It is
not difficult to see that for our class of potential, i.e., U ∈ Ln/2 + L∞ with U vanishing
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7 The Birman-Schwinger Prinicple

at infinity, the Birman Schwinger operator is a bounded operator on L2(Rn). Recall that
by Sobolev’s inequality∫

U(x)|ψ(x)|2dx ≤ α

∫
|∇ψ(x)|2dx+ β‖ψ‖2

2

for constants α, β. This means that U1/2 as a multiplication operator is bounded from
H1(Rn) to L2(Rn). Now consider

B = U1/2(−∆ + E)−1/2

and note that the last factor maps from L2(Rn) to H1(Rn) and the first factor maps
is back to L2(Rn) all in a bounded fashion. Thus B∗ is also bounded from L2(Rn) to
L2(Rn) and so is the BB∗, the Birman-Schwinger operator. Thus, the Birman-Schwinger
operator is a bounded selfadjoint operator on L2(Rn). Although the discussion did not
cover the case of one and two dimensions this properties hold in theses cases too. They
are, in fact even easier to prove.

The following summarizes what we need to know about the Birman-Schwinger kernel.

Theorem 21 Birman-Schwinger principle
The number −λ < 0 is an eigenvalue of the quadratic form (3) if and only of 1 is

an eigenvalue of the Birman-Schwinger operator Kλ(U). The eigenvalues of the Birman-
Schwinger operator are monotone decreasing functions of E.

Proof The monotonicity of the eigenvalues follows from the min-max theorem since for
every f ∈ L2(Rn)

(U1/2f, (−∆ + E)−1U1/2f)

is decreasing as a function of E.
Next, suppose that φ is a solution of the Schrödinger equation, i.e.,∫

∇φ · ∇f + λ

∫
φf =

∫
Uφf

for all f ∈ H1(Rn). Since U1/2 maps H1(Rn) boundedly to L2(Rn) we have that Uφ ∈
H−1(Rn) and hence

φ = (−∆ + λ)−1Uφ ,

from which we conclude that

U1/2φ = U1/2(−∆ + λ)−1U1/2U1/2φ

which means that 1 is an eigenvalue of Kλ(U) with U1/2φ as eigenfunction. Conversely
if ψ satisfies

ψ = U1/2(−∆ + λ)−1U1/2ψ

then if we set
φ = (−∆ + λ)−1U1/2ψ
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we see that φ ∈ H1(Rn). This means that φ satisfies∫
∇φ · ∇f + λ

∫
φf =

∫
U1/2ψf

for all f ∈ H1(Rn). But U1/2ψ ∈ H−1(Rn) and and moreover from the eigenvalue
relation we learn that

U1/2ψ = Uφ .

This proves the claim. �

The first and most important version of the Lieb–Thirring inequality goes back to the
paper by Lieb and Thirring ‘Bound for the Kinetic Energy of Fermions Which Proves the
Stability of Matter’ [LT1].

Theorem 22 Lieb-Thirring bound
The negative eigenvalues −λj of the quadratic form in three dimensions∫

|∇ψ|2dx+
∫
V (x)|ψ|2dx ,

∫
|ψ|2dx = 1

satisfy the estimate ∑
j

λj <∼ L(3, 1)
∫

[V (x)]5/2− dx ,

where L(3, 1) <∼ 4/(15π).

Proof Using the Birman Schwinger principle we give a bound on the number of bound
states less than −e. Start with λ small, so that some of the eigenvalues of Kλ are big.
These values decrease as λ grows and every time one of them hits the value 1 the λ-value
or rather its negative is and eigenvalue of the Schrödinger problem. If λ arrives at e, the
number of these crossings equals the number of eigenvalues of Ke(U) that are greater
or equals to 1. In other words the number

Ne(U) ,

the number of eigenvalues of the Schrödinger problem that are less than −e , is given by
the number of eigenvalues greater or equals 1 of the Birman-schwinger operator Ke(U).

The quantity Ne(U) can be used to calculate the sum of the eigenvalues since∑
j

λj =
∫ ∞

0
Ne(U)de .

In general ∑
j

(λj)γ = γ

∫ ∞

0
eγ−1Ne(U)de . (1)
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7 The Birman-Schwinger Prinicple

To see this, note that

(λj)γ =
∫ ∞

0
χ{(λj)γ>e}(e)de

Summing over j and noting that∑
j

χ{(λj)γ>e}(e) = Ne(U)

yields (1) by a change of variables.
The most obvious upper bound would be TrKe(U) since we add up all the eigenvalues

not just the one greater or equals 1. This, trace is however infinity. Thus the next step
would be to consider the Hilbert-Schmidt norm

TrKe(U)2 .

This is easily calculated to give∫
U(x)[(−∆ + e)−1(x, y)]2U(y)dxdy .

Unfortunately, this is a bit tricky to estimate in terms of
∫
U5/2dx. Following Lieb and

Thirring one splits e into two pieces∫
∇φ · ∇f −

∫
[U − e/2]φf = −λ+ e/2

∫
φf

and replacing [U − e/2] by [U − e/2]+ lowers the eigenvalues, i.e., increases their mag-
nitude. Moreover we have that

Ne(U) <∼ Ne/2([U − e/2]+) (1)

since there are more eigenvalues in the [U − e/2]+ problem that are below −e/2 than
there are eigenvalues in the U problem that fall below −e. Now we trace all the steps
for the Birman-Schwinger principle for this tne problem and obtain the upper bound

Ne/2([U − e/2]−) <∼ TrKe([U − e/2]−)2

which yields ∫
[U − e/2]−(x)[(−∆ + e)−1(x− y)]2[U − e/2]−(y)dxdy .

Using Young’s inequality* this is bounded above by

‖[U − e/2]−‖2
2

∫
1

(4π)2
e−

√
2
√
e|x|

|x|2
dx

=
1
4π

∫ ∞

0
e−

√
2
√
erdr‖[U − e/2]−‖2

2
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=
1

4
√

2π
√
e
‖[U − e/2]−‖2

2 .

Integrating this expression over the positive semi axis leads to∑
j

λj =
∫ ∞

0
Ne(U)de <∼

1
4
√

2π

∫ ∞

0

1√
e

∫
[U − e/2]2−(x)dxde .

Interchanging the two integrals and a bit of scaling leads to

1
4
√

2π

∫ ∫ ∞

0

1√
e
[U − e/2]2−(x)dedx .

=
1
2π

∫ 1

0
[1− s2]2ds

∫
U(x)5/2dx ,

=
4

15π

∫
U(x)5/2dx .

The semi classical constant is given by

1
30π2

.

Young’s inequality states that∫
f(x)g(x− y)h(y)dxdy <∼ Cp,q‖f‖p‖g‖q‖h‖r

with 1/p+ 1/q + 1/r = 2. �

Let us return to Sobolev’s inequality, but this time for systems of orthonormal func-
tions. Recall the definition of the one particle density

ρΨ(x) = N

∫
|Ψ|2(x, x2, . . . , xN )dx2 · · · dxN .

The following theorem is a classical result of Lieb and Thirring [LT1].

Theorem 23 Uncertainty priniple for fermions.
Let Ψ be any normalized antisymmetric function in H1(R3N). Then

TΨ =
N∑
j=1

∫
|∇jΨ|2(x1, . . . , xN )dx1 · · · dxN ≥ 3

5
(
2
5
)2/3L(3, 1)−2/3

∫
R3

ρ
5/3
Ψ (x)dx .

We have that
3
5
(
2
5
)2/3L(3, 1)−2/3 <

35/3π2/3

5 · 22/3
> 1.68 .

51



7 The Birman-Schwinger Prinicple

Proof For a given Ψ consider the Schrödinger form

TΦ + VΦ (2)

where
V (x) = −cρ2/3

Ψ (x) ,

and hence

VΦ = −c
∑
j

∫
R3N

ρ
2/3
Ψ (xj)|Φ|2(x1, . . . , xN )dx1 · · · dxN = −c

∫
R3

ρ
2/3
Ψ (x)ρΦ(x)dx. (3)

We want to minimize the energy of (2) over all normalized antisymmetric functions Φ of
n variables. Since we are talking about noninteracting fermions we fill the energy levels
and find that

−
∑
j

λj ≤ TΦ + VΦ

for all Φ ∈ H1(R3N ). Further, by the Lieb -Thirring inequality∑
j

λj <∼ L(3, 1)
∫

[V (x)]5/2− dx = L(3, 1)c5/2
∫
ρ
5/3
Ψ (x)dx .

Hence
−L(3, 1)c5/2

∫
ρ
5/3
Ψ (x)dx <∼ TΦ + VΦ

for all Φ ∈ H1(R3N ). In particular the inequality holds for Φ replaced by Ψ and using
(3) we get

TΨ − c

∫
R3

ρ
5/3
Ψ (x)ρΦ(x)dx >∼ −L(3, 1)c5/2

∫
ρ
5/3
Ψ (x)dx

or
TΨ >∼ c

∫
R3

ρ
5/3
Ψ (x)ρΦ(x)dx >∼ −L(3, 1)c5/2

∫
ρ
5/3
Ψ (x) .

Maximizing the right side over c yields the result. �
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8 Stability of matter

One of the fundamental attributes of matter is its extensivity, that is, its size as well as
its energy content is proportional to the number of particles. This is intimately related
to the fact that one can combine material systems. While it is an everyday experience
that when we pour two separate liters of water together we still have two liters, this
is a nontrivial fact from a theoretical point of view. Classical mechanics is unable to
explain this most obvious of all the facts. It is indeed curious if one thinks of water as
a huge number of molecules, themselves made up of electrons and nuclei interacting
with each other via electrostatic forces. If the two liters are poured together the number
of molecules that potentially might interact with each other is doubled. This means
that the terms in the Coulomb interaction has quadrupled, that is, there are four times
as many interaction terms as there were before pouring that stuff together. Indeed
the Coulomb energy in each of the separate containers consists of the electron-nuclear
attraction (N × K terms) plus the electron-electron repulsion (N2/2 terms). Thus in
total 2×N ×K attraction terms and N2 repulsion terms. If we pour them together we
have 4 × N × K attraction terms and 2 × N2 repulsion terms. Thus the electrostatic
energy is not just additive, it grows with the square of the numbers of particles and not
linearly.

Let us assume for the moment that the energy content of matter consisting of N
particles is proportional to −N2. The minus sign indicates that we have to spend energy
in order to separate the particles. Two separate containers have total energy content of
−2N2. Next we pour the two containers together and get a system with 2N particles
and hence and energy content of−4N2. Thus by pouring the two containers together we
have liberated an additional energy 2N2 which is enormous since N is a huge number
around 1026 for a liter of water. In such a situation, the ground state of the ‘universe’
would consist of a huge lump of charged particles sticking together. i.e., a world that
looks very different from what we see. To summarize, ‘stability of matter’ means that
the energy content of a lump of matter must be proportional to the number of particles.
Thus, there must be a mechanism that beats somehow the quadratic dependence on the
number of particles of the Coulomb energy. As we shall see the uncertainty principle for
fermions will be that mechanism.

We call a physical quantity extensive if it is proportional to the number of particles
involved. While there are other extensive quantities, such as the volume of the system,
the free energy, the entropy etc. we shall concentrate on the ground state energy of the
system and see later that the extensivity of all the other important quantities follow from
this.

We are now ready to define the ground state energy of a quantum system consisting
of K nuclei and N electrons. The electrons are fermions which will be key in our
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8 Stability of matter

investigation while the nuclei maybe fermions as well as bosons. Since their masses
are by at least three orders of magnitudes heavier than the one of the electron we shall
fix the nuclei at arbitrary positions R1, . . . , RK . Let us add that the electrons carry an
additional degree of freedom, called the spin. There are electrons with spin up and spin
down, i.e., two kinds. It is often convenient to leave the number of spin states as a
variable q. Thus, when filling up energy levels, we can fill q electrons into the ground
state and then q electrons into the first excited and so on. We set

Ψ(x1, σ1; . . . ;xN , σN )

and the normalization condition is now given by

q∑
σ1,...,σN=1

∫
|Ψ(x1, σ1; . . . ;xN , σN )|2dx1 · · · dxN = 1

We shall adopt the notation ∫
dz =

∑
σ

∫
dx .

The one particle density will be given by

ρΨ(x) =
q∑

σ1,...,σN=1

∫
|Ψ(x, σ1; . . . ;xN , σN )|2dx2 · · · dxN .

For such a functions Ψ we have the kinetic energy

TΨ =
q∑

σ1,...,σN=1

∑
j

∫
|∇jΨ(x1, σ1; . . . ;xN , σN )|2dx1 · · · dxN

and the potential energy

VΨ =
∫
VC(x1, . . . , xN ;R1, . . . , RK)|Ψ(x, σ1; . . . ;xN , σN )|2dz1 · · · dzN ,

the variable R1, dots,RK we keeps fixed. Here

VC(x1, . . . , xN ;R1, . . . , RK) = −
K,N∑

k=1,j=1

Zk
|xj −Rk|

+
N∑
i<j

1
|xi − xj |

+
∑
k<l

ZkZl
|Rk −Rl|

the first term being the attraction between the nuclei and elctrons (the charge number
of nucleus k is Zk), the second term is the repulsion between the electrons and the third
terms is the repulsion between the nuclei. The latter is jsut a function of the nuclear
positions and does not take part in a dynamical fashion but nevertheless it will be an
important term.

The ground state energy is defined by

E0(N,K,R1, · · ·RK , q) :=
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inf{TΨ+VΨ :
∫
|Ψ|2dz1 · · · dzN = 1,Ψ(z1, . . . , zN ) is antisymmetric in the particles labels}

Now we are ready to define the notion of stability:
We call

inf
R1,...,RK

E0(N,K,R1, · · ·RK , q) > −∞

stability of the first kind and

inf
R1,...,RK

E0(N,K,R1, · · ·RK , q) > −C(Z1, . . . , ZK , q)(N +K)

stability of the second kind.
While stability of the first kind was shown in the early sixties by Kato, stability of the

second kind is much more difficult an it was proved by Freeman Dyson and Andrew
Lenard around 1968. We shall present another proof due to Lieb and Thirring from
the mid seventies which is much more conceptual and yields much better constants. It is
one of the classical works that started the industry which we now call Quantum Coulomb
systems.
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9 Thomas-Fermi theory

The main reference for the topics discussed below is [LS]. We follow them with minor
modifications. Another very good reference is the review article of [L].

Thomas-Fermi theory is motivated by semiclassical considerations and is given by a
density functional

E(ρ) =
3
5
γ

∫
ρ(x)5/3dx+

∫
V (x)ρ(x)dx+

1
2

∫
ρ(x)ρ(y)
|x− y|

dxdy + U(R) .

It was invented independently by Thomas [T] and fermi [F] as a simplified theory for
describing atoms and molecules. We interpret ρ as a density of electrons and λ =∫
rho(x)dx is the total number of electrons which, mathematically, does not have to

be an integer. The first term in E is the kinetic energy, the second describes the attractive
interaction of the electrons with the nuclei, which are fixed in space at the positions
R = R1, . . . , RK

V (x) = −
∑
k

Zk
|x−Rk|

.

The third term is the classical self energy of a charge distribution ρ and describes the
repulsion between the electrons. It is convenient to introduce the notation

D(ρ, µ) =
1
2

∫
ρ(x)µ(y)
|x− y|

dxdy

where ρ and µ are any two chare distributions.
Finally,

U(R) =
∑
k<l

Zk, Zl
|Rk −Rl|

is the repulsive energy of the nuclei. Note that this quantity is just a number since the
nuclei are nailed down at the positions R but it will be important later.

The ground state energy of E can be found by minimizing this functional over all
densities ρ with

∫
ρ(x)dx = λ given. This theory has been investigated extensively

by Lieb and Simon [LS]. They have clarified the relationship between the true quantum
mechanical ground state and the Thomas-Fermi ground state. We shall content ourselves
with aspects that are related to the problem of ‘stability of matter’ and leave the other
topics aside. In particular we shall address two issues, the existence of a minimizer and
the no-binding theorem.

It is natural to consider the TF-functional on the domain

{ρ ∈ L1(R3) : ρ ∈ L5/3, ρ(x) >∼ 0,
∫
ρ = λ}
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9 Thomas-Fermi theory

because, as we shall see, the functional is bounded below. However, this is not a good
idea. Physical reasoning tells us that, most likely, not too many electrons can be bound
to a nucleus since the repulsion will at one point dominate the attractive part of the
Coulomb energy. Thus, there will not be a ground state for λ large. A portion of the
electrons will be deposited at infinity and another portion will stick to the nuclei. What
that portion might be is a difficult question and can only be answered by solving the
variational problem. With this in mind it is more reasonable to consider

Dλ = {ρ ∈ L1(R3) : ρ ∈ L5/3, ρ(x) >∼ 0,
∫
ρ <∼ λ}

as our domain on which the TF functional is defined. Our next goal will be to show
that the TF functional is bounded below on this domain. In fact we will show that it is
bounded below independently of λ.

Theorem 24 (Lower bound on the Thomas-Fermi functional) The TF-functional is bounded
below on Dλ uniformly in λ. More precisely we have the bound

E(ρ) >∼ −21/3 3
2
(
∑

Z2
k)

1/3(
∑

Zk)5/3 .

Proof Consider the potential associated with a positive charge uniformly distributed
over a sphere of radius R. The potential is given by

1
|x|

∗ δ

where
δ =

1
4πR2

δ(|x| −R) ,

and it is easily calculated to be

min{ 1
|x|
,

1
R
} .

Consider the potential

V>(x) = −
∑
k

Zk min{ 1
|x−Rk|

,
1
R
} ,

which is a potential whose ‘Coulomb tooth’ has been pulled. It can be written as

V>(x) =
1
|x|

∗ µ

where
µ = −

∑
k

Zk
1

4πR2
δ(|x−Rk| −R) .

Further define
V<(x) = V (x)− V>(x) ,
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which is the ‘Coulomb tooth’. First we combine the kinetic energy with the ‘Coulomb
tooth’

3
5
γ

∫
ρ5/3(x)dx−

∫
V<(x)ρ(x)dx

and apply Hölder’s inequality to the second term and get the lower bound

3
5
γ

∫
ρ5/3(x)dx− ‖V<‖5/2‖ρ‖5/3 .

Optimizing over the variable X = ‖ρ‖5/3 yields

−2
5

∫
V<(x)5/2dx
γ3/2

> −4π
5

(
∑
k

Zk)5/2R1/2 ,

assuming the worst case in which all the nuclei are on top of each other. The rest of the

TF-energy can be written as

2D(ρ, µ) +D(ρ, ρ) + U(R) .

Note that

D(µ, µ) =
1
2

∑
k,l

ZkZl
1

4πR2

∫
min(

1
|x−Rk|

,
1
R

)δ(|x−Rl| −R)dx

=
1
2

∑
k 6=l

ZkZl
1

4πR2

∫
min(

1
|x−Rk|

,
1
R

)δ(|x−Rl| −R)dx+
∑

k Z
2
k

R

<∼
∑
k<l

ZkZl
|Rk −Rl|

+
∑

k Z
2
k

R
.

Hence

2D(ρ, µ) +D(ρ, ρ) + U(R) >∼ D(ρ+ µ, ρ+ µ)−
∑

k Z
2
k

R
.

Now the self-energy of any charge distribution is always nonnegative. There are various
ways to see that. One of them is to note that

1
|x− y|

= const.

∫ ∫
1

|x− z|2
1

|y − z|2
dz

and hence
D(ρ+ µ, ρ+ µ) =

∫
dz| 1

|z|2
∗ (ρ+ µ)|2 >∼ 0 .

(Note that there is a subtle point concerning the interchange of integration). Thus

E(ρ) >∼ −4π
5

(
∑
k

Zk)5/2R1/2 −
∑

k Z
2
k

R
.
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9 Thomas-Fermi theory

Since this bound holds for all values of R we may maximize the right side over R and
obtain

E(ρ) >∼ −21/3 3
2
(
∑

Z2
k)

1/3(
∑

Zk)5/3 .

Note that the bound, while not particularly good, yields in the case of one nucleus of
charge Z a bound of the form −const.Z7/3 which, as we shall see, is the right order of
magnitude. �

Remark 25 Note that the only used that ρ ∈ L5/3.

Theorem 26 (Strict convexity of the TF- functional) The domainDλ is convex and E(ρ)
is a strictly convex functional on this domain

Proof ρ →
∫
ρ5/3(x)dx is strictly convex. The potential ρ →

∫
V (x)ρ(x)dx is linear

and the Coulomb self-energy is also convex. The latter statement can be seen as fol-
lows. Since D(ρ, rho) is positive for any charge distribution the Schwarz inequality for
Coulomb energies holds

|D(ρ, µ)|2 <∼ D(ρ, ρ)D(µ, µ) .

From this we get that

D(αρ1+(1−α)ρ2, αρ1+(1−α)ρ2) = α2D(ρ1, ρ1)+(1−α)2D(ρ2, ρ2)+2α(1−α)D(ρ1, ρ2) .

But
2D(ρ1, ρ2) <∼ D(ρ1, ρ1) +D(ρ2, ρ2)

which when combined with the previous inequality yields convexity. Our next theorem
is the main existence theorem for minimizers. �

Theorem 27 Existence of minimizer
There exists a unique ρ0 ∈ Dλ such that

E(ρ0) = E(λ) := inf{E(ρ) : ρ ∈ Dλ}

Proof Let ρj be a minimizing sequence in Dλ. We see from the previous Theorem con-
cerning the lower bound, or rather its proof that∫

ρj(x)5/3dx <∼ C

for some constant C independent of j. Hence there exists ρ0 such that

ρj ⇀ ρ0

weakly in L5/3. By the weak lower semi continuity of the norm

lim inf
∫
ρ
5/3
j (x)dx >∼

∫
ρ
5/3
0 (x)dx . (1)
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Further ρ0 ∈ Dλ, i.e., ρ0(x) >∼ 0 and
∫
ρ0(x)dx <∼ λ. The first follows from the fact that

for any positive function f ∈ L5/2∫
ρ0(x)f(x)dx = lim

j→∞

∫
ρj(x)f(x)dx >∼ 0 ,

and for the second we assume the contrary, that
∫
0 ρ0(x)dx > λ. There exists a set A of

finite measure so that ∫
ρ0(x)χA(x)dx > λ

where, as usual, χA is the characteristic function of the setA. SinceA has finite measure,
χA ∈ L5/3 and hence∫

ρ0(x)χA(x)dx = lim
j→∞

∫
ρj(x)χA(x)dx <∼ λ .

Likewise, D(ρj , ρj) is also a bounded sequence. Moreover, for any ρ ∈ L5/3 ∩ L1 we
have that

D(ρj , ρ) → D(ρ0, ρ) . (2)

To see this we note that

1
|x|

∗ ρ(x) =
∫
|x−y|<1

1
|x− y|

ρ(y)dy +
∫
|y|>∼1

1
|y|
ρ(x− y)dy = f1 + f2 .

By Young’s inequality

‖f1‖∞ <∼ ‖ 1
|x|
χ|x|<1‖5/2‖ρ‖5/3 .

and
‖f1‖1 <∼ ‖ 1

|x|
χ|x|<1‖1‖ρ‖1 .

Further,

‖f2‖q <∼ ‖ 1
|x|
χ|x|>1‖q‖ρ‖1

for all q > 3. Hence f1 + f2 ∈ Lq for all q > 3. The dual of this space is Lq
′

with q′ < 3/2
and since ρj ∈ L1 ∩ L5/3 we may assume that ρj ⇀ ρ0 weakly in Lq

′
for some q′ < 3/2.

This proves (2). Further

D(ρ0, ρ0) = lim
j→∞

D(ρj , ρ0) <∼ lim infD(ρj , ρj)1/2D(ρ0, ρ0)1/2

which proves that
lim infD(ρj , ρj) >∼ D(ρ0, ρ0) . (3)

The potential term is weakly continuous. Write it as∫
V (x)ρj(x)dx =

∫
V<(x)ρj(x)dx+

∫
V>(x)ρj(x)dx
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9 Thomas-Fermi theory

and note that V< ∈ L5/2 and V> ∈ Lq for all q > 3. Since ρj converges weakly to ρ0 in
L5/3 we see that the first term converges to∫

V<(x)ρ0(x)dx

and, moreover, since ρj converges weakly to ρ0 in Lq
′

for some q′ < 3/2 we get that

lim
j→∞

∫
V (x)ρj(x)dx =

∫
V (x)ρ0(x)dx (4)

The existence of a minimizer now follows from (1), (3) and (4). The uniqueness follows
from the strict convexity of E(ρ). �

Theorem 28 Properties ofE(λ) The functionE(λ) is convex, non-increasing and bounded
below.

Proof Fix λ1 and λ2 and denote by ρ1 and ρ2 the corresponding minimizers. Then for
any 0 <∼ α <∼ 1

E(αλ1+(1−α)λ2) <∼ E(αρ1+(1−α)ρ2) <∼ αE(ρ1)+(1−α)E(ρ2) = αE(λ1)+(1−α)E(λ2) .

Note that there is a strict sign in the second inequality unless ρ1 = ρ2. Since nothing is
known about ρ1 and ρ2 they might be identical. Further, E(λ is non increasing since we
may always deposit parts of the electrons at infinity without increasing the energy of the
others. �

Since E(λ) is decreasing and bounded below, It makes sense to define λc by

λc = inf{λ;E(λ) = E(∞)} .

Note that the value λc might be infinity.

Theorem 29 For λ <∼ λc there exists a unique minimizer ρλ with the property that

E(λ) = E(ρλ)

and with ∫
ρλ(x)dx = λ .

Moreover, on [0, λc] the function E(λ) is strictly convex and strictly decreasing. If λc < ∞
and λ > λc there is no minimizer ρλ with

∫
ρλ(x)dx = λ. In particular, the unique function

ρc with
∫
ρcdx <∼ λ is the unique minimizer of the energy satisfying

∫
ρcdx = λc.

Proof Pick any λ <∼ λc and consider the associated minimizer ρλ. If
∫
ρλ(x)dx = λ′ < λ

then E(λ) = E(λ′) which would mean that λ′ >∼ λc >∼ λ. The strict convexity of E(λ)
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on the interval [0, λc] is now obvious. If λ > λc and if there were a minimizer ρλ with∫
ρλ(x)dx = λ then choosing

1
2
(ρλc + ρλ)

as a trial function we get

E(λc) = E(
λ+ λc

2
) <

E(λ) + E(λc)
2

= E(λc) ,

a contradiction. Note that ρλ 6= ρλc . This argument also shows that E(λ) = E(λc) for
λ >∼ λc, provided that λc is finite. The next step is to derive the TF-equation. Theorem:

TF-equation Assume that λ <∼ λc. Then there exists a constant µ so that the unique
minimizer ρλ satisfies the equation

γρ
2/3
λ (x) =

[
−V (x)− 1

|x|
∗ ρλ − µ

]
+

.

In general µ(λ) >∼ 0 but if λ = λc then µ = 0. Pick any ρ >∼ 0 and note that ρt =

(1− t)ρλ + tρ satisfies
∫
ρt(x)dx = λ. Hence

F (t) := E(ρt) >∼ F (0) = E(λ)

and

0 <∼ lim
t→0,t>∼0

F (t)− F (0)
t

=
∫

(γρ2/3
λ (x) + V (x) +

1
|x|

∗ ρλ)(ρ− ρλ)dx .

For δ > 0 fixed consider the function

ρ = ρλ + εfχρλ>δ

where f is any function that satisfies∫
ρλ>δ

fdx = 0

and ε small enough so that ρ >∼ 0. With this choice we get∫
ρλ>δ

(γρ2/3
λ (x) + V (x) +

1
|x|

∗ ρλ)fdx = 0

for all functions f with ∫
ρλ>δ

fdx = 0 .

Hence there exists a constant µ so that

γρ
2/3
λ (x) + V (x) +

1
|x|

∗ ρλ = −µ ,
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9 Thomas-Fermi theory

on the set {ρλ > δ}. Next we choose

ρ = ρλ + εf

with f >∼ 0 on the set {ρλ = 0} and
∫
fdx = 0. Here ε >∼ 0 in order for ρ >∼ 0. Hence,∫

(γρ2/3
λ (x) + V (x) +

1
|x|

∗ ρλ)fdx >∼ 0

and since on the set {ρλ > 0} (5) is satisfied

−µ
∫
ρλ>0

fdx+
∫
ρλ=0

(γρ2/3
λ (x) + V (x) +

1
|x|

∗ ρλ)fdx >∼ 0 .

Since
∫
fdx = 0 we conclude that, on the set {ρλ = 0}

γρ
2/3
λ (x) + V (x) +

1
|x|

∗ ρλ + µ >∼ 0 .

To summarize, on the set {ρλ = 0}

−V (x)− 1
|x|

∗ ρλ − µ <∼ 0

and on the set {ρλ > 0}

γρ
2/3
λ (x) = −V (x)− 1

|x|
∗ ρλ − µ .

These two terms can be concatenated into the form

γρ
2/3
λ (x) =

[
−V (x)− 1

|x|
∗ ρλ − µ

]
+

.

The case λ = λc does not need any constraint and hence µ = 0. Since both V and
(1/|x|) ∗ ρλ → 0 as |x| → ∞ we get that µ >∼ 0 for otherwise ρ would not decay to zero
at infinity. �

Theorem 30 Fix λ <∞ and λ <∼ λc. Then the potential

φ(x) = −V (x)− 1
|x|

∗ ρλ(x)

is non-negative.

Proof Poisson’s equation says that
∆φ = ρλ

and
φ(x) ≈ Zk

|x−Rk|
, as x→ Rk .
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Using the TF-equation

∆φ =
1
γ3/2

[φ(x)− µ]+ (5)

Since ρ ∈ L1 ∩ L5/3 it follows that φ(x) is continuous away from the positions of the
nuclei. To see this write

1
|x|

=
1
|x|
ζ(x) +

1
|x|
ζ(x)

where ζ(x) is an infinitely differentiable function with compact support and identically
one near the origin and ζ = 1− ζ has therefore support away from the origin. The first
function is in the dual of L5/3 and hence

1
|x|
ζ ∗ ρλ

is continuous. Further, since ρλ ∈ L1 the function

1
|x|
ζ ∗ ρλ

is infinitely often differentiable. Next, consider the set

A = {x : φ(x) < 0}

which is an open set. This set may be empty or non-empty. Since µ <∼ 0 it follows from
(5) that φ is harmonic on A. This is so, since φ diverges to infinity at the position of the
nuclei. Hence the these positions are not in A. Further, as |x| → ∞, φ(x) → 0. Hence,
φ vanishes on the bundary of A. Since φ is harmonic in A, φ = 0 identically in A which
means that A is the empty set. �

Theorem 31 We have that
λc = Z :=

∑
k

Zk .

Proof Assume that λc > Z and pick Z < λ < λc. Then, since φ(x) >∼ 0 we find after
taking the average over a spher of radius r sufficiently large that

Z

r
−
∫

min{1
r
,

1
|y|
}ρλ(y)dy >∼ 0

and in particular
Z

r
− 1
r

∫
|y|<r

ρλ(y)dy >∼ 0 ,

or

Z −
∫
|y|<r

ρλ(y)dy >∼ 0
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9 Thomas-Fermi theory

for all r sufficiently large. This means that Z >∼ λ, contradicting our assumption and
hence λc <∼ Z. Next, assume that λc < Z. Taking again spherical averages we learn,
using Jensen’s inequality that

γ

[
1
4π

∫
S2

ρc(rω)dω
]2/3

>∼ γ
1
4π

∫
S2

ρ2/3
c (rω)dω

=
Z

r
−
∫

min{1
r
,

1
|y|
}ρλ(y)dy >∼

Z

r
− 1
r

∫
ρλ(y)dy >∼

q

r

for r sufficiently large and some fixed number q > 0. Thus,

1
4π

∫
S2

ρc(rω)dω >∼ (
q

γr
)3/2

which is not integrable, not even in L5/3. �

To summarize, the energy E(λ) is a monotone decreasing function. It is strictly monotone
decreasing for λ ≤ Z and constant for λ >∼ Z. It is strictly convex for λ <∼ Z. Finally, for
every λ <∼ Z there exists a unique minimizer ρλ satisfying

∫
ρλdx = λ. For λ > Z there

is no minimizer satisfying
∫
ρλdx = λ. In other words any minimizer with

∫
ρλdx <∼ λ is

given by ρZ .
An interesting special case is TF-theory of a single atom.

Theorem 32 Virial theorem
Assume λ <∼ Z. The minimizer satisfies the relations

γ

∫
ρ
5/3
λ (x)dx+

∫
V (x)ρλ(x)dx+ 2D(ρλ, ρλ) = µ

∫
ρλ(x)dx ,

and for a single atom we have the additional relation

2
3
5
γ

∫
ρ
5/3
λ (x)dx+

∫
V (x)ρλ(x)dx+D(ρλ, ρλ) = 0 .

In particular we get in the neutral case

3
5
γ

∫
ρ
5/3
λ (x)dx = −E(Z) ,

∫
V (x)ρλ(x)dx =

7
3
E(Z) , D(ρλ, ρλ) = −1

3
E(Z) .

Proof The first relation follows by multiplying the TF-equation by ρλ and integrating.
For the other, scale he minimizer ρλ(x) → fs(x) = s3ρλ(sx) so that

∫
fs(x)dx = λ. A

simple calculation leads to

E(fs) = s2
3
5
γ

∫
ρ
5/3
λ (x)dx+ s

∫
V (x)ρλ(x)dx+ sD(ρλ, ρλ) .

Since E(fs) >∼ E(λ) differentiating with respect to s at s = 1 yields the result. �
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Theorem 33 In the single atom case, i.e., V (x) = −Z/|x|, set ρZ(x) = Z2ρ(Z1/3x). Then
ρ is the minimizer of the problem

e = inf{3
5

∫
ρ5/3(x)dx−

∫
1
|x|
ρ(x)dx+D(ρ, ρ) :

∫
ρdx = 1} . (6)

The value of e = −3.678 and

E(Z) = −3.678
Z7/3

γ
.

Proof Write ρZ(x) = al3ρ(lx) and calculate

E(ρZ(x)) = a5/3l2
3
5
γ

∫
ρ5/3(x)dx− Zal

∫
1
|x|
ρ(x)dx+ a2lD(ρ, ρ(lx)) .

Setting
a5/3l2γ = Zal = a2l

yields a = Z, l = Z1/3/γ and for the energy

E(Z) =
Z7/3

γ
e

where e is given by (6). The number given in the theorem is a numerical calculation. �

Since Dλ is convex, tρ+ (1− t)ρ0 ∈ Dλ for 0 <∼ t <∼ 1 and since

E(tρ+ (1− t)ρ0) >∼ E(ρ0)

differentiating with respect to t at t = 0 yields∫ [
γρ

2/3
0 (x) + V (x) +

1
|x|

∗ ρ0(x)
]

(ρ(x)− ρ0(x))dx >∼ 0

for all functions ρ ∈ Dλ.
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10 The no-binding theorem and stability

The no-binding theorem states, loosely speaking that atoms do not bind in TF-theory.
Group the nuclei into two groups, the A-group and the B-group. Denote

mA =
∑
k∈A

Zkδ(x−Rk) , mB =
∑
k∈B

Zkδ(x−Rk)

so that

VA(x) := −
∑
k∈A

Zk
|x−Rk|

= − 1
|x|

∗mA , VB(x) := −
∑
k∈B

Zk
|x−Rk|

= − 1
|x|

∗mB .

We are now considering three systems the systems

EA(ρ) =
3
5
γ

∫
ρ5/3(x)dx+

∫
VA(x)ρ(x) +D(ρ, ρ) +

∑
k<l∈A

ZkZl
|Rk −Rl|

and EB(ρ) is defined similarly. The third system is the combined system

E(ρ) =
3
5
γ

∫
ρ5/3(x)dx+

∫
V (x)ρ(x) +D(ρ, ρ) +

∑
k<l

ZkZl
|Rk −Rl|

.

Using the above notation we can write the above energies in the form

EA(ρ) =
3
5
γ

∫
ρ5/3(x)dx− 2D(mA, ρ) +D(ρ, ρ) +

∑
k<l∈A

ZkZl
|Rk −Rl|

and likewise EB. Denote the corresponding ground state energies by EA(λ), EB(λ)
and E(λ). The goal is to show that the if we divide up the total electronic charge
and distribute them over the subsystems in a suitable fashion and push these systems
infinitely far apart, the sum of these energies is less than the energy to start with. More
precisely we have

Theorem 34 (No-binding) Assume that λ ≤ Z =
∑
Zk. Then

inf{EA(λ1) + EB(λ2) : λ1 + λ2 = λ} ≤ E(λ) .

This theorem was discovered by Teller. The general proof was given in [LS] and the
version we present here is due to Baxter and can also be found in [L].
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10 The no-binding theorem and stability

Proof Since λ <∼ Z we know that we have a minimizer ρ of the total system with∫
ρ(x)dx = λ. The goal is to find g and h both nonnegative such that g + h = ρ and

EA(g) + EB(h) <∼ E(ρ) = E(λ) .

Since a5/3 + b5/3 <∼ (a+ b)5/3 for nonnegative numbers a, b we have that∫
g5/3dx+

∫
h5/3(x)dx <∼

∫
ρ5/3dx

which goes in the right direction. Thus the proof of the no binding theorem is reduced
to comparing Coulomb potentials. For any g, h nonnegative with g + h = ρ the sum of
the Coulomb energies of the subsystems is given by

−2D(mA, g) +D(g, g) +
∑
k<l∈A

ZkZl
|Rk −Rl|

− 2D(mB, h) +D(h, h)
∑
k<l∈B

ZkZl
|Rk −Rl|

which has to be compared with

−2D(mA +mB, g + h) +D(g + h, g + h) +
∑
k<l

ZkZl
|Rk −Rl|

.

Thus, we have to find g and h so that

0 <∼ −2D(mA, h)− 2D(mB, g) + 2D(g, h) +
∑

k∈A ,l∈B

ZkZl
|Rk −Rl|

The last term can be written as
2D(mA,mB)

and hence we have to find g, h nonnegative with g + h = ρ such that

2D(g −mA, h−mB) >∼ 0 .

The following Lemma is a very special case of a Lemma of Baxter.

Theorem 35 (Lemma, Baxter) Assume that ρ ∈ Lp ∩ L1, p > 3/2. There exists g with
0 <∼ g <∼ ρ so that

1
|x|

∗ g <∼
1
|x|

∗mA

everywhere. Moreover,
1
|x|

∗ g =
1
|x|

∗mA on {x : g < ρ} .

With the help of Baxter’s lemma we can immediately finish the proof of the no-binding
theorem since

2D(g −mA, h−mB) =
∫ [

1
|x|

∗ g − 1
|x|

∗mA

]
(h−mB)dx
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=
∫
g<ρ

[
1
|x|

∗ g − 1
|x|

∗mA

]
(h−mB)dx+

∫
g=ρ

[
1
|x|

∗ g − 1
|x|

∗mA

]
(h−mB)dx

= −
∫
h=0

[
1
|x|

∗ g − 1
|x|

∗mA

]
mBdx >∼ 0 .

Proof We follow [L]: Consider the problem of minimizing

D(g, g)−
∫
g

1
|x|

∗mA

subject to the constraint that 0 <∼ g <∼ ρ. Notice that this is a convex minimization
problem. Moreover, Since ρ ∈ Lp ∩ L1 we have that∫

g
1
|x|

∗mA =
∫

1
|x|

∗ gmA =
∑
k∈A

1
|x|

∗ g(Rk) <∼
∑
k∈A

1
|x|

∗ ρ(Rk) <∞ .

Hence the functional is bounded below. Next we write

1
|x|

=
1
|x|
ζ(x) +

1
|x|

(1− ζ(x))

where ζ is a smooth function of compact supprt, identically equals to 1 in the vicinity of
the origin. In other words we split the Coulomb potential into two pieces, the first is in
Lq for all 1 <∼ q < 3/2 and the second is in Lr for all r > 3/2.

Let gj be a minimizing sequence. Since 0 <∼ gj <∼ ρ this sequence is bounded in Lp.
Thus there exists a subsequence (again denoted by gj) which converges to some function
g weakly in Lp. Hence

1
|x|
ζ ∗ gj →

1
|x|
ζ ∗ g

pointwise since 1
|x|ζ is in the dual of Lp. Since ρ ∈ L1 we can extract a further sub-

sequence so that gj converges weakly to g in some Ls space dual to Lr. This ensures
that

1
|x|

(1− ζ) ∗ gj →
1
|x|

(1− ζ) ∗ g

and hence ∫
gj

1
|x|

∗mA →
∫
g

1
|x|

∗mA .

Since D(g, g) is weakly lower semicontinuous we have that

lim infD(gj , gj) >∼ D(g, g) .

The fact that 0 <∼ g <∼ ρ is left as a simple exercise. Thus the minimizer g exists. Note,
that since g ∈ Lp ∩ L1 we know that 1

|x| ∗ g is a continuous function which vanishes at
∞. Using the calculus of variation we learn that

1
|x|

∗ g =
1
|x|

∗mA on {x : 0 < g(x) < ρ(x)}
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10 The no-binding theorem and stability

1
|x|

∗ g <∼
1
|x|

∗mA on {x : g(x) = ρ(x)}

1
|x|

∗ g >∼
1
|x|

∗mA on {x : g(x) = 0}

Consider the set
P := {x :

1
|x|

∗ g − 1
|x|

∗mA > 0}

This set is open since 1
|x| ∗ g is continous and P does not contain the points Rk, k ∈ A.

The function 1
|x| ∗ g vanishes on the boundary of P since 1

|x| ∗ g tends to zero at infinity.
Finally, P it is a subset of {x : g(x) = 0}. On P we have

∆[
1
|x|

∗ g − 1
|x|

∗mA] = −g

Hence
[

1
|x|

∗ g − 1
|x|

∗mA]

is harmonic. Since it vanishes on the boundary it must vanish in P and hence P is
empty. �

An immediate corollary from the no-binding theorem is the following electrostatic
inequality.

Corrolary 36 For any nonnegative function ρ ∈ L5/3 and for any positions R1, . . . , RK

3
5
γ

∫
ρ5/3(x)dx−

∑
Zk

∫
1

|x−Rk|
ρ(x)dx+D(ρ, ρ)+

∑
k<l

ZkZl
|Rk −Rl| >

∼ −3.678
γ

∑
k

Z
7/3
k

Proof We are now ready to apply TF-theory to the problem of stability of matter. There
are two terms in the Hamiltonian that are not expressed in terms of the one particle
density, the kinetic energy and the Coulomb repulsion among the electrons. The former
was dealt with when we considered the Lieb-Thirring inequalities and now we deal with
the second problem. Again, we follow Lieb and Thirring [LT]. We consider the previous
Corollary but with the positions of the nuclei replaced by the positions of the electrons,
in other words we have for any ρ and all positions x1, . . . , xN∑

i<j

1
|xi − xj | >

∼ −3
5
ε

∫
ρ5/3(x)dx+

∑
j

∫
1

|x− xj |
ρ(x)dx−D(ρ, ρ)− 3.678

ε
N .

Here, ε > 0 is an arbitrary parameter. Multipying this inequality with |Ψ(x1, . . . , xN )|2,
replacing ρ by ρΨ and integrating over all variables we learn that

∑
i<j

∫
|Ψ(x1, . . . , xN )|2

|xi − xj |
dx1 · · · dxN −D(ρΨ, ρΨ)
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>∼ −3
5
ε

∫
ρ
5/3
Ψ (x)dx− 3.678

ε
N . (1)

We could optimize over ε to get the lower bound

−2(
3.678× 3

5
)1/2

√
N

√∫
ρ
5/3
Ψ (x)dx

but we prefer the first version. The difference between the true Coulomb repulsion and
the the electrostatic repulsion of the single particle density is called the indirect term.

Using the LT -inequality we know that for any antisymmetric function Ψ

TΨ >∼
3
5
(

2
5L

)2/3
∫
ρ
5/3
Ψ (x)dx

where L is the sharp constant in the inequality that estimates the sum of the negative
eigenvalues. Combining this with (1) we learn that the true quantum energy is bounded
below by

3
5

[
(

2
5L

)2/3 − ε

] ∫
ρ
5/3
Ψ (x)dx−

∑
k

Zk

∫
1

|x−Rk|
ρΨ(x)dx+D(ρΨ, ρΨ)

+
∑
k<l

ZkZl
|Rk −Rl|

− 3.678
ε

N .

Using once more the no-binding theorem and the numerical value of the minimum en-
ergy of a single atom we get

E0(N,K) >∼ −3.678

[ ∑
k Z

7/3
k

( 2
5L)2/3 − ε

− N

ε

]
.

Optimizing over ε yields

−3.678(
5
2
)2/3L2/3

[
(
∑
k

Z
7/3
k )1/2 +

√
N

]2

.

Using the bound

L <∼
4

15π
which was obtained in the chapter on the Birman-Schwinger principle we get the nu-
merical value

−1.309

[
(
∑
k

Z
7/3
k )1/2 +

√
N

]2

.

In the case where all the nuclei have the same charge the true QM ground state energy
is bounded below by

−2.618Z7/3(N +K) .
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10 The no-binding theorem and stability

in units of four Rydbergs.
So far we have neglected spin. The electron has an additional degree of freedom

namely there are electrons with spin ‘up’ and spin ‘down’. Of course the state of an
electron can be in any superposition of the two. This leads to consider wave functions

Ψ(x1, σ1; . . . , , xN , σN )

which are antisymmetric under exchange of the particle label. We shall assume that
the σ’s take values in the set {1, . . . , q} where q is an integer. The only term in the
Hamiltonian that is really sensitive to the spin is the kinetic energy term. Consider the
problem of filling up the energy levels of a single particle Hamiltonian with fermions that
have q spin degrees of freedom. The first q paricles sit in the ground state, the next q in
the first excited etc. If we return to the proof of the fermion uncertainty pprinciple for
such kind of wave functions we have to consider filling up the levels of the Hamiltonian

−∆− cρ
2/3
Ψ (x) .

Chasing through the proof we get that for any wave function Φ that has q spin degrees
of freedom

TΦ − c

∫
ρ
2/3
Ψ (x)ρΦ(x)dx >∼ −q

[N
q

]∑
k=1

λk

which in turn can be estimated by the LT-inequality and we obtain

TΦ − c

∫
ρ
2/3
Ψ (x)ρΦ(x)dx >∼ −qLc5/2

∫
ρ
5/3
Ψ (x)dx

so that
TΨ >∼

3
5
(

2
5qL

)2/3
∫
ρ
5/3
Ψ (x)dx .

Thus we have to augment in all our estimates the LT-constant by a factor of q. With this
we get the lower bound on the true quantum energy to be

−4.156Z7/3(N +K) ,

which in the case of hydrogen (Z = 1) is about 17 Rydbergs per atom. One would expect
about 1 Rydberg per atom. �
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11 Improved constants

In recent years there have been further results concerning optimal constants in the Lieb-
Thirring inequality. As it was mantioned before, the most important imequalities con-
cerning stability of matter are the estimates on the sum of the eigenvalues and also on
the sum of square roots of the eigenvalues. Without going too much into details we men-
tion here an approach due to Laptev and Weidl [LW] using matrix valued potentials. We
consider Schrödinger operators of the form

H = − d2

dx2
⊗ I − U(x)

where U(x) is for every x ∈ R a positive hermitean n×n matrix and I is he n×n identity
matrix. Recall that an hermitean matrix A is positive if for every vector x ∈ Cn

〈x,Ax〉 >∼ 0

where 〈·, ·〉 denotes the inner product on Cn. The operator H acts on vectors where each
component is a function of the variable x. We assume that the potential matrix is nice in
the sense that the entries are smooth functions with compact support. This is not really
a restriction but avoids technicalities. We consider the operaor H on L2(R;Cn). Like in
the case of a scalar valued potential we consider the eigenvalues and arrange them in
increasing order. The lowest eigenvalue is defined by minimizing∫

〈ψ′(x), ψ′(x)〉dx−
∫
〈ψ(x), U(x)ψ(x)〉dx

subject to the constraint ∫
〈ψ(x), ψ(x)〉dx = 1

it is easy to see that a minimizer ψ0(x) exists. The next eigenvalue is found by optimizing
orthogonal to ψ0, etc. In this way we get eigenvalues −λ1 <∼ −λ2 <∼ · · · . The following
theorem was proved in [LW] (see also [BL]).

Theorem 37 For the operator H we have the inequality∑
j

λ
3/2
j <∼

3
16

∫
tr [U(x)2]dx

Alternatively, the above estimate can be written as∑
j

λ
3/2
j <∼

1
2π

∫
tr [p2 ⊗ I − U(x)2]−dpdx

which displays the semiclassical nature of the bound.
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11 Improved constants

Following Aizenman and Lieb [AL] we can deduce from this bound a whole series of
sharp bounds as follows. Write for γ > 3/2

λγ =
Γ(γ + 1)

Γ(5/2)Γ(γ − 3/2)

∫ ∞

0
(λ− s)3/2+ sγ−3/2ds

s
.

From this we get immediately

Theorem 38 For the operator H we have for all γ >∼ 3/2∑
j

λγj <∼
1

2
√
π

Γ(γ + 1)
Γ(γ + 3/2)

∫
tr [U(x)γ+1/2]dx

or alternatively ∑
j

λγj <∼
1
2π

∫
tr [p2 ⊗ I − U(x)2]γ−dpdx

As an application we give a sketch of the proof of the theorem of Laptev and Weidl.

Theorem 39 (Laptev and Weidl) On L2(Rn) consider the negative eigenvalues −λ1 <
−λ2 <∼ · · · of the operator

−∆− U(x)

where U is non-negative. Then for all γ >∼ 3/2∑
j

λγj <∼
1

(2π)n

∫
[p2 − U(x)]γ−dxdp .

This is a semiclassical estimate and best possible.

Theorem 40 Following Laptev and Weidl we use induction on the dimension. We have to
estimate

Tr[−∆− U(x)]γ− = Tr[−∂2
1 −∆′ − U(x1, x

′)]γ−
where x′ = x2, . . . , xn. The right side is estimated from above by

Tr[−∂2
1 − [−∆′ − U(x1, x

′)]−]γ− .

it is not hard to see that
[−∆′ − U(x1, x

′)]−

is for every x1 a positive, compact operator and hence can by approximated by finite matri-
ces. Applying our theorem, noting that γ >∼ 3/2 we obtain

Tr[−∆− U(x)]γ− <∼
1
2π

Tr
∫

[p2
1 ⊗ I − [−∆′ − U(x1, x

′)]−]γ+1/2
− dp1dx1 ,

where the trace is preformed over the remaining variables x2. . . . xn. Since

1
2π

Tr
∫

[p2
1⊗I ′− [−∆′−U(x1, x

′)]−]γ+1/2
− dp1dx1 = const.

∫
tr [−∆′−U(x1, x

′)]γ+1/2
− dx1
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we can apply the theorem once more since γ + 1/2 > 3/2 and get that∫
tr [−∆′ − U(x1, x

′)]γ+1/2
− dx1 <∼

1
2π

tr
∫

[p2
2 ⊗ I ′′ − [−∆′′ − U(x1, x2, x

′′)]−]−dp2dx2dx1

so that
1
2π

Tr
∫

[p2
1 ⊗ I ′ − [−∆′ − U(x1, x

′)]−]γ+1/2
− dp1dx1

<∼
1

(2π)2
tr
∫

[(p2
1 + p2

2)⊗ I ′′ − [−∆′′ − U(x1, x2, x
′′)]−]−dp1dp2dx1dx2 .

Repating this procedure leads eventually to the desired estimate.

Another sharp bound is the following, due to Hundertmark, Lieb and Thomas in the
scalar case and Hundertmark, Laptev and Weidl in the matrix case

Theorem 41 For the operator H we have the inequality∑
j

λ
1/2
j <∼

1
2

∫
tr [U(x)]dx .

Proof We apply the Birman-Schwinger principle. −λ is an eigenvalue if and only if 1 is
an eigenvalue of

U(x)1/2
1

−∂2 + λ
U(y)1/2 .

The associated kernel is given by

U(x)1/2
e−

√
λ|x−y|

2
√
λ

U(y)1/2 =
1√
λ
Lλ .

Hence whenever the Birman Schwinger kernel has an eigenvalue 1 the operator Lλ
has an eigenvalue

√
λ. denote by ej(λ) the eigenvalues of the operator Lλ ordered

decreasingly. By what we said above e1(λ1) =
√
λ1, e2(λ2) =

√
λ2 . . . . We shall prove

that
k∑
i=1

ei(λ)

is a decreasing function of λ for all k. Once this is established we have that∑
j

√
λj =

∑
j

ej(λj) <∼ e1(λ2) + e2(λ2) +
∑
j=3

ej(λj)

<∼ e1(λ3) + e2(λ3) + e3(λ3) +
∑
j=4

ej(λj)

etc. so that ∑
j

√
λj <∼ trLλ=0 =

1
2

∫
TrU(x)dx .
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11 Improved constants

Note that the first trace is a trace over L2 ⊗Cn while the second is a trace over Cn only.
To establish the monotonicity we write

Lλ = U(x)1/2
√
λ

π

∫
1

p2 + λ
eip(x−y)dpdx

The kernel
Gε(p) =

ε

π

1
p2 + ε2

is the Poisson kernel and it is easy to check that

Gε ∗Gε′ = Gε+ε′

and by a simple calculation

Lλ(x, y) =
∫
dqeiqxLλ−ε2(x, y)e−iqy

ε

π

1
q2 + ε2

In other words the operator can be written as an average of the following form

Lλ =
∫
w(q)UqLλ−ε2U∗

q

where Uq is unitary and
∫
w(q)dq = 1. Let Pk be the projector onto the space belonging

to the k largest eigenvalues. Thus,

k∑
j=1

ej(λ) = trPkLλPk =
∫
w(q)tr [PkUqLλ−ε2U∗

q Pk]

=
∫
w(q)tr [U∗

q PkUqLλ−ε2U∗
q PkUq]

by the cyclicity of the trace. The operator U∗
q PkUq is again a projection of dimension k

and hence by the minimax principle

tr [U∗
q PkUqLλ−ε2U∗

q PkUq] <∼
k∑
j=1

ej(λ− ε2) .

Therefore
k∑
j=1

ej(λ) <∼
k∑
j=1

ej(λ− ε2)

which is what we had to prove. �

We apply now these theorems to prove LT inequalities with good constants. they are
not optimal but close.
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Theorem 42 On L2(R3) consider the negative eigenvalues −λ1 < −λ2 <∼ · · · of the oper-
ator

−∆− U(x)

where U is non-negative. Then ∑
j

λ
1/2
j <∼

1
8π

∫
U(x)2dx

and ∑
j

λj <∼
2

15π2

∫
U(x)5/2dx .

which is twice the semiclassical constant.

Proof We proceed as in the previous proof concerning the powers γ >∼ 3/2. We write for
γ >∼ 1/2

λγ =
Γ(γ + 1)

Γ(3/2)Γ(γ − 1/2)

∫ ∞

0
(λ− α)1/2− αγ−1/2dα

α
(1)

Applying the minmax principle to the estimate for matrix valued potentials we get∑
j

(λj − α)1/2+ <∼
1
2

∫
tr [U(x)− α]+dx

and inserting this in formula (1) leads to∑
j

λγj <∼
1√
π

Γ(γ + 1)
Γ(γ + 3/2)

∫
Tr[U(x)]γ+1/2dx (2)

Using the matrix valued estimate for the 1/2 powers yields

tr [−∆− U ]1/2− <∼
1
2

∫
tr [−∆′ − U(x1, x

′)]−dx1

Using (2) with γ = 1 yields

tr [−∆− U ]1/2− <∼
1
2

1√
π

Γ(2)
Γ(5/2)

∫
dx1dx2tr [−∂2

3 − U(x1, x2, x3)]
3/2
− .

Now we use the sharp estimate for γ = 3/2 and get

tr [−∆− U ]1/2− <∼
1
2

1√
π

Γ(2)
Γ(5/2)

3
16

∫
U(x)2dx =

1
8π

∫
U(x)2dx .

To estimate
tr [−∆− U ]−
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11 Improved constants

we use (1) with γ = 1 to obtain

tr [−∆− U ]− <∼
1√
π

Γ(2)
Γ(5/2)

∫
dx1tr [−∆′ − U(x1, x

′)]3/2−

and applying the sharp esitmate for the powers once for γ = 3/2 and then for γ = 2
yields

tr [−∆− U ]− <∼
1√
π

Γ(2)
Γ(5/2)

3
16

∫ ∫
dx1dx2tr [−∂2

3 − U(x1, x2, x
′)]2−

<∼
1√
π

Γ(2)
Γ(5/2)

3
16

8
15π

∫
U(x)5/2dx =

2
15π2

∫
U(x)5/2dx .

80



12 Relativistic systems

In order to incorporate certain aspects of Einstein’s theory of relativity into our treatment
of Coulomb systems we replace the non relativistic kinetic energy

p2

2m

by √
c2p2 +m2c4 −mc2

where c is the speed of light. To pass over to quantum mechanics we have to replace p
by

~
i
∇

which leads formally to √
−c2~2∆ +m2c4 −mc2 .

Thus, e.g, the hydrogen atom is has the Hamiltonian

H =
√
−c2~2∆ +m2c4 −mc2 − Ze2

|x|
.

Before making sense out of these expressions we make some remarks about units. It is
natural to choose as our unit of energy mc2 because then our Hamiltonian reduces to

H =

√
− ~2

m2c2
∆ + 1− 1− Ze2

mc2|x|

Next we note that
~
mc

has the nunit of length, the Compton wavelength (divided by 2π) and hecne if measure
length in these units we get

H =
√
−∆ + 1− 1− Ze2

~c|x|
=
√
−∆ + 1− 1− Zα

|x|
(1)

where α is the dimensionless fine structure constant ≈ 1/137.04.
The kinetic energy is defined through the Fourier transform

(ψ,
√
−∆ + 1ψ) =

∫ √
4π2|k|2 + 1|ψ̂(k)|2dk .
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12 Relativistic systems

Note that by definition the Hilbert space H1/2(R3) consists of all functions with∫ √
4π2|k|2 + 1|ψ̂(k)|2dk <∞ .

From the definitions we obtain immediately the useful inequalities
√
−∆− 1 <∼

√
−∆ + 1− 1 <∼

√
−∆ . (I)

Notice that the kinetic energy
√
−∆ has the same behavior under scaling as the Coulomb

energy. As a consequence, the smallest spectral value of Hamiltonian

√
−∆− Zα

|x|
(2)

is either −∞ or 0. In particular we shall prove the following theorem of Kato, Herbst
and Weder. We follow [KPS].

Theorem 43 the Hamiltonians (1) and (2) are bounded below if and only if Zα <∼ 2/π.

Theorem 44 We have to find an estimate of the type

(ψ,
1
|x|
ψ) <∼ C(ψ,

√
−∆ψ)

which can be rewritten as

(φ,
1

(−∆)1/4
1
|x|

1
(−∆)1/4

φ) <∼ C‖φ‖2 .

In other words we have to find the norm of the operator

1√
|x|

1
(−∆)1/4

which is the same as the norm of the adjoint

1
(−∆)1/4

1√
|x|

.

Using that

(
1
|k|a

f̂)(̌x) =
cn−a
ca

∫
1

|x− y|n−a
f(y)dy

where
ca = π−a/2Γ(a/2)

we have that

1
(−∆)1/2

f(x) = (
1

2π|k|
f̂)(̌x) =

1
2π2

∫
1

|x− y|2
f(y)dy .
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Therefore we have to estimate

1
2π2

∫
φ(x)φ(y)

|x|1/2|x− y|2|y|1/2
dxdy

in terms of ‖φ‖2. Writing the expression as

1
2π2

∫
φ(x)|x|1/2

|x− y||y|
· φ(y)|y|1/2

|x||x− y|
dxdy (3)

and then using Schwarz’s inequality yields the estimate

1
2π2

∫
|φ(x)|2|x|
|x− y2||y|2

dxdy .

Integrating with respect to y and noting that∫
1

|x− y2||y|2
dy = π3 1

|x|

we obtain that (3) is bounded above by

π

2

∫
|φ(x)|2dx .

Thus, the norm

‖ 1
(−∆)1/4

1
|x|1/2

‖ <∼
√
π

2

To see that it is equal we investigate the cases of equality in our use of Schwarz’s in-
equality. We have equality if

φ(x)|x|1/2

|x− y||y|
= const.

φ(y)|y|1/2

|x||x− y|

which means that
φ(x) = const.

1
|x|3/2

for almost every x. Note that this function is not in L2(R3) but almost. Consider the
sequence of functions

φn(x) =


0 if |x| <∼

1
n

1
|x|3/2 if 1

n < |x| < n

0 if n <∼ |x|.

Next we calculate

1
2π2

∫
φn(x)φn(y)

|x|1/2|x− y|2|y|1/2
dxdy

1
2π2

∫
φn(x)

|x|1/2|x− y|2|y|2
dxdy(1 + o(1))
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12 Relativistic systems

=
π

2

∫
1/n<|x|<n

|x|−3dx

Likewise,

‖φn‖2 =
∫

1/n<|x|<n
|x|−3dx .

Hence,

1
2π2

∫ φn(x)φn(y)

|x|1/2|x−y|2|y|1/2dxdy

‖φn‖2
→ π

2
as n→∞.

As a consequence, we have stability if and only if

Zα <∼
2
π
.

This means that we have stability for all Z values up to about 87. this is less than 92
which means that some important physics has been missed. This has largely to do with
the fact that the square root operator is the wrong dynamics for an electron. It should
really be described by the Dirac equation. The present model, however, is useful for two
reasons. Firstly, it will be useful in a variety of circumstances. Secondly, it shows in a
simple fashion that in relativistic problems the Coulomb potential cannot be considered
as a small perturbation.

Remark 45 As we have seen, the function that yields the norm is essentially the function
φ(x) = 1/|x|3/2. This function is related to the corresponding wave function by φ(x) =
(−∆)1/4ψ from which we glean that

ψ(x) ≈ 1
|x|

(Opt)

for dimensional reasons.

It is worth pointing out that the above result is the relativistic version of the following
uncertainty principle.

Theorem 46 For any smooth function with compact support we have that∫
|∇f |2dx >∼

1
4

∫
|f(x)|2

|x|2
dx .

Proof Write f = |x|−1/2g with g(0) = 0 and compute∫
|∇f |2dx =

∫
[−1

2
|x|−3/2 x

|x|
g +

1
|x|1/2

∇g]2dx

=
1
4

∫
1
|x|2

|f |2dx− 2
∫

1
2
|x|−3/2 x

|x|
g · 1

|x|1/2
∇gdx+

∫
1
|x|
|∇g|2dx .
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The middle term can be written as

1
2

∫
1
|x|2

x

|x|
· ∇g2dx =

1
2

lim
ε→0

∫
|x|>ε

1
|x|2

x

|x|
· ∇g2dx .

Integrating by parts yields∫
|x|>ε

1
|x|2

x

|x|
· ∇g2dx =

1
2

∫
|x|>ε

div(
x

|x|3
g2)dx

where we used that div x
|x|2 = 0 away from the origin. Using Gauss theorem we learn

that
1
2

∫
|x|>ε

div(
x

|x|3
g2)dx = −1

2

∫
S2

g2(εω)dω

which vanishes in the limit as ε→ 0. It is not difficult to see that the constant 1/4 cannot
be improved. �

An alternative proof would be to cast the inequality in the form

(g,
1√
−∆

1
|x|2

1√
−∆

g) <∼ 4‖g‖2
2

which amounts to calculating the norm

‖ 1√
−∆

1
|x|
‖ ,

i.e., we have to show

(h,
1
|x|

1
−∆

1
|x|
h) <∼ 4‖h‖2

2 .

The expression on the left is

1
4π

∫ ∫
h(x)h(y)
|x||x− y||y|

dxdy =
1
4π

∫ ∫
h(x)|x|1/4h(y)|y|1/4
|x|5/4|x− y||y|5/4

dxdy

=
1
4π

∫ ∫
h(x)|x|1/4

|x− y|1/2|y|5/4
h(y)|y|1/4

|x|5/4|x− y|1/2
dxdy <∼

1
4π

∫
|h(x)|2|x|1/2

∫
1

|x− y||y|5/2
dydx

= 4‖h‖2
2 ,

since ∫
1

|x− y||y|5/2
dy = 16π|x|−1/2 .

Returning to the relativistic case, note that we are really talking about two Hamil-
tonians, (1) and (2). The Hamilonian (2) can only be used to discuss the stability or
instability. It does not have any bound states, even in the stable case, because of scaling.
The smallest energy is 0 and the state is infinitely extended. The Hamiltonian (1) has
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12 Relativistic systems

indeed bound states for any Zα < 2/π. For small Z the eigenvalues are close to the ones
given by the non-relativistic hydrogen atom.

The full model is, like in the non-relativistic case given by

Hmass(N) =
∑√

−∆j + 1− 1− αVc . (4)

Again, if we are only interested in the question of stability it suffices to consider the
Hamiltonian

H(N) =
∑√

−∆j − αVc . (5)

As always, we consider this operator on N -particle wave functions that are antisymmet-
ric, i.e., satisfy the Pauli exclusion principle. Note that for (5) the question of stability
of the first and second kind is one and the same. The system (5) is stable if and only if
the Hamiltonian is positive. Note, that once the stability of (5) is established then (4) is
also stable. This follows from the inequalities (I) since

Hmass(N) >∼ H(N)−N >∼ −N .

This says that
Hmass(N) >∼ −N .

In other words in relativity the total energy of the system, i.e., its interaction energy and
its rest energy is always positive.

Clearly, it is necessary for stability that maxk Zkα <∼ 2/π. From now on we shall not
assume that Zk is an integer. Zk can be, in principle, as small as we like. The following
dimensional argument will show that it is not enough to have Zkα small no matter how
small the nuclear charges. It turns out that α itself has to be small for stability to hold.
This was first observed by Daubechies and Lieb. [DL] To see this, it suffices to consider
one single electron in the field of K nuclei all having charge Z. Think of the system as
having an overal length scale L. The kinetic energy of the electron is of the order

1
L

. The Coulomb potential has several contributions. There is the attraction of the electron
to the nuclei which yields a term of the order

−αKZ
L

and the nuclear repulsion is of order

+α
K2Z2

2L

so that we have in total

1
L
− α

KZ

L
+ α

K2Z2

2L
=

1
2L
[
2− α+ α(KZ − 1)2

]
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Thus, no matter how small Z > 0 we can always choose K large so that (KZ − 1)2 < 1
and, as a consequence if α > 3 the expression in [·] is negative and by letting L→ 0 we
can make the energy as negative as we please. To summarize, for relativistic Coulomb
systems a necessary and sufficient condition for stability is that Zα as well as α are
sufficiently small. Again, there is no distinction between stability of the first kind and
the second kind for relativistic systems.

The challenge is now to prove stability and to do it in such a way that the allowed
values for α are sufficiently large as to incorporate the physical case α ≈ 1/137.04. The
first who proved stability was Conlon [C], however the allowed values of α were much
to small. This was then improved by De la Llave and Fefferman [LF] using computer
assisted proofs. The best results were obtain by Lieb and Yau. [LY] Certain simplifi-
cations were obtain by Lieb, Loss and Siedentop.[LLS]. We follow [LY] and [LLS]. It is

inconvenient that the (f,
√
−∆f) has to be defined using the Fourier transform. Below

is an expression entirely in x space.

Theorem 47 For any function f such that (f,
√
−∆f) is finite we have that

(f,
√
−∆f) =

1
2π2

∫ ∫
|f(x)− f(y)|2

|x− y|4
dxdy .

Proof Observe that

(f,
√
−∆f) = lim

t→0

1
t

[
(f, f)− (f, e−t

√
−∆f)

]
. (6)

This follows by writing the right side of (6) as

1
t

[
(f, f)− (f, e−t

√
−∆f)

]
=
∫
|f̂(k)|2 1− e−2π|k|t

t
dk

and noting that the right side converges to (f,
√
−∆f). next we calculate the ‘relativistic’

heat kernel
e−t

√
−∆(x, y) .

As with the heat kernel this can be solved using Fourier transform and to obtain the
‘relativistic’ heat kernel we have to calculate the inverse Fourier transform of the function

e−t2π|k| .

This is easy in one dimension but not entirely trivial in two and higher. In one dimension
we have to calculate ∫

e−t2π|k|e2πikxdk =
t

π

1
t2 + x2

. (7)

Write the right side as
t

π

∫ ∞

0
e−(t2+x2)sds
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12 Relativistic systems

and note that

e−sx
2

=
√
π

s

∫
e−|2πk|

2/4se2πikxdk

Comparing this with (7) yields

e−t2π|k| =
1√
π

∫ ∞

0
e−s−

|2πk|2t
4s

ds√
s
.

In other words, we have that

e−|a| =
1√
π

∫ ∞

0
e−s−

a2

4s
ds√
s
,

for any real number a. Hence we can use this to calculate in arbitrary dimension∫
e−t2π|k|e2πik·xdk =

1√
π

∫ ∞

0
e−s

∫
e−

|2πk|2t2
4s e2πik·x

ds√
s

=
1

tnπ
n+1

2

∫ ∞

0
s
n+1

2 e−(1+
|x|2

t2
)sds

s

=
1

tnπ
n+1

2

(1 +
|x|2

t2
)−

n+1
2

∫ ∞

0
s
n+1

2 e−s
ds

s

=
Γ(n+1

2 )

π
n+1

2

t

[t2 + |x|2]
n+1

2

.

Hence

e−t
√
−∆(x, y) =

Γ(n+1
2 )

π
n+1

2

t

[t2 + |x− y|2]
n+1

2

which is known as the Poisson kernel. As an aside, it is amusing to note that

f(t, x) = e−t
√
−∆f(x)

is harmonic in t, x, since
∂2
t f(t, x) = (

√
−∆)2f(t, x)

or
[∂2
t + ∆]f(t, x) = 0 .

Hence, the name ‘Poisson kernel’. Returning to (6) we get that

(f,
√
−∆f) = lim

t→0

1
2t

[
∫ ∫

|f(x)|2e−t
√
−∆(x, y)dxdy +

∫ ∫
|f(y)|2e−t

√
−∆(x, y)dxdy

−2
∫ ∫

<(f(x)f(y))e−t
√
−∆(x, y)dxdy]

= lim
t→0

1
2π2

∫
|f(x)− f(y)|2

[t2 + |x− y|2]2
dxdy =

1
2π2

∫
|f(x)− f(y)|2

|x− y|4
dxdy .
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Remark 48 It is fairly straightforward to establish the existence of ground states and
higher eigenvalues for the relativistic Schroedinger equation. As before, one needs two
ingredients: A Sobolev type inequality:

(f,
√
−∆f) >∼ S‖f‖2

q

where q = 2n
n−1 and the Rellich-Kondrachev theorem, i.e., for any sequence fj , bounded

in H1/2(Rn) and any measurable set A of finite measure there exists a subsequence,
again denoted by fj and f ∈ H1/2(Rn) such that

‖f − fj‖Lp(A) → 0

provided p < 2n
n−1 . All the results for the non relativistic case carry over to the relativistic

case for operators of the form √
−∆ + V (x)

where V is a potential which vanishes in measure and can be written as

V = v + w

w ∈ L∞(Rn), and v ∈ Ln(Rn).

Analogous to the non relativistic case there is also a LT inequality for the relativistic
operator

√
−∆. It was proved by Daubechies and we give here an alternative proof

based on an inequality due to Birman and Solmyak. (see [LSS])

Theorem 49 (Birman and Solomyak) Let A and B be two selfadjoint positive operators
such that [A−B]− is trace class, i.e., Tr[A−B]− exists. Then

Tr[A−B]+ <∼ Tr[A2 −B2]1/2+ .

Remark 50 It is useful to recall two facts about selfadjoint operators. If A and B are
two positive selfadjoint operators and A <∼ B. Recall that this means that

((f,Af) <∼ (f,Bf)

for all f in the Hilbert space. Then
Aα <∼ Bα

where 0 <∼ α <∼ 1. If A is invertible then so is B and

B−1
<∼ A−1 .

Proof Write
A2 = B2 + C

and split C = C+ − C−. Then the inequality reads

Tr[
√
B2 + C+ − C− −B]+ <∼ TrC1/2

+ .
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12 Relativistic systems

Since the square root is matrix monotone we have that√
B2 + C+ − C− <∼

√
B2 + C+ ,

and, hence the inequality follows from

Tr[
√
B2 + C −B]+ <∼ TrC1/2

for B,C >∼ 0. First we assume that B >∼ s for some number s > 0. Clearly,

Tr[
√
B2 + C −B]+ = Tr[

√
B2 + C −BB−1B]+ <∼ Tr[

√
B2 + C −B[B2 + C]−1/2B]+

= Tr[[B2 + C]−1/4C[B2 + C]−1/4]+ = Tr[C1/2[B2 + C]−1/2C1/2]+

<∼ TrC1/2 .

The rest follows from a limiting argument. �

The following theorem is due to Daubechies.[D]

Theorem 51 (Relativistic Lieb-Thirring inequality) Let U(x) >∼ 0 be in L4(R3). Then

tr [
√
−∆− U ]− <∼

1
8π

∫
U(x)4dx .

Proof of the Birman-Solomyak theorem: By the BS inequality

tr [
√
−∆− U ]− = tr [U −

√
−∆]+ <∼ tr [−∆− U2]1/2− .

Using the LT inequality for the sum of the roots of the eigenvalues

tr [−∆− U2]1/2− <∼
1
8π

∫
U(x)4dx .

We have immediately the

Corrolary 52 Let Ψ be any antisymmetric wave function of N particles with q spin states.
Then ∑

j

(Ψ,
√
−∆jΨ) >∼

3
4
(2π)1/3q−1/3

∫
ρ
4/3
Ψ (x)dx >∼ 1.3839

∫
ρ
4/3
Ψ (x)dx .

Proof Consider the quadratic form∑
j

[
(Φ,

√
−∆jΦ)− c(Φ, ρ1/3

Ψ Φ)
]
.

where c is some constant. Filling up the energy levels we get that∑
j

[
(Φ,

√
−∆jΦ)− c(Φ, ρ1/3

Ψ Φ)
]
>∼ −q

∑
λj .
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where −λj are the negative eigenvalues. In other words∑
j

[
(Φ,

√
−∆jΦ)− c(Φ, ρ1/3

Ψ Φ)
]
>∼ −qtr [

√
−∆− cρ

1/3
Ψ ]−

which by Daubechies’ result is bounded below by

− 1
8π
qc4
∫
ρ
4/3
Ψ (x)dx .

Thus picking Φ = Ψ ∑
j

(Ψ,
√
−∆jΨ) >∼ [c− 1

8π
qc4]

∫
ρ
4/3
Ψ (x)dx .

Optimizing over c yields the result. �

Remark 53 The constant in [D] is better and equals 1.63. we shall use that constant
henceforth.

One is tempted to consider a relativistic analog of Thomas Fermi theory, i.e., to con-
sider an energy functional of the form

E(ρ) =
3
4
γ

∫
ρ4/3(x)dx− α

∑
j

Zj

∫
ρ(x)

|x−Rj |
+ αD(ρ, ρ) + αU(R) .

This approach fails for the simple reason that the kinetic energy term is too weak to
prevent a collapse. Consider the problem of one nucleus at the origin and note that any
function ρ which has compact support and which behaves like 1/|x|2 for x small, has a
finite kinetic energy and a finite Coulomb repulsion energy. The integral∫

ρ(x)
1
|x|
dx ,

however diverges. In fact the borderline case for the power of ρ in the kinetic energy
is3/2. The kinetic energy is of the form∫

ρp(x)dx .

If p > 3/2 everything is fine and if p < 3/2 nothing is fine. As we shall see, the situation

can be saved. This was shown in [LLS]. The idea is instead of considering a TF-like
theory we modify and add the term

(
√
ρ,
√
−∆

√
ρ) ,
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12 Relativistic systems

i.e. we consider the energy functional

E(ρ) = β(
√
ρ,
√
−∆

√
ρ) +

3
4
γ

∫
ρ4/3(x)dx− α

∑
j

Zj

∫
ρ(x)

|x−Rj |
+ αD(ρ, ρ) + αU(R) .

where is ρ subject to the constraint
∫
ρ(x)dx < ∞. Since this additional term is rem-

iniscent of a ‘von Weizsäcker correction’, we call this function the Thomas-Fermi-von
Weizsäcker functional, TFW in short.

Let us introduce a further simplification. With loss of generality we may assume that
all the nuclear charges are the same. This can be reasoned as follows. For fixed nuclear
positions the energy is in each of the variables Zk separately. Hence, upon minimizing
over the wave function the energy is concave in each of the variables Zk separately. Con-
sider for the Zk variables the interval [0, Z] where Zα <∼ 2/π. Since a concave function
has its minimum on the boundary of its domain we get that the energy has a minimum
id all the values of Zk are either 0 or Z. The value 0 means that the corresponding
nucleus has vanished from the picture. Hence, we may assume that our Hamiltonian is
of the form (4) but al the nuclear charges are the same.

There are two problems. One is to relate the full problem to the TFW problem and the
second is to prove stability for the TFW problem. Recall also that we need a lower bound
on the TFW functional that is independent of the number of particles and independent
of the position of the nuclei. Hence, since all the terms scale the same way we have to
show that E(ρ) >∼ 0 for α and Zkα sufficiently small.

Let us address the first problem. This will involve a number of facts which we now
state and prove.

Theorem 54 ([C) , [HO]] Irrespective of the symmetry type of the function Ψ the inequal-
ity ∑

j

(Ψ,
√
−∆jΨ) >∼ (

√
ρΨ,

√
−∆

√
ρΨ)

aways holds.

Proof Recall that∑
j

(Ψ,
√
−∆jΨ) = lim

t→0

∑
j

[(Ψ,Ψ)− (Ψ, e−
√
−∆jtΨ)] .

Now ∑
j

(Ψ, e−
√
−∆jtΨ)

=
∑∫

Ψ(x1, . . . , xj , . . . , xN )e−
√
−∆jt(xj , yj)Ψ(x1, . . . , yj , . . . , xN )dx1 · · · dxNdyj .

Applying Schwarz’s inequality we learn that∑∫
Ψ(x1, . . . , xj , . . . , xN )e−

√
−∆jt(xj , yj)Ψ(x1, . . . , yj , . . . , xN )dx1 · · · dxNdyj
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<∼ N

∫
dxdy(

∫
|Ψ(x, x2, . . . , xN )|2dx2 · · · dxN )1/2

×(
∫
|Ψ(y, x2, . . . , xN )|2dx2 · · · dxN )1/2e−

√
−∆t(x, y)

= (
√
ρΨ, e

−
√
−∆t√ρΨ) .

which by relating this back to the expression in terms of
√
−∆ proves the claim. The

next theorem will be proved later. It is dues to Lieb and Oxford and is an estimate on the
indirect part of the Coulomb repulsion among electrons. We shall prove this estimate
later since it is somewhwat involved. �

Theorem 55 Let Ψ be any normalied N particle wave function. Then∑
i<j

(Ψ,
1

|xi − xj |
Ψ)−D(ρΨ, ρΨ) >∼ −1.68

∫
ρ
4/3
Ψ (x)dx .

Corollary 6, Theorem 7 and 8 allows us to find a lower bound in terms of TFW theory.
Split the relativistic kinetic energy in (5) into

β
√
−∆j + (1− β)

√
−∆j

and apply the aforementioned statements. This yields the lower bound

(Ψ,H ′Ψ) >∼ β(
√
ρΨ,

√
−∆

√
ρΨ) + [(1− β)1.63q−1/3 − α1.68]

∫
ρ
4/3
Ψ (x)dx

−Zα
∑
j

∫
ρΨ(x)
|x−Rj |

+ αD(ρΨ, ρΨ) + αZ2
∑
k<l

1
|Rk −Rl|

(8)

β will be chosen later. Thus, our next goal is to study the functional

E(ρ) = β(
√
ρ,
√
−∆

√
ρ) + [(1− β)1.63q−1/3 − α1.68]

∫
ρ4/3(x)dx

−Zα
∑
j

∫
ρ(x)

|x−Rj |
+ αD(ρ, ρ) + αZ2

∑
k<l

1
|Rk −Rl|

(9) .
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13 An Estimation Of The Indirect Part Of The
Coulomb Energy

Introduction

A quantum mechanical system of N particles has a state which generally is described
by a finite or countably infinite set of wave functions

ψβ(x1, . . . , xN ) (1)

with β = 1, 2, 3, . . . and with the normalization∑
β

∫
R3N

∣∣ψβ(x1, . . . , xN )
∣∣2dx1 · · · dxN = 1. (2)

The index β describes some “internal quantum numbers” of the particles apart from the
spatial coordinates xi ∈ R3. As an example suppose the system is in a pure state and
each particle has q spin states available to it. Then the state is described by a function of
space and spin

ψ(x1, σ1; . . . ;xN , σN ) (3)

with σi ∈ {1, . . . , q} and i = 1, . . . , N . In this case these are qN functions of x1, . . . , xN
indexed by the values of the spin or – more conveniently – by an index β which takes
values from 1 to qN . Then (2) reads∑

σ1...σN

∫
R3N

|ψ(x1, σ1; . . . ;xN , σN )|2dx1 . . . dxN = 1. (4)

Another example is provided by an N -particle density matrix Γ with

trΓ = 1. (5)

Γ can be written as

Γ =
∞∑
β=1

λβΓβ (6)

where the Γβ ’s are projections onto pure states i.e. (f,Γβf) = |(ψβ, f)|2 with (ψβ, ψβ) =
1. For more details the reader may consult Sect. 2.6 on density matrices.
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13 An Estimation Of The Indirect Part Of The Coulomb Energy

For particles with charges ei, i = 1, . . . , N the electrostatic energy is defined by

Iψ =
∑
i<j

eiej
∑
β

∫
R3N

|ψβ(x1, . . . , xN )|2

|xi − xj |
dx1 . . . dxN (7)

where ei is the charge of particle i; it is not assumed that all the ei’s are the same. As is
explained in chapter VI it is desirable to have a lower bound on Iψ in terms of the single
particle charge density, which is defined for each x in R3 by

Q(x) =
N∑
i=1

Qiψ(x) (8)

and where the charge density of particle i is given by

Qiψ(x) = ei
∑
β

∫
R3(N−1)

|ψβ(x1, . . . , xi−1, x, xi+1, . . . xN )|2dx1 . . . dx̂i . . . dxN . (9)

As usual dx̂i means that the xi integration is omitted. Observe that by (2) and the
monotone convergence theorem Qi(x) is a nonnegative function in L1(R3),∫

R3

Qiψ(x)dx = ei, (10)

and hence ∫
R3

Qψ(x)dx =
N∑
i=1

ei. (11)

The electrostatic energy associated with the charge density Qψ(x) is given by

D(Qψ, Qψ) =
1
2

∫
R3

∫
R3

Qψ(x)Qψ(y)
|x− y|

dxdy (12)

and is called the direct part of the Coulomb energy. It is the classical Coulomb energy
associated with a “fluid” of charge density Qψ. Since Qψ(x) ≥ 0, D(Qψ, Qψ) is always
well defined in the sense that it is either finite or +∞. See Sect. 22.2.

Accordingly, the indirect part of the Coulomb energy, denoted by Eψ, is defined by
the equation

Iψ = D(Qψ, Qψ) + Eψ (13)

Thus Eψ is the difference between the true energy Iψ and the classical approximation
D(Qψ, Qψ). Sometimes it is called the exchange plus correlation energy. It is the aim of
this chapter to give a lower bound on Eψ in terms of Qψ. We emphasize that our bound
on Eψ holds for all ψ, not only for solutions to Schrödinger’s equation.
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Examples

The first example comes from Hartree’s theory (see Sect. 2.18). Consider N spinless
particles (i.e. q = 1), each with charge e. Assume that they are not correlated i.e.

ψ(x1, . . . , xN ) = f1(x1) . . . fN (xN ), (1)

where each fi is in L2(R3) and normalized. A simple computation yields:

Qψ(x) = e
N∑
i=1

|fi(x)|2 (2)

and

Iψ = D(Qψ, Qψ)−
N∑
i=1

D(|fi|2, |fi|2). (3)

Hence Eψ is the (negative) sum of the self energies of the charge distributions |fi(x)|2.
Another example is provided by a Hartree-Fock wave function. Again the charges are

taken to be equal to e. Then ψ is the antisymmetric function of space and spin given by
a determinant

ψ(x1, σ1; . . . ;xN , σN ) = (N !)−1/2 det(φi(xj , σj)) (4)

where the φi’s are orthonormal functions in L2(R3; Cq). In Sect. 2.7 the electrostatic
energy of this wave function was computed. The indirect part turns out to be

Eψ = −1
2
e2
∫
R3

∫
R3

γ1(z, w)γ1(w, z)|x− y|−1dzdw (5)

where

γ1(z, w) =
N∑
i=1

φi(z)φi(w) (6)

(the notation z = (x, σ) and
∫
dz =

∑
σ

∫
dx is used here). In this context Eψ is called the

exchange term. An approximation to Eψ in terms of Qψ was computed in [DP] using
perturbation theory, i.e. using the eigenfunctions of the kinetic energy operator (i.e. the
Laplacian) in a large box Λ. Choosing the φi(z)’s to be

φα,k(z) = χα(σ)
1√
|Λ|

ei
→
k ·→x , (7)

a dimensional argument immediately shows that for |Λ| andN large, and with ρ = N/|Λ|
fixed

Eψ = −Ce2q−1/3ρ4/3|Λ|. (8)

Here |Λ| denotes the volume of Λ. The allowed values of
→
k are

→
k =

2π
|Λ|1/3

→
n with

→
n ∈ Z3

+
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13 An Estimation Of The Indirect Part Of The Coulomb Energy

and χα(σ) with α = 1, . . . , q is an orthonormal basis in C1. Closer inspection shows that
C = 0.93.

Formula (8) above suggests that in the general case, i.e., for any antisymmetric func-
tion of space and spin, Eψ given by 14.1(13) should be bounded below by

−Ce2/3q−1/3

∫
R3

Qψ(x)4/3dx (9)

for some suitable universal constant C. For the case where all the ei’s = e, (9) is correct
provided the factor q−1/3 is omitted. That the Pauli principle plays no role in the question
of bounding Eψ in terms of Qψ alone we shall show now. Following [LO] it is easy to find
function ψq ∈ L2(R3; C1)N) for q = 1, 2, 3, . . . each of which is totally antisymmetric and
such that all the ψq ’s have the same charge density Q(x), and yet Eψq is independent of
q. Define a function θ(z1, . . . , zN ) with zi = (xi, σi) where σi ∈ {1, . . . , q}, i = 1, . . . , N
to be totally antisymmetric and to take only the values ±q−N . Obviously we have∑

σ1...σN

|θ(z1, . . . , zN )|2 = 1 (10)

for each x1, . . . , xN . Pick any symmetric ψ(x1, . . . , xN ) in L2(R3N ) and consider

ψq(x1, σ1; . . . ;xNσN ) = ψ(x1, . . . , xN )θ(x1, σ1; . . . ;xNσN ) (11)

which is totally antisymmetric. Since by (10)∑
σ1...σN

|ψq(x1, σ1; . . . ;xN , σN )|2 = |ψ(x1, . . . , xN )|2

we have Iψ = Iψq , and Qψ = Qψq for each q, and hence Eψ = Eψq independent of q.
Thus, the best general estimate we could aim for is

Eψ ≥ −C
∫
R3

Qψ(x)4/3dx (12)

with C being a universal constant. One might try to improve the constant in the estimate
by excluding certain symmetries for wave functions for example totally symmetric(i.e.
bosonic) functions. That this is impossible can be seen in a similar fashion as above.
Thus the Coulomb repulsion is insensitive to the symmetry properties of a wave function
and is therefore not able to see the spin. The reason q entered in (9) was that the kinetic
energy operator was taken into account i.e. changing q meant changing the ground
state of the kinetic energy operator and hence it meant changing Qψ(x). Our point is
that when Qψ(x) is the only available information then (12) is the best one can hope for.
This is in contrast to the kinetic energy which is sensitive to the symmetry properties of
the spatial part of the wave function. In fact (see chapter XII) a spin dependent bound
can be obtained

Tψ ≥ Cq−2/3

∫
R3

Qψ(x)5/3dx (13)
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The difference i.e. spin dependence of the kinetic energy estimate and spin indepen-
dence of the exchange estimate can be (somewhat sloppily) rephrased by saying that
only an off diagonal operator (like the Laplacian) can “see” the symmetry properties of
a wave function and therefore the spin.

Exchange Estimate Theorem

Theorem 56 (Exchange Estimate) Let ψ be a countable collection of functions {ψβ}β∈N ,
each ψβ being in L2(R3N ), and assume ψ to be normalized, i.e.,∑

β

‖ψβ‖2
2 = 1.

Assume also that either ei ≥ 0 for all 1 ≤ i ≤ N or else that ei ≤ 0 for all 1 ≤ i ≤ N . Then
the indirect term Eψ of the Coulomb energy given by 14.1(13) satisfies the estimate

Eψ ≥ −C

∫
R3

∣∣∣∣ N∑
i=1

eiQ
i
ψ(x)

∣∣∣∣4/3dx
1/2∫

R3

|Qψ(x)|4/3dx

1/2

, (1)

where C is some constant less than 1.68. Here Qψ(x) and Qiψ(x) are given by the expres-
sions 14.1(8) and 14.1(9). In case all the ei equal a common value e then

Eψ ≥ −C|e|2/3
∫
R3

|Qψ(x)|4/3dx (2)

Remark 57 This theorem was proved in [LE] and with an improved constant in [LO].
Since the number of particles is fixed one might expect that the sharp constant in (1)
is N dependent. This is in fact true. In the case of one particle the constant C1 can in
principle be computed exactly. Since Iψ = 0 in this case, Eψ = −D(Qψ, Qψ) and we
have that

C1 = sup
{

D(ρ, ρ)∫
ρ(x)4/3dx

: ρ(x) ≥ 0,
∫
ρ(x)dx = 1

}
By 14.3(3) and (4) (see below) C1 is finite. In [TL] and [GBH] the above variational
problem was shown to reduce to a Lane-Emden equation of order 3 whose solutions are
tabulated. The result is

C1 = 1.092

This constant plays a role in the Chandrasekhar mass limit (see Chapter IX). The Lane-
Emden equation goes back to Homer Lane in his study of gravitating gas spheres in the
year 1869! The existence of a maximizer was shown in [LO], where also a lower bound
for C2 is computed:

C2 ≥ 1.234 > C1
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13 An Estimation Of The Indirect Part Of The Coulomb Energy

In general it is not hard to see that

CN ≤ CN+1.

Again, see [LO] for details. The constant C in (1), which is valid for all particle numbers,
is the worst possible case, and we note (from the above bound on C2) that the bound
1.68 cannot be improved very much.

Remark 58 A second remark is of a more technical nature. Since Eψ is the difference
of two positive quantities and since the only assumption on ψ is that it is normalized,
the reader might worry that Eψ is not well defined. Conceivably Iψ and D(Qψ, Qψ)
could both be infinity and yet Eψ, being the difference of the two, is somehow finite.
This does not affect the validity of Theorem 14.3 as the following reasoning shows. We
can assume that

∫
|Qψ(x)|4/3dx < ∞ for otherwise there is nothing to prove. By the

Hardy-Littlewood-Sobolev inequality (see Chapter XVII) we have that

D(Qψ, Qψ) ≤ C‖Qψ‖2
6/5 (3)

and by Hölder’s inequality

‖Qψ‖6/5 ≤

∫
R3

Qψ(x)dx

1/3∫
R3

|Qψ(x)|4/3dx

1/2

=

(
N∑
i=1

ei

)1/3
∫

R3

|Qψ(x)|4/3dx

1/2

(4)
Hence, wheneverQψ ∈ L4/3(R3) (so that the right side of (1) and (2) is finite)D(Qψ, Qψ)
is also finite and Eψ is well defined (although it might be +∞, but never −∞). Hence-
forth we shall consider the case that all ei ≥ 0, even though the main application of
Theorem 14.3 is to electrons for which ei = e < 0. This is done to avoid writing absolute
values everywhere, but it is of no consequence since the only relevant quantities are the
products ekej which are always positive.

The first step in the proof is a generalization of a lemma originally due to Onsager
[OL].
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Lemma About Smearing Out Charges

Theorem 59 (Smearing Out Charges) Let x1, . . . , xN be distinct points in R3 and, cen-
tered at these points, we are given N nonnegative bounded functions µx1 , . . . , µxN , each
spherical symmetric and such that

∫
µxi(x)dx = 1 for each i = 1, . . . , N . Then for any

nonnegative function ρ in L1(R3) there is the inequality

∑
i<j

eiej |xi − xj |−1 ≥ −D(ρ, ρ) + 2
N∑
i=1

eiD(ρ, µxi)−
N∑
i=1

e2iD(µxi , µxi) (1)

Proof The µxi ’s being bounded guarantees that D(ρ, µxi) and D(µxi , µxi) are bounded.
We can assume that D(ρ, ρ) is not infinite, because then the right side of (1) is −∞ and
the lemma is trivial. We know from Sect. 22.2 that D(·, ·) is positive definite and hence

D

(
ρ−

N∑
i=1

eiµxi , ρ−
N∑
i=1

eiµxi

)
≥ 0 (2)

which implies that

∑
i6=j

eiejD(µxi , µxj ) ≥ −D(ρ, ρ) + 2
N∑
i=1

eiD(ρ, µxi)−
N∑
i=1

e2jD(µxi , µxi). (3)

Since µxi and µxj are spherically symmetric around the centers xi and xj , we know from
Sect. 22.8 that

D(µxi , µxj ) ≤
1
2
eiej |xi − xj |−1 (4)

which proves (1).

Remark 60 The point of the above lemma is that it estimates a quantity

(∑
i<j

eiej |xi − xj |−1

)
in which correlations are important by another one where the correlations of the xi’s are
not important. Lemma 14.4 immediately allows us to get a lower bound for Eψ in terms
of the one particle densities Qψ(x), resp. Qiψ(x). Multiplying (1) by |ψβ(x1, . . . , xN )|2,
integrating and summing over β we arrive at

Iψ ≥ −D(Qψ, Qψ)+2
N∑
i=1

∫
R3

D(Qψ, µxi)Q
i
ψ(xi)dxi−

N∑
i=1

ei

∫
R3

D(µxi , µxi)Q
i
ψ(xi)dxi. (5)

The normalization
∑
β

∫
|ψβ(x1, . . . , xN )|2dx1 . . . dxN = 1 has been used as well as the

monotone convergence theorem to interchange the β summation with the integration.
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If we denote by δxi the Dirac measure at the point xi we can write, in a somewhat formal
but correct fashion,

N∑
i=1

∫
R3

D(Qψ, δxi)Q
i
ψ(xi)dxi = D(Qψ, Qψ).

Hence, by adding and subtracting we get from (5)

Eψ ≥ −F1 − F2 (6)

where

F1 = 2
N∑
i=1

∫
R3

D(Qψ, δxi − µxi)Q
i
ψ(xi)dxi (13.1)

F2 =
N∑
i=1

ei

∫
R3

D(µxi , µxi)Q
i
ψ(xi)dxi (13.2)

Observe that F1 is positive and for µxi fixed, quadratic in Qiψ.

Proof Of Exchange Estimate Theorem With Crude Bound

Proof In 14.4(6-8) we are still free to choose the functions µxi . It is clear that the µxi ’s
have to depend on Qψ for otherwise F1 would be quadratic in Qψ.

Let µ : R3 → R be a nonnegative bounded function satisfying

1. µ is spherically symmetric about the origin.

2.
∫
R3

µ(y)dy = 1

3. µ(y) = 0 if |y| > 1

We assume, without loss of generality, that all the ei’s are positive. Define µx(y) by
the formula

µx(y) = λ3Qψ(x)µ(λQψ(x)1/3(x− y)) (1)

where λ is a positive number. It is easily seen that the µxi ’s obtained in this way satisfy
the assumptions of Lemma 14.4.

If we denote
Pλ(α, r) = αr−1 − λα4/3φ(λα1/3r), (2)

where φ is the potential associated with µ, i.e.,

φ(|x|) =
∫
R3

µ(y)
|x− y|

dy =
∫
R3

min
(

1
|x|
,

1
|y|

)
µ(y)dy, (3)
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(see Sect. 2.8), then a simple computation shows that

F1 =
∫
R3

∫
R3

Qψ(y)Pλ(Qψ(x), |x− y|)dxdy. (4)

Since

D(µx, µx) = λ6Qψ(x)2
∫
R3

∫
R3

µ(λQψ(x)1/3(x− y))µ(λQψ(x)1/3(x− z))
|y − z|

dydz (13.3)

= λQψ(x)1/3D(µ, µ) (13.4)

we find that

F2 = λD(µ, µ)
∫
R3

Qψ(x)1/3
(

N∑
i=1

eiQ
i
ψ(x)

)
dx. (5)

In case ei = e, all i = 1, . . . , N, F2 is already of the desired form. We concentrate on
F1 and prove first a crude estimate which hopefully clarifies what the choice in (1) of
µx accomplishes. Since µ is nonnegative and

∫
µ(y)dy = 1, (3) shows that φ(r) ≤ r−1

which implies that Pλ(a, r) ≥ 0. Further, since µ(y) = 0 for |y| > 1, we find again by (3)
that Pλ(a, r) = 0 if λa1/3r > 1. Hence we have the trivial bound

Pλ(a, r) ≤

{
ar−1 if λa1/3 ≤ 1
0 otherwise

(13.5)

which implies that

F1 ≤
∫

λQψ(x)1/2|x−y|≤1

Qψ(x)Qψ(y)
|x− y|

dxdy. (7)

The restriction upon the integration in (7) obviously plays an important role. To make

use of it we resort to the following device. Write Qψ(x) =
∞∫
0

dαχα(x) where χα is the

characteristic function of the set {x : Qψ(x) ≥ α}, i.e.

χα(x) =

{
1 if Qψ(x) ≥ α

0 otherwise.
(13.6)

Using this and Fubini’s theorem, (7) becomes

∞∫
0

dα

∞∫
0

dβ

∫
λQψ(x)1/3|x−y|≤1

χα(x)χβ(y)
|x− y|

dxdy (9)

≤
∞∫
0

dα

∞∫
0

dβ

∫
λα1/3|x−y|≤1

χα(x)χβ(y)
|x− y|

dxdy (10)
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13 An Estimation Of The Indirect Part Of The Coulomb Energy

Where α ≤ β we estimate the integrand by∫
λα1/3|x−y|≤1

χβ(y)
|x− y|

dxdy =
∫
R3

χβ(y)dy
∫

|x|≤(λα1/3)−1

|x|−1dx =
∫
R3

χβ(y)
2π

λ2α2/3
dy (11)

and where α ≥ β we estimate the integrand by∫
λα1/3|x−y|≤1

χα(y)
|x− y|

dxdy =
∫
R3

χα(y)
2π

λ2α2/3
dy.

Therefore (10) is bounded above by

2π
λ2


∞∫
0

dβ

β∫
0

dα

∫
R3

χβ(y)α−2/3dy +

∞∫
0

dα

α∫
0

dβ

∫
R3

χα(x)α−2/3dx

 =
8π
λ2

∞∫
0

α1/3dα

∫
R3

χα(x)dx

(13.7)

=
6π
λ2

∫
R3

ρψ(x)4/3dx.

(13.8)

(For the last step see Chapter XVII.) Returning to 14.4(6) and using (5) we have that

Eψ ≥ −

6π
λ2

∫
R3

Qψ(x)4/3dx+ λD(µ, µ)
∫
R3

Qψ(x)1/3
( N∑
i=1

eiQ
i
ψ(x)

)
dx

 .

Maximizing the right side over λ and using Hölders’ inequality on the second term yields
the bound

Eψ ≥ −34/3

21/3
π1/3(D(µ, µ))2/3

∫
R3

Qψ(x)4/3dx

1/2∫
R3

( N∑
i=1

eiQ
i
ψ(x)

)4/3

dx

1/2

. (13)

The optimal choice for µ here is

µ(y) =
1
4π
δ(|y| − 1)

which yields

Eψ ≥ −34/3

2
π1/3

∫
R3

Qψ(x)4/3dx

1/2∫
R3

[ N∑
i=1

eiQ
i
ψ(x)

]4/3

dx

1/2

.

Note that 34/3

2 π1/3 ≈ 3.17. �
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An Improved Bound

Proof One can improve the constant by replacing estimate 14.5(6) by a more sophisti-
cated treatment. Since Pλ(a, r) is continuously differentiable we have, using the funda-
mental theorem of calculus, that

∫
R3

Pλ(Qψ(x), |x− y|)dx =
∫
R3

dx

Qψ(x)∫
0

(
∂

∂α
Pλ

)
(α, |x− y|)dα (1)

and, again using the definition of χα in 14.5(8), this can be written as

∫
R3

dx

∞∫
0

χα(x)
(
∂

∂α
Pλ

)
(α, |x− y|)dα. (2)

By inspection, using 14.5(3), we see that ∂P
∂α (α, r) is bounded and hence, by Fubini’s

theorem, we can write

F1 ≡
∫
R3

∫
R3

ρψ(y)Pλ(ρψ(x), |x− y|)dxdy (13.9)

=

∞∫
0

dα

∞∫
0

dβ

∫
R3

∫
R3

χα(x)χβ(y)
∂Pλ
∂α

(α, |x− y|)dxdy (13.10)

An upper bound is obtained by replacing ∂Pλ
∂α by its positive part

[
∂Pλ
∂α

]
+

= max(∂Pλ∂α , 0).

Observe now that
[
∂Pλ
∂α

]
+

(α, r) plays the role of r−1θ(λ1/3αr) in 14.5(10), where

θ(t) =

{
0 if t > 1
1 if t ≤ 1.

The integral ∫
R3

θ(λ1/3α|x|)
|x|

dx

in 14.5(11) is replaced by ∫
R3

[
∂Pλ
∂α

]
+

(α, |x|)d3x. (4)

To compute this integral observe that

Pλ(α, r) = λα4/3G(λα1/3r), (5)
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13 An Estimation Of The Indirect Part Of The Coulomb Energy

where (with φ(t) given in 14.5(3))

G(t) =
1
t
− φ(t), for t > 0. (6)

Hence
∂Pλ
∂α

(α, r) = λα1/3

(
∂Pλ
∂α

)
(1, λα1/3r)

and therefore (4) becomes

(λα1/3)−2

∫
R3

d3x [∂P/∂α]+ (1, |x|) = (λα1/3)−2K(µ), (7)

where K(µ) depends only on µ. Following through all the steps in 14.5 with the corre-
sponding replacements we end up with the following estimate (see 14.5(13))

Eψ ≥ −3
2
[6K(µ)D(µ, µ)2]1/3

∫
R3

[ N∑
i=1

eiQ
i
ψ(x)

]4/3

dx

1/2∫
R3

Qψ(x)4/3dx

1/2

. (8)

Before, we chose µ to be a constant surface charge distribution on the unit sphere which,
by making a crude estimate onK(µ), yielded the constant 3.17. Computing directly from
formula (7) yields the constant 1.81.

By choosing µ more cleverly this constant can be improved. We choose µ to be a
constant, positive, spherically symmetric charge distribution µ0 with

∫
µ0(y)dy = 1, i.e.

µ0(y) =

{
(4π/3)−1 if |y| ≤ 1
0 if |y| > 1.

(13.11)

Computing φ(r) form 14.5(3) we get

φ(r) =

{
3
2

(
1− 1

3r
2
)

if 0 < r ≤ 1
1
2 if r ≥ 1

(13.12)

and hence

Pλ(α, r) =

{
αr−1 − 3

2λα
4/3
(
1− 1

3(λα1/3r)2
)

if 0 ≤ r ≤ (λα1/3)−1

0 if r ≥ (λα1/3)−1.
(13.13)

Therefore [
∂P1

∂α

]
(1, r) =

{
1
r (1− r)(1− r − r2) 0 ≤ r ≤ 1
0 1 ≤ r

(13.14)

This function is nonnegative for 0 ≤ r ≤
√

5−1
2 and so

K(µ0) = 4π
(

59
60
− 5

12

√
5
)

= 0.6489. (13)

106



An elementary calculation shows that

D(µ0, µ0) =
3
5

(14)

and hence
C ≤ 1.68, (15)

which proves theorem 14.3. �
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14 Localization of the kinetic energy

The next few statements are ingredients wich we shall use to prove the positivity of the
TFW theory. We will proceed in an entirely different way than we did in TF theory.
The first statement deals with ‘pulling the Coulomb tooth’. We understand the situation
in the presence of one nucleus the problem comes with many of them. The idea is to
localize the kinetic energy and thereby paying a small prize which hopefully does not
bother us too much. To elucidate the idea we work out the simpler case for the Laplacian
first.

Theorem 61 Let B be the unit ball centered at the origin. For any function in H1(Rn) we
have the inequality ∫

B
|∇f |2dx >∼

∫
B

[
1
4

1
|x|2

− 1 +
1
4
|x|2
]
f2dx .

Proof Consider first any smooth, radial function h with h′(1) = 0. Setting f = hg we
calculate ∫

B
|∇f |2dx =

∫
B

[|∇g|2h2 + |∇h|2g2 + 2gh∇g · ∇h]dx

Integration by parts yields

2
∫
B
gh∇g · ∇hdx =

∫
B

div · [h∇hg2]dx−
∫
B
|∇h|2g2dx−

∫
B
h∆hg2dx .

Using Gauss’ theorem and the fact that h′(1) = 0 we get that∫
B

div · [h∇hg2]dx = 0 .

Thus, ∫
B
|∇f |2dx =

∫
B
|∇g|2h2dx+

∫
B

−∆h
h

f2dx >∼
∫
B

−∆h
h

f2dx .

Now we choose h carefully, e.g, the choice of Lieb and Yau is

h =
1

|x|1/2
e|x|

2/4 .

Themotivation for this ansatz is that h should be a function that behaves as 1√
r

as r → 0
because this is the function that is an approximate optimizer for the uncertainty principle
in the whole space. The other factor is a matter of trial an error in order to obtain decent
constants. Clearly h′(1) = 0 and we get∫

B
|∇f |2dx >∼

∫
B

[
1
4

1
|x|2

− 1 +
1
4
|x|2
]
f2dx .
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14 Localization of the kinetic energy

Theorem 62 Let B be a ball of radius 1, centered at the origin. Define the local kinetic
energy

(f,
√
−∆f)B =

1
2π2

∫
B

∫
B

|f(x)− f(y)|2

|x− y|4
dxdy .

Then

(f,
√
−∆f)B >∼

∫
B
|f(x)|2

[
2
π

1
|x|
dx− Y (|x|)

]
dx

where

Y (r) =
2

π(1 + r)
+

1 + 3r2

π(1 + r2)
ln(1 + r)− 1− r2

πr(1 + r2)
ln(1− r)− 4r

π(1 + r2)
ln r

<∼ 1.56712 .

The important point for us is that

4π
∫
Y (r)4r2dr < 7.6245 .

Proof Although the result looks complicated the proof is quite transparent. First we
replace |x|−4 by (|x|2 + t2)−2, i.e. regularizing the kernel. Thus

(f,
√
−∆f)B,t =

1
π2

∫
|f(x)|2

∫
B

(|x−y|2+t2)−2dy− 1
π2

∫
B

∫
B
f(x)f(y)(|x−y|2+t2)−2dxdy

Let h(x) be a positive real valued function which we are going to choose later and write
the second term as∫
B

∫
B
f(x)f(y)(|x−y|2+t2)−2dxdy =

∫
B

∫
B

f(x)h(y)1/2

h(x)1/2
f(y)h(x)1/2

h(y)1/2
(|x−y|2+t2)−2dxdy

and use Schwarz’s inequality to get the bound

<∼
∫
B
|f(x)|2ηt(x)dx

where
ηt(x) = h(x)−1

∫
(|x− y|2 + t2)−2h(y)dy .

Thus we have
(f,

√
−∆f)B,t >∼

1
π2

∫
|f(x)|2Qt(x)dx

where

Qt(x) =
∫
B

(|x− y|2 + t2)−2(1− h(x)
h(y)

)dy .

Next we choose h to be
h(r) =

1
r

+ r .
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Again, this is motivated by the form of the optimizer of the uncertainty principle for rel-
ativistic system in the whole space, i.e., the leading behaviour as r → 0 is 1/r. Working
out the integral over angles leads to

1
πr(1 + r2)

∫ 1

0
(s− r)(1− rs){[(r − s)2 + t]−1 − [(r + s)2 + t]−1}ds .

This integral can be computed in the limit as t → 0 and the result is the function Y (r).
For details see [LY]. �

We can apply the result of Theorem 2 to the following situation.

Theorem 63 Given K disjoint balls Bk centered at the the points Rk and radii Dk, k =
1, . . . ,K. Then for any function f in R3 we have the bound

(f,
√
−∆f) >∼

K∑
k=1

∫
Bk

|f(x)|2
[

2
π|x−Rk|

− 1
Dk

Y (
x−Rk
Dk

)
]
dx .

Proof Clearly

(f,
√
−∆f) >∼

K∑
k=1

(f,
√
−∆f)Bk

since the balls are disjoint. Set

gk(x) = D
3/2
k f(Dk(x+Rk))

so that g lives in the unit ball centered at the origin. Next, using Theorem 2 we have

(gk,
√
−∆gk)B >∼

∫
B
|gk(x)|2

[
2
π

1
|x|
dx− Y (|x|)

]
dx .

Further, since
(gk,

√
−∆gk)B = Dk(f,

√
−∆f)Bk

and since∫
B
|gk(x)|2

[
2
π

1
|x|
dx− Y (|x|)

]
dx =

∫
Bk

|f(x)|2
[

2
π

Dk

|x−Rk|
dx− Y (

|x−Rk|
Dk

)
]
dx

we get the result. �
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15 An electrostatic inequality

The size of the Coulomb potential of a collection of nuclei and electron has two sources.
It is singular close to the nuclei and it can be also large because there are many nuclei.
To disentangle these two issues one resorts to an electrostatic inequality due to Lieb and
Yau. Before we can describe it in detail we need the notion of a Voronoi cell with respect
to a collection of nuclei. Define

Γj = {x ∈ R3 : |x−Rj | < |x−Ri|, i 6= j} .

Clearly Γj is open and it easily seen to be convex. Further we define the nearest neighbor
distance between among the nuclei by

min
i6=j

|Ri −Rj |

and set

Dj =
mini6=j |Ri −Rj |

2
.

The Coulomb potential due to all the nuclei that an electrons feels at the point x is

W (x) = Z
∑
k

1
|x−Rk|

.

Define
δ(x) = min{|x−Ri| : 1 <∼ i <∼ K} ,

and set
Φ(x) = W (x)− Z

δ(x)
.

Thus, for x ∈ Γj the potential Φ(x) is due to all the nuclei outside of the Voronoi cell Γj .

Theorem 64 For any charge distribution µ

D(µ, µ)−
∫

Φ(x)µ(dx) + Z2
∑
k<l

1
|Rk −Rl| >

∼ Z2

8

∑
j

1
Dj

.

Proof Note that Φ is harmonic in each Voronoi cell. It is not harmonic on the whole
space since the function Φ is not differentiable in the boundary of the Voronoi cells. Pick
a test function f and calculate∫

∆fΦ(x)dx =
∑
j

∫
Γj

∆fΦ(x)dx =
∑
j

∫
Γj

div · (∇fΦ)(x)dx−
∑
j

∫
Γj

∇f · ∇Φ(x)dx
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15 An electrostatic inequality

=
∑
j

∫
∂Γj

Nj · (∇fΦ)(x)dS −
∑
j

∫
Γj

∇f · ∇Φ(x)dx

where Nj is the outward normal to the boundar of the Voronoi cell Γj . Since Φ is
continuous the sum of the boundary integrals add up to zero. Further

−
∑
j

∫
Γj

∇f · ∇Φ(x)dx = −
∑
j

∫
Γj

div(f · ∇Φ)(x)dx+
∑
j

∫
Γj

f∆Φ(x)dx

= −
∑
j

∫
Γj

div(f · ∇Φ)(x)dx

since Φ is harmonic in Γj .
Hence we have ∫

∆fΦ(x)dx = −
∑
j

∫
∂Γj

(f(x)Nj · ∇Φ)(x)dS .

The boundary ∂Γj consists of two dimensional planes separating some Γi form Γj . Note
that each boundary segment appears twice, as the boundary of a Voronoi cell and its
neighbor. On such a segment the contribution of W (x) drops out since it is differentiable
and we are left with ∫

∆fΦ(x)dx =
∑
j

∫
∂Γj

f(x)Nj · ∇
1

δ(x)
dS .

In other words the charge density that generates the potential Φ is a measure ν that is
supprted on the boundary of the Voronoi cells. More precisely, for any test function∫

∆fΦ(x)dx = −
∫
f(x)ν(dx)

Since every point on the common boundary of two Voronoi cells Γj and Γk has the same
distance to the point Rk and Rj we get that the gradients on the common boundary but
taken from the interior of Γj and Γk are of the same magnitude but of opposite direction.
Thus, the density of the measure on the boundary of the Voronoi cell is given by

ν(dx) = −2ZNj∇|x−Rj |−1 .

Hence
Φ(x) =

1
4π

∫
1

|x− y|
ν(dy) ,

and
D(µ, µ)−

∫
Φ(x)µ(dx) + Z2

∑
k<l

1
|Rk −Rl|

= D(µ− ν, µ− ν)−D(ν, ν) + Z2
∑
k<l

1
|Rk −Rl|
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>∼ −D(ν, ν) + Z2
∑
k<l

1
|Rk −Rl|

and where we have to calculate D(ν, ν).

D(ν, ν) =
1
2

∫
Φ(x)ν(dx) =

1
2

∫
W (x)ν(dx)− 1

2

∫
Z

δ(x)
ν(dx)

=
Z

2

∑
j

Φ(Rj)−
1
2

∫
Z

δ(x)
ν(dx)

=
∑
k<l

Z2

|Rk −Rl|
− 1

2

∫
Z

δ(x)
ν(dx) .

Hence
−D(ν, ν) + Z2

∑
k<l

1
|Rk −Rl|

=
1
2

∫
Z

δ(x)
ν(dx) .

The last expression reduces to

−
∑
j

Z2

8π

∫
∂Γj

1
|x−Rj |

Nj · ∇
1

|x−Rj |
dS .

note that in this expression we integrate again over each boundary twice once for each
Voronoi cell. Straightforward calculation leads to

= −
∑
j

Z2

16π

∫
∂Γj

Nj · ∇
1

|x−Rj |2

=
∑
j

Z2

16π

∫
Λj

∆
1

|x−Rj |2

where Λj is the complement of Γj . This causes the change in the sign. Since

∆
1

|x−Rj |2
=

2
|x−Rj |4

,

it remains to calculate the integral

Z2

8π

∫
Λj

1
|x−Rj |4

dx .

It is an integral over the complement of a convex set and hence this set contains the
half space whose boundary plane touches the ball of radius Dj centered at Rj . Thus
we get a lower bound by just integrating over that half space. By shifting and rotating
coordinates we may assume that Rj = 0 and hence

Z2

8π

∫
Λj

1
|x−Rj |4

dx >∼
Z2

8π

∫ ∞

−∞
dz

∫ ∞

−∞
dy

∫ ∞

Dj

dx
1

(x2 + y2 + z2)2
=

Z2

8Dj
.

This is what we wanted to show. �
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16 Stability for relativistic systems; putting
everything together

In this section we prove the our final result about relativistic stability. Recall that our
functional is of the form

E(ρ) = β(
√
ρ,
√
−∆

√
ρ) +

3
4
γ

∫
ρ4/3(x)dx

+α

[
−Z

∑
k

∫
ρ(x)

|x−Rk|
dx+D(ρ, ρ) + Z2

∑
k<l

1
|Rk −Rl|

]
.

We prove

Theorem 65 The functional E is stable if β >∼ πZα/2 and γ >∼ 4.8158Z2/3α.

Proof Set β = πZα/2 and‘pull the Coulomb tooth’ (see section 15) to find that

E(ρ) >∼
3
4
γ

∫
ρ4/3(x)dx+

α

[
−
∫
ρ(x)U(x)dx+D(ρ, ρ) + Z2

∑
k<l

1
|Rk −Rl|

]
. (1)

where

U(x) = Z
∑
k

1
|x−Rk|

(1− χBk) +
π

2
χBk

1
Dk

Y (
|x−Rk|
Dk

) .

Recall that
Φ(x) = Z

∑
k

1
|x−Rk|

− Z

δ(x)

which takes the value
Z
∑
k 6=j

1
|x−Rk|

in the Voronoi cell Γj . Now we split U(x) as

U(x) = [U(x)− Φ(x)] + Φ(x)

and the lower bound (1) takes the form

E1(ρ) + αE2(ρ)
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16 Stability for relativistic systems; putting everything together

where
E1(ρ) =

3
4
γ

∫
ρ4/3(x)dx− Zα

∫
ρ(x)[U(x)− Φ(x)]dx

and
E2(ρ) = D(ρ, ρ)−

∫
Φ(x)ρ(x)dx+ Z2

∑
k<l

1
|Rk −Rl|

.

The second functional is bounded below by

Z2

8

∑
k

1
Dk

by the electrostatic inequality in section 16. The first term we bound using Hölder’s
inequality by

3
4
γ‖ρ‖4/3

4/3 − Zα‖ρ‖4/3‖U − Φ‖4

and optimizing over X = ‖ρ‖4/3 yields

−(Zα)4

4γ3

∫
[U(x)− Φ(x)]4dx

= −(Zα)4

4γ3

∑
k

(
π

2
)4
∫
Bk

D−4
k Y (

|x−Rk|
Dk

)4dx+
∫

Γk−Bk

1
|x−Rk|4

dx .

Since the Voronoi cell Γk lies on one side of the mid plane defined by the nearest neigh-
bor nucleus we get an upper bound on the last term by integrating over the outside of
the ball Bk and then subtract the integral of the half space whose z-coordinate is greater
or equals Dk. Thus∫

Γk−Bk

1
|x−Rk|4

dx <∼
4π
Dk

−− 1
Dk

∫ ∞

1
dz

∫ ∞

0

2πr
(r2 + z2)2

dr =
3π
Dk

.

Hence we get that

E1(ρ) >∼ −(Zα)4

4γ3

[
(
π

2
)44π

∫ 1

0
Y (r)4r2dr + 3π

]∑
k

1
Dk

= −(Zα)4

4γ3

[
7.6245(

π

2
)4 + 3π

]∑
k

1
Dk

Adding the bounds yields in total

E(ρ) >∼
[
−(Zα)4

4γ3

[
7.6245(

π

2
)4 + 3π

]
+ α

Z2

8

]∑
k

1
Dk

and the condition on γ stated in the theorem yields the result. Next we apply this
theorem to the full problem. We recall that

β =
π

2
Zα
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and
γ =

4
3

[
1.63q−1/3(1− π

2
Zα)− 1.68α

]
which yields stability provided that

π

2
Z + 2.2159q1/3Z2/3 + 1.0307q1/3 <∼

1
α
.

To summarize, we have proved the following theorem.

Theorem 66 For all antisymmetric, normalized wave functions Ψ associated with particles
having q spin states

N∑
j=1

(Ψ,
√
−∆Ψ) + α(Ψ, VcΨ) >∼ 0

provided that
π

2
Z + 2.2159q1/3Z2/3 + 1.0307q1/3 <∼

1
α
.

This is one of the main theorems in this whole field of research. As an elementary
application we use this theorem to prove stability of matter for non-relativistic systems.

Proof Note that by Schwarz’s inequality

(Ψ,
√
−∆Ψ) <∼ ‖Ψ‖(Ψ,−∆Ψ)1/2 .

Hence, since Ψ is normalized

N1/2

 N∑
j=1

(Ψ,−∆Ψ)

1/2

>∼
N∑
j=1

(Ψ,−∆Ψ)1/2 >∼
N∑
j=1

(Ψ,
√
−∆Ψ)

From this we get that for any a > 0

N∑
j=1

(Ψ,−∆Ψ) >∼
2
a

N∑
j=1

(Ψ,
√
−∆Ψ)−N

1
a2

.

Thus,
N∑
j=1

(Ψ,−∆Ψ) + (Ψ, VcΨ) >∼
2
a

N∑
j=1

(Ψ,
√
−∆Ψ) + (Ψ, VcΨ)−N

1
a2

>∼ −N
a2

provided that a is chosen such that

π

2
Z + 2.2159q1/3Z2/3 + 1.0307q1/3 <∼

2
a
.
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16 Stability for relativistic systems; putting everything together

For Z = 1 and q = 2 we choose
2
a

= 5.6611

and the lower bound
−8.012N .

Note that the bound depends only onN and not onK. Further, if we go back to the Lieb-
Thirring result and take neutral hydrogen, i.e., Z = 1 and N = K even the constants are
comparable. �

120



17 Magnetic fields

As an application of the results on relativistic systems we treat system with magnetic
fields. The plan is the following. First we describe Hamiltonians with magnetic fields,
then we discuss an important tool, the Diamagnetic inequality and then we proceed
answering the stability question.

Classically, he Hamiltonian of a particle of mass m and charge e moving in a magnetic
field B(x) is given by the expression

1
2m

(p− e

c
A(x))2

where A(x) is a vector potential, i.e., is a vector field such that

curl A(x) = B(x) .

That such a vector field exists follows from one of the homogenous Maxwell equations

div B(x) = 0 .

Recall the Hamilton equations of motion

x′ = ∇pH(x, p) p′ = −∇xH(x, p) .

Working this out for the Hamilton function given above yields the eqaution of motion
for the particle

mx′′ =
e

c
x′ ∧B(x) ,

which is the Lorentz force law. Here the prime denotes differentiation with respect to
time. Note that

mx′ = p− eA(x)

which shows that p is not the physical momentum. It is called the canonical momentum
although, as we shall see, there is nothing canonical about it. The step from classical to

quantum mechanics proceeds by replacing p by

~
i
∇

which leads to the operator
~2

2m
(
1
i
∇− e

~c
A(x))2 .
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17 Magnetic fields

Since we will be dealing with non-relativistic systems we choose units in which the unit
of energy is 2mc2α2, the unit of length ~

2mcα and finally we replace A by e
~cA. In these

units the energy of a hydrogenic atom in a state ψ is given by∫
|(1
i
∇ψ +A(x)ψ(x)|2dx− Z

∫
1
|x|
|ψ(x)|2dx .

Note that the electron has negative charge. Moreover, for later purpose the field energy,
which in the usual units is given by

1
8π

∫
|B(x)|2dx

is replaced by
1

8πα2

∫
|B(x)|2dx .

To turn this into mathematics we consider the space

H1
A(R3)

which is the collection of all complex valued functions ψ with the property that

∇ψ(x) + iA(x)ψ ∈ L2(R3)

where we interpret ∇ψ in the weak sense. A reasonable assumption on A is that it is in
L2

loc(R
3). In the usual fashion we can equip H1

A with an inner product

(ψ, φ)A =
∫

(∇ψ(x) + iA(x)ψ)(∇φ(x) + iA(x)φ)dx+
∫
ψ(x)φ(x)dx .

It is not hard to see that H1
A(R3) is a Hilbert space. It is a bit more difficult to see that

the set C∞
c (R3) is dense in this space, but it is true (see [LL] Chapter 7).

One of the important inequalities is the diamagnetic inequality∫
|∇ψ(x) + iA(x)ψ)|2dx >∼

∫
|∇|ψ|(x)|2dx

which formally can be seen by writing

ψ(x) = |ψ(x)|eiS(x)

and calculating∫
|∇ψ(x) + iA(x)ψ)|2dx =

∫
(|∇|ψ|(x)|2 + (∇S(x) +A(x))2|ψ(x)|2dx

the result being evident. It is not difficult to turn this calculation in a formal proof. As a
result, we have Sobolev’s inequality∫

|∇ψ(x) + iA(x)ψ)|2dx >∼ S(
∫
|ψ(x)|6dx)1/3
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One has to be a bit more careful about the Rellich-Kondrachev theorem. Suppose that
ψj is a sequence bounded in H1

A. Then by the diamagnetic inequality the absolute value
is bounded in H1. Nothing can be said about the phases. Hence we have the statement
of the Rellich-Kondrachev for the absolute values only but not for the phases but this
is enough to prove the existence of ground states as we did for the case without mag-
netic fields. Exploring the diamagnetic inequality further one can make some interesting

statements about the Green’s function. The existence of the resolvent follows by solving
The theory of solving the equation

(
1
i
∇+A(x))2ψ + λψ = g . (1)

where λ > 0. Recall that we do this by looking at the weak formulation, i.e., we say that
ψ is a weak solution of the equation (1) if∫

(∇ψ(x) + iA(x)ψ)(∇φ(x) + iA(x)φ)dx+ λ

∫
ψ(x)φ(x)dx =

∫
gφdx

for all φ ∈ H1
A.

Theorem 67 For all λ >∼ 0 there exists an integrable function GA,λ(x, y) such that the
solution ψ of (1) is given by

ψ(x) =
∫
GA,λ(x, y)g(y)dy .

Moroever,

|GA,λ(x, y)| <∼
e−

√
λ|x−z|

4π|x− z|
.

Proof Consider the solution u of the problem∫
∇u · ∇fdx+ λ

∫
ufdx =

∫
|g|fdx

for all f ∈ H1(R3) that are real. We claim that

|ψ| <∼ u . (2)

To see this we note that for all f ∈ H1 positive∫
|g|f >∼ <

∫
g(x)

ψ√
|ψ|2 + ε2

f(x)dx .

Since ψ is a weak solution of (1) we get that

<
∫
g(x)

ψ√
|ψ|2 + ε2

f(x)dx = <
∫

(∇ψ(x) + iA(x)ψ)(∇φ(x) + iA(x)φ)dx+ λ

∫
ψφdx
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17 Magnetic fields

where we set φ = ψ√
|ψ|2+ε2

f(x). a direct calculation shows that

<
∫

(∇ψ(x) + iA(x)ψ)(∇φ(x) + iA(x)φ)dx >∼
∫
∇ψ∇(

ψf√
|ψ|2 + ε2

)dx

>∼
∫
∇|ψ|∇(

|ψ|f√
|ψ|2 + ε2

)dx

which converges to ∫
∇|ψ|∇fdx .

Hence we have that∫
∇|ψ|∇fdx+ λ

∫
|ψ|fdx <∼

∫
∇u · ∇fdx+ λ

∫
ufdx

which means that ∫
∇(u− |ψ|)∇fdx+ λ

∫
(u− |ψ|)fdx >∼ 0 .

In other words if we set h = u− |ψ|) we have that

−∆h+ λh >∼ 0

in the weak sense. We shall deduce from this that h >∼ 0 a.e. on R3.
Assume first that h is smooth in H1. Then the set A = {x : h < 0} is open. Moreover,

on this set
∆h <∼ λh < 0

which means that the function h has its minimum on the boundary where it is zero.
(Remember that h vanishes at infinity.) Hence A is empty. If h is not smooth we convolve
it with a smooth function fε of compact support, whose integral equals 1,

hε(x) = fε ∗ h ,

where
fε(x) = ε−3f(

x

ε
) .

As ε tends to zero the function hε tends to h a.e. and since hε >∼ 0 so is h and hence (2)
is proved.

Recalling that g → ψ is linear we we show that the resolvent

((
1
i
∇+A(x))2 + λ)−1

is a linear operator with an integral kernel. For this we note that for any fixed x by
Schwarz’s inequality

u(x) <∼ ‖e
−
√
λ|x−·|

4π|x− ·|
‖2‖g‖2 .
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Hence
|ψ|(x) <∼ C(x)|g‖2

and by Riesz’s theorem there exists a function GA(x, y) in L2(R3) such that

ψ(x) =
∫
GA(x, y)g(y)dy .

Next we fix z 6= x and consider the sequence of functions gj given by

gj(y) =
3
4π
χ(|z − y|j)j3

where χ is the characteristic function of the unit ball centered at the origin. Since

lim sup
j→∞

|
∫
GA,λ(x, y)gj(y)dy| <∼

e−
√
λ|x−z|

4π|x− z|

it follows from Lebesgue’s theorem that

|GA,λ(x, z)| <∼
e−

√
λ|x−z|

4π|x− z|

for a.e. z. The case for λ = 0 follows as a limit. �

The next Theorem follows from Theorem 1 and by inspecting the proof of the Lieb-
Thirring inequality. (For details see [AHS], [CSS], [LW] and [HLW]).

Theorem 68 Consider the negative eigenvalues −λ1 <∼ −λ2 <∼ · · · of the Schr”odinger
operator

(
1
i
∇+A(x))2 − U(x) ,

where U(x) >∼ 0. Then we have that

∑
j

λ
1/2
j <∼

1
8π

∫
U(x)2dx (3)

and ∑
j

λj <∼
2

15π2

∫
U(x)5/2dx . (4)

Proof We give here the proof of (2) with the ‘unimproved constants’. (1) is is a bit more
complicated.

Recall that by the Birman Schwinger prinicple

Ne/2([U − e/2]+) <∼ TrKA,e/2([U − e/2]+)2
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17 Magnetic fields

(see formula (1) in Section 12), where

KA,e/2(x, y) = U1/2(x)GA,e/2(x, y)U
1/2(y) .

Using Theorem 1 we get that

TrKA,e/2([U − e/2]+) <∼ TrK0,e/2([U − e/2]+)2

which leads to the bound∫
[U − e/2]+(x)[(−∆ + e/2)−1(x− y)]2[U − e/2]+(y)dxdy

which can be bounded in precisely the same fashion as we did in Section 12. This yields
(2). �

As an immediate Corollary we get the stability of matter with magnetic fields.

Theorem 69 Consider the Hamiltonian

N∑
j=1

(
1
i
∇j +A(xj))2 + Vc

on the space of antisymmetric functions describing particles of 2 spin states. Then the ground
state energy is bounded below by

−4.156Z7/3(N +K) .

Gauge invariance: For a given real C1 function φ, consider the transformation

A→ A′ = A−∇φ

and
ψ → ψ′ = eiφψ .

Then a simple calculation shows that

(
1
i
∇+A′)ψ′ = eiφ(

1
i
∇+A)ψ

in particular

|(1
i
∇+A)ψ(x)|2

does not depend on the particular gauge one chooses. Note, that there are no magnetic
fields in one dimension there are no non-trivial magnetic fields since

(
1
i

∂

∂x
+ a(x))ψ = e−i

R x a(y)dy 1
i

∂

∂x
ei

R x a(y)dyψ
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in other words, the operator

(
1
i

∂

∂x
+ a(x))

is unitarily equivalent to the operator

1
i

∂

∂x
.

There is another fruitful way of looking at the diamagnetic inequality using the heat
equation. In the following presentation there are a number of gaps, e.g., we shall assume
the existence of solutions etc.

Recall the heat equation
∂

∂t
ψ = (∇+ iA(x))2ψ .

which has to be solved with the initial condition ψ0. One can show that there exists a
kernel, the heat kernel, Ht,A(x, y) such that the solution ψt at time t is given by

ψt(x) =
∫
Ht,A(x, y)ψ0(y)dy .

Symbolically we can also write

ψt(x) = [e(∇+iA(x))2tψ0](x) .

We state now a theorem which we do not prove but instead give some of the ideas
invovled. For details see [S].

Theorem 70 The heat kernel Ht,A(x, y) satisfies the estimate

|Ht,A(x, y)| <∼ Ht,0(x, y) =
1

(4πt)3/2
e−(x−y)2/4t .

Proof (Sketch) We write formally

Ht,A(x, y) = e−[(p1+A1)2+(p2+A2)2+(p3+A3)2]t(x, y)

and use the Trotter product formula

e−[(p1+A1)2+(p2+A2)2+(p3+A3)2]t = lim
n→∞

[
e−(p1+A1)2t/ne−(p2+A2)2t/ne−(p3+A3)2t/n

]n
= lim

n→∞
Hn
t,A .

The limit is a strong limit. Next we note that

e−(p1+A1)2t/n = e−i
R x1 A1(y,x2,x3)dye−p

2t/nei
R x1 A1(y,x2,x3)dy

where the kernel of e−p
2t/n is given by

1
(4πt/n)1/2

e
− (x1−y1)2

4t/n .
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17 Magnetic fields

which is positive. Thus for each fiinite n we have that the kernel Hn
t,A(x, y) is an n-fold

integral over positive functions and phases. Hence, replacing all the phases by 1 we
learn that

|Hn
t,A(x, y)| <∼ Hn

t,0(x, y) .

the last expression is simply the kernel associated with the heat kernel without the mag-
netic field and is given by

1
(4πt)3/2

e−(x−y)2/4t .

In particular for any positive function g, by taking limits

|
∫
Ht,A(x, y)g(y)dy| <∼

1
(4πt)3/2

∫
e−(x−y)2/4tg(y)dy ,

from which the statement follows. �

The idea of a heat kernel can be extended to relativistic systems. One knows how to
define the operator √

(
1
i
∇+A(x))2 =: |1

i
∇+A(x)|

using the spectral theorem. Note that here something has to proved again, namely that

(
1
i
∇+A(x))2

is selfadjoint. Likewise we can consider the associated heat kernel

e−|
1
i
∇+A(x)|t .

Recall that we have proved the formula

e−|a| =
1√
π

∫ ∞

0
e−s−

a2

4s
ds√
s
,

which we can exploit to write

e−|
1
i
∇+A(x)|t =

1√
π

∫ ∞

0
e−s−

| 1i∇+A(x)|2t2

4s
ds√
s
.

Using Theorem 4 we see immediately that the diamagnetic inequality also holds for
relativistic systems.

Theorem 71 For the relativistic heat kernel we have the bound

|e−|
1
i
∇+A(x)|t(x, y)| <∼ e−|

1
i
∇|t(x, y) =

1
π2

t

[(x− y)2 + t2]2
.

Moreover, for any function ψ

(ψ, |1
i
∇+A(x)|ψ) >∼ (|ψ|,

√
−∆|ψ|) .
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Proof All that is left is to show the last statement. Since

(ψ, |1
i
∇+A(x)|ψ) = lim

t→0

1
t

[
‖ψ‖2

2 − (ψ, e−|
1
i
∇+A(x)|tψ)

]
>∼ lim

t→0

1
t

[
‖|ψ|‖2

2 − (|ψ|, e−|
1
i
∇|t|ψ|)

]
= (|ψ|,

√
−∆|ψ|) .

As a consequence, we see that all the relevant estimates for proving stability for rela-
tivistic systems with magnetic fields go through. We have the following theorem.

Theorem 72 Let Ψ be any normalized wave function for N particles. Then

N∑
j=1

(Ψ, |1
i
∇j +A(xj)|Ψ) >∼ (

√
ρΨ,

√
−∆

√
ρΨ) .

Moreover, if in addition, Ψ is an antisymmetric function for N particels having q spin states
we have

N∑
j=1

(Ψ, |1
i
∇j +A(xj)|Ψ) >∼ 1.64q−1/3 ∈ ρ4/3

Ψ (x)dx .

Using Theorem 6 we can follow the proof in Section 17 word by word and get

Theorem 73 For any normalized antisymmetric function Ψ of N particles having q spin
states

N∑
j=1

(Ψ, |1
i
∇j +A(xj)|Ψ) + α(Ψ, VcΨ) >∼ 0

provided that
π

2
Z + 2.2159q1/3Z2/3 + 1.0307q1/3 <∼

2
a
.
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18 Magnetic fields and spin

So far the spin of the electron did not have too much influence in our investigations of
stability. This situation changes drastically when magnetic fields are included. The op-
erator that describes the motion of an electron in a magnetic field is the Pauli operator

(
1
i
∇+A(x))2 ⊗ I + σ ·B(x) . (P )

Here σ denotes the vector of Pauli matrices (σ1.σ2, σ3) where

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
and

σ3 =
(

1 0
0 −1

)
.

The matrix I is the 2 × 2 identity. The wave function of a single electron is given by a
‘spinor’

ψ(x) =
(
ψ1(x)
ψ2(x)

)
where

|ψ1(x)|2

is the probability density of finding the the electron at x with spin up and

|ψ2(x)|2

is the probability density of finding the the electron at x with spin down. These words,
‘spin up’ and ‘spin down’ mean the following. Take the spinor

φ1(x) =
(
ψ1(x)

0

)
and calculate the vector with components

〈φ1(x), σ.iφ1(x)〉 .

The vector is given by
(0, 0, 1)|ψ1(x)|2
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18 Magnetic fields and spin

likewise doing the same thing with

ψ2(x) =
(

0
ψ2(x)

)
one gets the vector

(0, 0,−1)|ψ2(x)|2 .

The Pauli matrices have usful commutation relations:

σ2
i = I

and
σ1σ2 = iσ3 ,

and further relatation follow by cyclically permuting the indices 1, 2, 3. Using these
relations the Pauli equation can be written in the following compact form

(
1
i
∇+A(x))2 ⊗ I + σ ·B(x) =

[
σ · (1

i
∇+A(x))

]2

which shows that the Pauli operator is positive. We call

σ · (1
i
∇+A(x))

the three dimensional Dirac operator. The first system we analyze is hydrogen in a

magnetic field. The Hamiltonian is given by[
σ · (1

i
∇+A(x))

]2

− Z

|x|
. (1)

The example where the magnetic field is constant is already interesting. We shall assume
that the field points in the z direction, i.e., is given by

(0, 0, B) ,

B > 0. Calculating the curl of

A(x, y, z) =
B

2
(−y, x, 0)

shows that A is a vector potential for this magnetic field. In this case it is better to write
the Hamiltonian in the original form as

(
1
i
∇+A(x, y, z))2 + σ3B − Z

|x|
.

We are interested in what happens when the magnetic fieldB gets large. It is not possible
to solve for the ground state energy in terms of elementary functions, and hence one has
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to resort to trial functions. The trial function will be gleaned from solving the magnetic
Hamiltonian first without the Coulomb potential.

The Hamiltonian in this case is given by

(
1
i

∂

∂x
− B

2
y)2 + (

1
i

∂

∂y
+
B

2
x)2 − ∂2

∂z2
. (2)

Note that the motion in the z direction is the free motion and completely decouples from
the other degrees of freedom. Hence, it suffices to concentrate on the two dimensional
problem which we write as

B(P 2 +Q2) (3)

where

Q =
1√
2
(
1
i

∂

∂y
+ x)

and

P =
1√
2
(
1
i

∂

∂x
− y) .

One arrives at this form by scaling the wave function

ψ(x, y) →
√
B

2
ψ(

√
B

2
(x, y)) .

The operators P and Q which are selfadjoint, have the commutation relation

PQ−QP = [P,Q] =
1
i

and we see that the Hamiltonian in an algebraic sense is equivalent to the Harmonic
oscillator and hence we get as the eigenvalues of the Hamiltonian (3) the numbers

B(2n+ 1) , n = 0, 1, 2, 3 . . . .

The eigen-functions are trickier to find. for this we write

B(P 2 +Q2) = 2BA∗A+B

where
A =

1√
2
(P − iQ)

and
A∗ =

1√
2
(P + iQ) .

The eigen-functions belonging to the lowest eigenvalue are given by those functions ψ
that satisfy

Aψ = 0
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18 Magnetic fields and spin

which means that
1√
2i

(
∂

∂x
− i

∂

∂y
+ x− iy)ψ = 0

which in complex notation z = x+ iy means that

(2
∂

∂z
+ z)ψ = 0 .

This is straightforward to solve and yields

ψ = e−|z|
2/2φ(z)

where φ(z) is an entire analytic function. Thus, we see that the ground state is in fact
infinitely degenerate and we call this space of eigen - functions the lowest Landau band.

The eigen-functions of the next higher Landau band can be found by using commuta-
tion. If ψ is in the lowest landau band then

A∗ψ

is not indentically zero and

[2BA∗A+B]A∗ψ = 2BA∗[A,A∗]ψ +A∗A∗Aψ +Bψ

= 3BA∗ψ

since Aψ = 0 and since [A,A∗] = 1. In this way one can ascend and get all the eigen -
function of the Hamiltonian (3). In the usual units, the functions in the lowest Landau
band of the Hamiltonian (2) are given by

e−
B(x2+y2)

4 P (x− iy)

where P is any polynomial.
Returning to the Hamiltonian (2) we have to consider the kinetic energy in the z

direction which commutes with the other term. This operator can be diagonalized using
Fourier transform in the z variable only

f̂(k) =
∫
e−2πikzf(z)dz ,

resulting in the Hamiltonian

(
1
i

∂

∂x
+
B

2
y)2 − (

1
i

∂

∂y
+
B

2
x)2 + (2πk)2 . (2F )

Hence we see that the spectrum of the Hamiltonian is given by

B(2n+ 1) + (2πk)2
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where n = 0, 1, . . . and k ∈ R. The spectrum is continuous because of the kinetic energy
in the z direction hence there are no square integrable eigenfunctions.
Since the magnetic field is constant in the z direction, the dynamics of the spin is σ3B

which amounts to considering the matrix Hamiltonian[
(1
i∇+A(x, y, z))2 +B 0

0 1
i∇+A(x, y, z))2 −B

]
.

Although there is not really a ground state we see that the infimum of the spectrum of
the Hamilonian (P) for a constant magnetic field is 0. Note that the spin terms subtracts
the kinetic energy. This infimum can be found by considering spinors of the type√

B

2π
e−(x2+y2)B/4

[
0
1

]
φ(x− iy)f(z) (4)

where f is any normalized function of one real variable and φ is an analytic function
obeying the normalization

B

2π

∫
e−(x2+y2)B/2|φ(x− iy)|2dxdy = 1 .

Returning to the hydrogenic Hamiltonian (1) we would like to obtain some estimates
on the ground state energy. Using trial functions of the form (4) with φ = 1 we get the
expectation value for the energy∫ ∞

−∞
|f ′(z)|2dz − Z

B

2π

∫
e−(x2+y2)B/2 1√

x2 + y2 + z2
|f(z)|2dxdydz

=
∫ ∞

−∞
|f ′(z)|2dz − Z

B

2

∫
e−sB/2

1√
s+ z2

|f(z)|2dsdz

where we assume that ∫ ∞

−∞
|f(z)|2dz = 1 .

Since
s→ 1√

s+ z2

is a convex function we have that

Z
B

2

∫
e−sB/2

1√
s+ z2

ds >∼ Z
1√

2
B + z2

and hence we have the upper bound∫ ∞

−∞
|f ′(z)|2dz − Z

∫ ∞

−∞

1√
2
B + z2

|f(z)|2dz
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18 Magnetic fields and spin

<∼
∫ ∞

−∞
|f ′(z)|2dz − Z

∫ ∞

−∞

1
2
B + |z|

|f(z)|2dz .

Finally, if we choose the function

f(z) = (
1
2π

)1/4e−z
2/2

we see that the expectation of the energy is a fixed number while the expectation of the
potential energy behaves as

−const. logB

as B →∞.
Thus, there is no diamagnetic inequality and large magnetic fields squeeze the electron

into the nucleus because of the interaction of the spin with the magnetic field. It is,
however, impossible to produce large magnetic fields without expenditure of energy.
Hence we define the stability of matter problem as follows.

Theorem 74 Let E(N,B,Z) be the ground state energy of matter interacting with a mag-
netic field B(x). Consider (in our units) the total energy

E(N,K,B,Z) +
1

8πα2

∫
|B(x)|2dx .f

We say that the system is stable of the second kind if there exists a constant C(Z) inde-
pendent of the number of particles N and K and independent of the magnetic field such
that

E(N,K,B,Z) +
1

8πα2

∫
|B(x)|2dx >∼ −C(Z)(N +K) .

Let us return to the hydrogen atom and report the bad news.

Theorem 75 The hydrogenic atom interacting with a magnetic field is unstable in the sense
that if Zα2 is large enough then

inf{E(Z,B) +
1

8πα2

∫
|B(x)|2dx} = −∞ .

Proof The proof depends critically on the existence of zero modes of the three dimen-
sional Dirac operator. Consider a vector potential A(x) whith∫

|curlA(x)|2dx <∞ .

A spinor ψ(x) is called a zero mode if it is square integrable and if

σ · (1
i
∇+A(x))ψ(x) = 0

everywhere. Once such a zero mode is given we can scale it

ψ → ψλ(x) = λ3/2ψ(λx)

136



and
A(x) → Aλ(x) = λA(λx) .

Clearly

σ · (1
i
∇+Aλ(x))ψλ(x) = 0

and hence the expectation value of the hydrogenic Hamiltonian is given by

−Z
∫

1
|x|
〈ψλ, ψλ(x)〉dx+

1
8πα2

∫
|Bλ(x)|2dx

= λ

(
−Z

∫
1
|x|
〈ψ,ψ(x)〉dx+

1
8πα2

∫
|B(x)|2dx

)
.

Hence, we see that if Zα2 is too large we get an arbitrarily negative energy by letting
λ→∞. �

Thus the main question is, are there any zero modes? Examples are hard to come by
although people have discovered infinitely many of them so far. We give an idea how to
construct such zero modes. Consider

ψ(x) =
1 + iσ · x

(1 + |x|2)3/2
φ (5)

where φ is a constant spinor of length 1.
A straightforward calculation leads to

σ · ∇
i
ψ =

3
(1 + |x|2)

ψ .

Next, we note that every normalized spinor η satisfies the eigenvalue equation

[σ · 〈η, ση〉]η = η

Proof (We have the general formula

σ · aσ · b = a · b+ iσa× b .

Hence
[σ · 〈η, ση〉]2 = |〈η, ση〉|2 = 1 ,

Further which means that the eigenvalues of the matrix [σ · 〈η, ση〉] are ±1. Further

〈η, [σ · 〈η, ση〉]η〉 = 1

and hence by the minmax prinicple η is the eigenvector with eigenvalue 1.) Hence we
know that

σ · 〈ψ, σψ〉
〈ψ,ψ〉

ψ = ψ
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18 Magnetic fields and spin

and if we define

A(x) =
3

1 + |x|2
〈ψ, σψ〉
〈ψ,ψ〉

the spinor ψ is a zeromode.
A straightforward calculation yields

A(x) =
3

(1 + |x|2)2
((1− |x|2)w + 2w · xx+ 2w ∧ x) . (6)

A further calculation shows that

B(x) =
12

(1 + |x|2)3
((1− |x|2)w + 2w · xx+ 2w ∧ x) (7)

which is clearly square integrable. �

The field lines form closed Euclidean circles that sit on a family of nested tori and are
linked once. In fact the field lines are given by pulling the Hopf-fibration from the three
sphere to R3.

The next theorem tells us that for stability to hold, α itself cannot be too large.

Proof The energy of an electron in the normalized state ψ and with the vector portential
A(x) is given by

‖σ · (1
i
∇+A(x))ψ‖2 − Z

K∑
k=1

∫
|ψ(x)|2

|x−Rk|
dx+ Z2

∑
k<l

1
|Rk −Rl|

+
1

8πα2

∫
|B(x)|2dx .

Suppose thatψ is a zero mode for the vector potential A(x) then the energy is given by

−Z
K∑
k=1

∫
|ψ(x)|2

|x−Rk|
dx+ Z2

∑
k<l

1
|Rk −Rl|

+
1

8πα2

∫
|B(x)|2dx . (8)

Consider the density

F (R1, . . . , RK) =
K∏
k=1

|ψ(Rk)|2 .

This density is normalized to one∫
dR1 · · · dRKF (R1, . . . , RK) = 1 .

Next we average the expression (8) with respect to F and get

−ZKI + Z2K(K − 1)
2

I +
1

8πα2
J

where

I =
∫
dxdy

|ψ(x)|2|ψ(y)|2

|x− y|
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and
J =

∫
|B(x)|2dx .

If we scale A and ψ the usual ways we obtain

λ

[
−ZKI + Z2K(K − 1)

2
I +

1
8πα2

J

]
(9)

and hence we have to calculate the term in [·]. Certainly, instability of (9) is implied by
the instability of

λ

[
−ZKI + Z2K

2

2
I +

1
8πα2

J

]
= λ

[
−1

2
I +

1
2
(1− ZK)2I +

1
8πα2

J

]
.

If Z is small of the form 1/L where L is an integer, then we can choose K = L and get
the expression

λ

[
−1

2
I +

1
8πα2

J

]
,

and we see that if

α >

√
J

4πI
then we have instability. Using (5), (6) and (7) we get �
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18 Magnetic fields and spin
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19 A short introduction to statistical mechanics

Thermodynamics consists of the application of two principles, the first law which says
that heat is energy and hence the law of conservation of energy must apply and the
second law of Thermodynamics, which says that there is no machine whose sole purpose
is to do work by extracting heat from a reservoir. While it is not our aim to discuss
Thermodynamics we treat the ideal gas in some detail.

The ideal gas law says that
pV = kNT

where p is the pressure, V the volume, T the absolute temperature and N the number of
particles (in moles) in the gas. The constant k is Boltzmann’s constant. There is another
equation which relates the temperature T to the energy contained in the gas

U = γkTN

where γ is a constant that depends on the type of the gas. The first law says

dU = dQ− pdV + µdN

which is a confusing formula. (Here µ is the chemical potential. The formula suggests
that there exists a function U(Q,V,N)) so that its gradient is given by (1,−p, µ). This is
not the case! There is, however, the second law which states that there is an integrating
factor 1/T so that

dS =
1
T
dQ

is indeed an exact one form. Thus there exists a function U(S, V,N) so that

dU = TdS − pdV .

In particular
∂U

∂S
= T ,

∂U

∂V
= −p

and
∂U

∂N
= µ .

Note the sloppy notation which is at the root of all the confusion in thermodynamics.

One does not make the distinction between U as a function of T and U as a function of
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19 A short introduction to statistical mechanics

S. both function are represented by the same symbol. Returning to the ideal case, we
note that good variables would be U, V,N and not S, V,N . Since ∂U

∂S > 0 we can invert
this relation and consider S(U, V,N) and hence

∂S

∂U
=

1
T

∂S

∂V
=
p

T

and
∂S

∂N
= −µ

T
.

There is the fundamental requirement that the S, U , V and N all scale the same way as
we enlarge the systems. If we have twice as many particles, twice the interal energy and
twice the volume then the entropy should be multiplied by two. In other words

S(λU, λV, λN) = λS(U, V,N) .

Differentiating the above relation at λ = 1 gets us

S(U, V,N) =
U

T
+
pV

T
− µN

T
.

For the ideal gas
1
T

=
γkN

U
,
p

T
=
kN

V
,

and hence
S(U, V,N) = γkN logU + kN log V +NC(N)

for some unknown function C(N). By scaling

λ(γkN logU + kN log V +NC(N)) = γkλN log(λU) + kλN log(λV ) + λNC(λN)

or
C(N) = (γ + 1)k log λ+ C(λN)

Differentiating this at λ = 1 yields

0 = (γ + 1)k + C ′(N)N

and hence
C(N) = −(1 + γ)k logN

up to some constant. Hence, the entropy for an ideal gas is given by

S(U, V,N) = γkN logU + kN log V − (1 + γ)kN logN .
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Gas with a piston

Imagine a a cylinder of length one (in some units) insulated against heat transfer filled
with gas. Inside the cylinder is an ideal insulating piston at position 0 < x < 1. Half
of the gas is on the eft of the piston where it has Volume Ax, (A is the cross section
) temperature T and half of the gas is on the right of the piston where it has volume
A(1 − x) and temperature T . Thus, the pressure on the left will be larger than on the
right. The piston is fixed with a pin. At some moment we pull the pin and let the
piston move freely which it does without friction. Eventually it will come to rest and the
question is where.

Call the position y. The pressures on both sides must be the same, hence

TL
y

=
TR

(1− y)
.

Moreover, by the first law the energy must be conserved, i.e.,

TL + TR = 2T .

Therefore
TL = 2Ty , TR = 2T (1− y) .

We know from the second law that the entropy must have gone up. Thus the entropy
at the end of the process is greater than the entropy of the system before. The total
entropy before the process is given by (up to irrelevant constants)

2γ log T + log x+ log(1− x)

whereas the entropy after is

γ log(2Ty) + γ log(2T (1− y) + log y + log(1− y) .

Hence applying the second law we get the inequality

log(x(1− x)) <∼ 2γ log 2 + (1 + γ) log(y(1− y))

A straightforward calculation leads to the

y(1− y) >∼
(x(1− x))

1
1+γ

4
γ

1+γ

.

Note that when x = 1/2 we get correctly y = 1/2.
What this result is saying that the given macroscopic quantities do not suffice the cal-

culate the exact outcome of this experiment. The Second Law, however, yields bounds
for the position of the piston. These inequalities are determined entirely by the macro-
scopic quantities. It might be that shocks and all sorts of nasty things might develop by
releasing the piston, but the second law sets absolute bounds on the outcome.
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19 A short introduction to statistical mechanics

The statistical theory of entropy

We consider a system of N interacting particles in a box. The system is specified by
giving the positions X = (x1, . . . , xN ) and the momenta P = (p1, . . . , pN ). If we give a
probability distribution ρ(X,P ) then the Boltzmann entropy is given by

S(ρ) = −k
∫
dXdPρ(X,P ) log(ρ(X,P )) .

Assuming that the dynamics of the system is given by the Hamiltonian

H(X,P )

one might ask what is the state with maximal entropy, given that the system has total
energy U . In other words, we have to maximize S(ρ) given that∫

H(X,P )ρ(X,P )dXdP = U

and that ∫
ρ(X,P )dXdP = 1 .

To solve this problem we start with the elementary inequality

−x log x <∼ eα − (α+ 1)x

which holds for all x > 0 and all α. There is equality if and only if

x = eα .

Next we have pointwise

−kρ log ρ <∼ ke−γH+δ − k(γH + δ − 1)ρ

where γ and δ are constants. Again, there is equality if and only if

ρ = e−γH+δ .

We now use the free constants to fix the correct side conditions∫
dXdPe−γH+δ = 1

and ∫
dXdPe−γH+δH = U .

The first says that we choose γ such that

e−δ =
∫
dXdPe−γH ,
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the other means that we have to choose γ such that∫
dXdPe−γHH∫
dXdPe−γH

= U . (1)

This is an equation for γ and we have to show that there is a solution. Differentiate the
left side of (1) with respect to γ and get

−
∫
dXdPe−γHH2∫
dXdPe−γH

+ [
∫
dXdPe−γHH∫
dXdPe−γH

]2

and since the left side of (1) is the expectation value of H

〈H〉ρ

with respect to the probability distribution

ρ =
e−γH∫

dXdPe−γH

we can write this as

−〈H2〉ρ + (〈H〉ρ)2 = −〈(H − 〈H〉ρ)2〉ρ < 0 .

This means that the left side of (1) is a strictly decreasing function of γ. Clearly, any
allowed value for U must be in the range of H. As γ tends to ∞ the left side of (1)
converges to the minimal value of H. If we take our system of the form

H =
N∑
j=1

p2
j + V (x1, . . . , xN )

where the particles are constrained in a box, then we see that as γ → 0 the left side of
(1) tends to ∞. Thus, in this case for any U in the range of H the equation (1) has a
unique solution. We call this solution β. Hence the optimizing ρ is given by

ρcanon =
e−βH∫

dXdPe−βH
.

This is called the canonical ensemble and

Z =
∫
dXdPe−βH

is called the partition function. Further we get

S(ρcanon) = kβ〈H〉canon + k logZ . (2)

We shall see that this formula has a nice interpretation.
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19 A short introduction to statistical mechanics

For the case of an ideal gas the Hamiltonian is given by

H =
1

2m

N∑
j=1

p2
j

and the particles are confined to a volume V . Now

ρcanon = (
β

2mπ
)3N/2e−

β
2m

PN
j=1 p

2
j

N∏
j=1

χV (xj)
|V |

and
Z = (

2mπ
β

)3N/2|V |N .

The energy is

U = 〈H〉canon =
3
2
N

1
β

(3)

i.e., γ = 3/2.
and we see that β = 1

kT is consistent. Further using (2)

S(ρcanon) =
3
2
Nk + kN [

3
2

log(
2mπ
β

) + log |V |]

and recalling that we have to write S in terms of the variable U, V,N we can eliminate
β using (3) and get

S =
3
2
kN logU + kN log |V | − 3

2
kN logN +

3
2
kN(1− log((4mπ/3)) .

The last term is just an additive constant and is irrelevant for thermodynamics. All the
other terms fit our expectation except the the penultimate term. We have the serious
problem that the entropy is not extensive. We should really have

−(1 +
3
2
)kN logN

instead of
−3

2
kN logN .

Note that we can get out of this quagmire of replace the partition function by

Z =
1
N !

∫
dXdPe−βH

since this term will yield an addition term of the order of N logN for the entropy and
that would render the entropy extensive. This problem does not show up in quantum
statistical mechanics! The way out in the classical case is to undestand that the particles
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are indistinguishable. The configuration (x1, x2, x3, ,̇xN ) cannot be distinguished from
the configuration (x2, x1, x3, ,̇xN ). In other words we have to consider the density

ρcanon =
e−βH∫

dXdPe−βH
χSN

where χSN is the characteristic function of a fundamental domain of the permutation
group. Such a set is somewhat complicated to describe when the underlying space is
R3 but since its contribution to the partition function is 1/N ! times the whole one. We
shall see that the partition function contains in some sense all the information of our
thermodynamic system. If the underlying space is one dimensional then a fundamental
domain is given by the region

x1 < x2 < · · · < xN−1 < xN .

In this formalism the natural variables are not U, V,N but T, V,N . The way out of that
is to perform a Legendre transform. One performs this best by starting from the internal
energy U(S, V,N). Solve the equation

∂U

∂S
= T

to get S(T, V,N). Then consider the Free Energy function

F (T, V,N) = U(S(T, V,N), V,N)− TS(T, V,N)

and note that
∂F

∂T
= −S , ∂F

∂V
= −p

and
∂F

∂N
= µ .

Returning to (2) we see that

F = − 1
β

logZ ,

where
Z =

1
N !

∫
dXdPe−βH .

Thus, the log of the partition function yields the free energy.
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20 Thermodynamic limit of a classical system

We shall consider N classical particles in a volume V . The partcles interact with each
other through a pair potential Φ(x− y) which satisfies the following conditions:

• Φ is bounded and of positive type, i.e., it has a positive Fourier transform.

• Φ decays faster than R−3 as R→∞, where R = |x− y|.

As we have seen the canonical partition function is given by

Z =
1
N !

∫
V N

dx1 · · · dxNe−β
P
i<j Φ(xi−xj) .

We ignore here the factor that comes from the kinetic energy of the particles. The free
energy per unit volume is then given by

f(T, V,N) = − 1
β|V |

log(Z) ,

where |V | denotes the volume.
Here we would like to address the question whether the thermodynamic limit exists,

i.e, whether f(T, V,N) has a limit as V,N → ∞ in such a way that N/V → ρ > 0, the
density. In this case the limiting free energy is a function of the temperature and the the
density f(T, ρ).

There are a number of reasons why one wants to consider a thermodynamic limit.
While one never considers an infinite systems in practice, it should be large enough so
that surface effects are negligible, i.e., one is only interested in bulk properties. Fur-
ther, one has learned that a phase transition can be qualitatively described only in the
thermodynamic limit where it shows up as a lack of analyticity in certain parameters.

Let us return to the assumptions on Φ. The first yields that∑
i,j

Φ(xi − xj) =
∑
i,j

∫
dkei2πk·(xi−xj)Φ̂(k)dk =

∫
|
∑
j

ei2πk·xj |2Φ̂(k)dk >∼ 0

and hence ∑
i<j

Φ(xi − xj) >∼ −N
2

Φ(0)

which means that the system is stable. This implies immediately that the partition func-
tion Z is bounded above by

1
N !
|V |NeβNΦ(0)
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20 Thermodynamic limit of a classical system

which in turn implies the lower bound

f(T, V,N) >∼ − 1
β|V |

(− log(N !) +N log(|V |) + β
N

2
Φ(0))

>∼ kTρ log(ρ)− ρΦ(0)/2 .

The first term is essentially the free energy of an ideal gas recalling that we have ne-
glected theterm coming from the kinetic energy.

The bound depends only on ρ and Φ but not on the volume. It tends to zero s ρ→ 0,
no particles no free energy. It is further remarkable that the 1/N ! is absolutely necessary
to obtain such a result. Without it there would be no expression in terms of the density
alone.

To summarize, the stability assumption yields a lower bound that is independent of
the volume , it depends only on ρ. Thus we need to exhibit a sequence of domains
along which the partition function is increasing. We choose these domains to be boxes
of sidelength L. We shall replace the second assumption on Φ by a more precise one
• Φ should satisfy

Φ(x− y) <∼ C|x− y|−3−ε ,

where C is some constant.

Proof Pick a box of side length L and subdivide it into 8 smaller boxes of side length
L/2. denote by Z the partition function of the big box containing N particles and by z
the partition function of the small box containing N/8 particles. We assume that N is
divisible by eight. Clearly

Z =
1
N !

∑
N1+···N8=N

N !
N1!N2! · · ·N8!∫

dX1e
−βΦ(X1)

∫
dX2e

−βΦ(X2) · · ·
∫
dX8e

−βΦ(X8)e−β
P8
i6=j Φ(Xi,Xj) .

The first factor is the number of ways one can choose N1, . . . , N8 particles out of N . Th
notation Φ(X1 denotes the interaction of the particles in the first box with each other
and likewise Φ(X2 denotes the interaction of the particles in the second box with each
other etc. and finally the last double sum denotes the interaction of particles in different
boxes.

Trivially

Z >∼
1
M !8

∫
dX1e

−βΦ(X1)

∫
dX2e

−βΦ(X2) · · ·
∫
dX8e

−βΦ(X8)e−β
P8
i<j Φ(Xi,Xj)

where each box contains the same number of particles M = N/8 and we have thrown
away all other contributions. Next we have to deal with the interaction among the
particles in different boxes. There the decay of the interaction is important. Construct
a corridor between the boxes of width L

2

1−δ
where δ > 0 to be chosen later. Next we

restrict the integration of the particles to make sure that they are outside the corridors.
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This diminishes the right side once more. Note that the width of the corridor is large but
of lower order than L. Now we can calculate the contribution of the interaction energy
of the particles in different boxes. It is bounded above by

C(
L

2
)−(1−δ)(3+ε)M2 .

Choosing
δ =

ε

6 + 2ε
yields the bound

C(
L

2
)−3−ε/2M2 =

C

81+ε/2
ρ
N

Lε/2
.

Thus collecting the terms we get that

Z >∼ (z′)8e−β28 C

81+ε/2
ρ N

Lε/2 (1)

where z′ denotes the partition function of a small box with the corridors removed. This
partition function is again a partition function of a box but with a slightly higher density.
reformulating (1) in terms of the free energy per unit volume yields

f(T,L3, N) <∼ 8f(T, (
L

2
)3(1− (

L

2
)−δ)3,

N

2
)
(L2 )3(1− (L2 )−δ)3

L3
+ 28

C

81+ε/2
ρ
ρ

Lε/2
. (2)

Now we can set up the procedure for taking the limit. Set

Ln =
Ln+1

2
− (

Ln+1

2
)1−δ

Nn =
Nn+1

8
so that both Nn and Ln grow exponentially and

lim
n→∞

Nn

L3
n

= ρ .

Further define
fn = f(T,L3

n, Nn)

so that
fn+1 <∼ cnfn + dn . (3)

where
cn = 8(

Ln
Ln+1

)3

and
dn =

D

L
ε
2
n+1

.
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20 Thermodynamic limit of a classical system

Write the inequality (3) as an equality

fn+1 = cnfn + dn − en

where en >∼ 0. This can be solved explicitely

fn+1 = c0 · · · cnf0 +Dn+1 − En+1

where
Dn+1 = d0c1 · · · cn + d1c2 · · · cn + · · ·+ dn

and
En+1 = e0c1 · · · cn + e1c2 · · · cn + · · ·+ en .

Since the ci <∼ 1 the first term converges as n → ∞. Further Dn+1 converges since the
di decay exponentially. Finally En+1 is monotone increasing and bounded since fn is
uniformly bounded below and hence En converges as n → ∞. Thus fn converges too,
which was to be proved. �

Thus the thermodynamic limit along a sequence of boxes is established. A further
problem is to show that the limit exists along more general sequences than just boxes.
They should be nice in the sense that the surface area should grow slower than the
volume. The whole procedure is tedious but standard and this will not be carried out
here.
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21 Quantum statistical mechanics

Quantum statistical mechanics is based on the notion of ‘density matrix’ and the notion
of entropy. A density matrix is a positive selfadjoint operator on a Hilbert which is trace
class. Any density matrix on L2(R3) has a kernel that can be written as

∞∑
j=1

λjφj(x)φj(y)

where λj >∼ 0 and
∑

j λj <∞.
Density matrices occur under a variety of circumstances. E.g., consider a system of

particles whose dynamics is goverend by a Hamiltonian H which has purely discrete
spectrum µj with eigenfunctions φj . Starting with an initial state ψ0 we get the time
evolved state as

ψt(x) =
∑
j

(φj , ψ0)φj(x)e−iµjt .

Consider the density matrix

γt = ψt(x)ψt(y) =
∑
j,k

(φj , ψ0)(φk, ψ0)φj(x)φk(y)ei(µj−µk)t .

This density matrix contains all the information about the evolution of the system, noth-
ing has been lost. Moreover, if we calculate expectation values of of an observable A
which is a selfadjoint operator on the Hilbert space, we get that

(ψt, Aψt) = Tr(Aγt) .

Note that expectation values are linear in the density matrix but quadratic in the wave
function.

If we now imagine that we perform lots of observations in time and average them over
time we get

lim
T→∞

1
T

∫ T

0
(ψt, Aψt)dt = lim

T→∞

1
T

∫ T

0
Tr(Aγt)dt

=
∑
j,k

(φj , ψ0)(φk, ψ0)(φj , Aφk) lim
T→∞

1
T

∫ T

0
ei(µj−µk)tdt .

If we further make the assumption that the eigenvalues are not degenerate we get that

lim
T→∞

1
T

∫ T

0
ei(µj−µk)tdt = δj,k
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21 Quantum statistical mechanics

and hence

lim
T→∞

1
T

∫ T

0
(ψt, Aψt)dt =

∑
j

|(φj , ψ0)|2(φj , Aφj) . (1)

Since we are not interested in the evolution of a particular state but rather would like to

describe a thermal ensemble of system, we are invoking again Boltzmann’s principle for
choosing the numbers

Dj = |(φj , ψ0)|2 >∼ 0 .

Note that ∑
j

Dj = 1 .

We define the entropy of the collection of numbers by Dj by the formula

S(D) = −k
∑
j

Dj logDj .

Maximizing S(D) under the constraints that
∑
Dj = 1 and that∑

j

Djµj = U

leads to

Dj =
e−βµj∑
k e

−βµk
.

Thus, we can write in an abbreviated way the canonical density matrix as

ρcanon =
e−βH

Z
(2)

where
Z = Tre−βH (3)

and β is the unique solution of the equation

TrHρcanon = U . (4)

The arguments proceed the same way as in the classical case. This considerations are
heuristic and we take equations (2),(3) and (4) as our starting point. We do not require
that the eigenvalues are non degenerate. All that is important is that

e−βH

is trace class. As in the classical case the free energy F is given by

F = − 1
β

logZ
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where β = 1
kT . As an example we calculate the partition function of a noninteracting

fermion gas in a box Ω. We consider N fermions with energy

H =
N∑
j=1

p2
j

where p2
j is the Laplacian with Dirichlet boundary conditions in Ω. The Hilbert space H

consists of functions of space variables and spin variables that take q values. Moreover,
the functions ae antisymmetric in the particles lables. Thus, we have to compute

TrHe−βH .

There is no closed form solution for that problem in the canonical ensemble but we have
the following statement.

Theorem 76 The partition function of N fermions each having q spin states is given by

qN
1
N !

∫
ΩN

dx1 · · · dxN det(Gβ(xi, xj))

where Gβ(x, y) is the heat kernel associated with the Dirichlet Laplacian in the volume Ω.
If the particles are Bosons, the determinant is replaced by the permanent.

Proof The main point of the theorem is of course the prefactor 1
N ! which is in agreement

with the classical considerations. Let

Ψ(x1, σ1; . . . ;xN , σN )

by and a normalized function in our Hilbert space. Then

(Ψ, e−βHΨ) =
∑

σ1,...,σN

∫
ΩN

Ψ(x1, σ1; . . . ;xN , σN )

×
N∏
j=1

Gβ(xj , yj)Ψ(y1, σ1; . . . ; yN , σN )dx1 · · · dxNdy1 · · · dyN .

In this expression we can replace
∏N
j=1Gβ(xj , yj) by its antisymmetrization over the y

variables, i.e.,
1
N !

∑
π∈SN

(−1)π
N∏
j=1

Gβ(xj , yπ(j)) ,

and denote this operator by B. Note that this expression is automatically antisymmetric
in the x variables. Next, pick an orthonormal basis φj(x, σ) in L2(R3;Cq) and note that
ΦJ =

∏N
k=1 φjk is an orthonormal basis in ⊗NL2(R3;Cq). Since (ΦJ , BΦJ) equals∑

σ1,...,σN

∫
ΩN

Φ(x1, σ1; . . . )B(x1, . . . , , y1, . . . )Φ(y1, σ1; . . . )dx1 · · · dxNdy1 · · · dyN ,
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21 Quantum statistical mechanics

and B is antisymmetric in the x and antisymmetric in the y variables we can replace Φ
by its slater determinant

1√
N !

det(φj(xi))

and hence
Z = TrB

which is what we wanted to show. The case for bosons is similar. �

One of the simple tools we shall frequenctly use is the Peierls Bogolubov inequality.

Theorem 77 Consider two self adjoint operators A and B with discrete spectrum so that

Tre−A−B <∞ .

Then
Tre−A−B >∼ Tre−Ae−〈B〉

where

〈B〉 =
TrBe−A

Tre−A
.

Proof Let gj be an orthonormal basis in which B is diagonal and hk be an orthonormal
basis in which A+B is diagonal. Then

Tre−A−B =
∑
j

(gj , e−A−Bgj) =
∑
j,k

|(gj , hk)|2(hk, e−A−B, hk) .

Since for every fixed j ∑
k

|(gj , hk)|2 = 1

and since x→ e−x is convex, we can use Jensen’s inequality to get∑
j,k

|(gj , hk)|2(hk, e−A−B, hk) >∼
∑
j

e−
P
k |(gj ,hk)|2(hk,(A+B)hk)

=
∑
j

e−(gj ,(A+B)gj) .

Further ∑
j

e−(gj ,(A+B)gj) =
∑
j

e−(gj ,Agj)−µj = Tre−A
∑
j

e−(gj ,Agj)

Tre−A
e−µj

where µj are the eigenvalues of B. We write this as

Tre−A
∑
j

pje
−µj

156



with ∑
j

pj = 1 .

Since x→ e−x is convex, we can use Jensen’s inequality∑
j

pje
−(gj ,Bgj)

>∼ e−
P
j pjµj

but ∑
j

pjµj =
TrBe−A

Tre−A

which yields the inequality. �
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22 The thermodynamic limit for matter

In this section we discuss the result of Lieb and Lebowitz concerning the existence of the
free energy for matter consisting of nuclei and electrons. As explained before there will
be three steps involved. First, a universal lower bound on the free energy per unit vol-
ume that is independent of the volume, second a sequence of volumes going to infinity
for which the free energy decreases and finally a proof that the limit is independent for
reasonable shapes. We do not discuss the last point.

We consider the Coulomb system given by the Hamiltonian

H =
N∑
j1

p2
j +

1
M

K∑
k=1

P 2
k + Vc ,

where we have included the kinetic energy of the nuclei. The Hilbert space is then given
by

H = Hel ⊗Hnucl

where
Hel = ∧NL2(Ω;C2) ,

the N -fold antisymmetric tensor product. For the Hilbert space of the nuclei we do not
make any assumptions since the nuclei may be bosons, fermions or a mixture thereof.

We assume that the particles are all in some volume Ω and we set Dirichlet boundary
conditions for the Laplace operators involved. The partition function is then given by

Z = TrHe−βH

and the free energy per unit volume is given by

f(β, V,N,K) = − 1
|Ω|β

logZ

and we are interested in the the limit as

Ω → R3

N,K →∞

in such a way that
N

|Ω|
→ ρel
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22 The thermodynamic limit for matter

and
K

|Ω|
→ ρnucl .

Step 1: The lower bound

We write

H =
1
2
[
N∑
j1

p2
j +

1
M

K∑
k=1

P 2
k ] +

1
2
[
N∑
j1

p2
j +

1
M

K∑
k=1

P 2
k ] + Vc

and note that by the result of Dyson-Lenard, resp. Lieb-Thirring there exists a constant
C(Z) that is independent of N,K and, of course not on Ω so that

H >∼
1
2
[
N∑
j1

p2
j +

1
M

K∑
k=1

P 2
k ]− C(Z)(N +K) .

Hence
Z <∼ TrHe−

β
2
[
PN
j=1 p

2
j+

1
M

PK
k=1 P

2
k ]eβC(Z)(N+K) .

= TrHel
e−

β
2

PN
j=1 p

2
jTrHnucl

e−
β

2M

PK
k=1 P

2
k eβC(Z)(N+K) .

From this we see that the free energy per unit volume is bounded below by the sum of
the free energies of a noninteracting gas of electrons and nuclei minus

C(z)(ρel + ρnucl) .

This is well known to be bounded below by a function that depends only on the temper-
ature and the densities ρel and ρnucl.

We come now to the second step which amounts to show that along a suitable se-
quence of volumes the free energy per unit volume is a decreasing sequence. The obvi-
ous obstacle here is that the Coulomb potential is of long range and there is no obvious
way how to bound this. Clearly, if the system is macroscopically not neutral there is no
thermodynamic limit. Hence we shall assume neutrality from now on, i.e., the sum of
the nuclear charges is canceled by the sum of the electronic charges.

First we recall Newton’s heorem. Imagine two charge distributions, one of them,
ρ(x) spherically symmetric and the other one µ not necessarily spherically symmetric.
(Spherically symmetric means that ρ(x) = ρ(y) whenever |x| = |y|.

Theorem 78 (Newton’s theorem) The interaction energy between the charges µ and ρ,
which is given by∫ ∫

ρ(x)µ(y)
|x− y|

dxdy =
∫ ∫

min(
1
|x|
,

1
|y|

)ρ(x)µ(y)dxdy .

In particular if µ is supported inside a ball of radius R, ρ supported outside the ball and if∫
µ(y)dy = 0

then the interaction energy vanishes.
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Proof The proof consists of evaluating the integral∫
S2

1
(|x|2 + |y|2 − 2|x|y · w

dw = min(
1
|x|
,

1
|y|

) .

We will encounter the following situation. Given two disjoint balls B1 and B2. In B1 we
have N1 electrons and M1 nuclei, so that the system is neutral, i.e,

M1∑
j=1

Zj = N1 .

In the other ball we have N2 electrons and M2 nuclei. For the moment it is not necessary
to assume neutrality in that ball. The Hamiltonian for the first system we call H1 which
includes a Dirichlet condition that confines the particles to the ball B1 and H2 which
includes a Dirichlet condition confining all the particles to the ball B2. Further we call
H the Hamiltonian that includes all the interactions between the particles, i.e., we have
added the Coulomb interactions between the particles in ball B1 and ball B2. Hence

H = H1 +H2 +W

where W is the Coulomb interaction between the particles in ball B1 and B2. The total
Hilbert space is the tensor product of the Hilbert spaces of the particles in B1 and B2,
i.e.,

H = H1 ⊗H2 .

Next, consider the partition function

Tre−βH =
∫
B1

N1

dX1

∫
B1

M1

dR1

∫
B2

N2

dX2

∫
B2

M2

dR2e
−β[H1+H2+W ](X1, R1, X2, R2) .

Here we use the notation X1 for the coordinates of the electrons in the B1, R1 all the
coordinates of the nuclei in B1 etc. The function

e−β[H1+H2+W ](X1, R1, X2, R2)

is the heat kernel associated with the operator H evaluated on the diagonal. Our goal is
to prove the inequality

Tre−βH >∼ Tre−βH1Tre−βH2

where the traces are taken over the respective Hilbert spaces.
Using the Peierls-Bogolubov inequality we get that

Tre−βH >∼ Tre−βH1Tre−βH2e−β〈W 〉

where

〈W 〉 =
Tre−β(H1+H2)W

Tre−β(H1+H2)
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22 The thermodynamic limit for matter

The numerator is given by∫
dX1

∫
dR1

∫
dX2

∫
dR2e

−βH1(X1, R1)e−βH2(X2, R2)W (X1, R1, X2, R2)

and hence the expectation value is given by

∑
i,j

∫
dxidyj

ρel
1 (xi)ρel

2 (yj)
|xi − yj |

+ Z2
∑
k,l

∫
dRkdSl

ρnuc
1 (Rk)ρnuc

2 (Sl)
|Rk − Sl|

−Z
∑
i,l

∫
dxidSl

ρel
1 (xi)ρnuc

2 (Sl)
|xi − Sl|

− Z
∑
k,j

∫
dRkdyj

ρnuc
1 (Rk)ρel

2 (yj)
|Rk − yj |

where

ρ1(xi) =
∫
d̂xie

−βH1(X1, R1)∫
e−βH1(X1, R1)

so that ∫
ρ1(xi)dxi = 1 .

The same holds for the other densities. Hence

〈W 〉 =
∫
dxdy

Q1(x)Q2(y)
|x− y|

(1)

where
Q1(x) = N1ρ

el
1 (x)− Z

∑
j

ρnuc(x)

and similarly for Q2. By the neutrality assumption in B1 we have that∫
dxQ1(x) = 0

Further, since the Hamiltonian H1 is unchanged under simultaneous rotation of all the
variables we get that Q1(x) is a radial function. Hence by Newton’s theorem (1) reduces
to ∫

dxdyQ1(x)Q2(y) min(
1
|x|
,

1
|y|

) .

We have placed the origin into the center of B1. Since the two balls are disjoint and
since the origin is in the center of B1 we have that |x| < |y| in the domain of integration.
Hence (1) reduces to ∫

dxQ1(x)
∫
dyQ2(y)

1
|y|

= 0

since Q1 is neutral.
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Standard sequence of balls

In the following we give a sequence of balls with particles in them in such a way that
the there is charge neutrality in each ball. We fix ρel and hence, because the system is
neutral Zρnucl = ρel.

Start with R0 and put

N0 =
4π
3
R3

028ρel

electrons in this ball and of course K0 = N0/Z nuclei. Notice that the density is too big!
For j >∼ 1 define the radii

Rj = (28)jR0

and
Nj = (28)3j−1N0 ,Kj = Nj/Z

so that
Nj

4π
3 R

3
j

= ρel .

Define the numbers
mj = (27)j−1(28)2j .

Then by the Cheese Theorem we can pack a ball of radius RK by mK balls of radius R0,
mK−1 balls of radius R1 etc m1 balls of radius RK−1 and all these balls are disjoint.

If we consider the partition function ZK for the Coulomb system in the ball BK we
know from our previous considerations that

ZK >∼
K−1∏
j=0

Z
mK−j
j

and hence the free energy fK per unit volume satisfies the estimate

fK =
−β−1 logZK

4π
3 R

3
K

<∼
K−1∑
j=0

mK−j
R3
j

R3
K

fj

or

fK <∼
K−1∑
j=0

(27)K−j−1(28)2(K−j)(28)3(j−K)fj =
1
27

K−1∑
j=0

δK−j

27
fj .

From this and the stability bound we will derive the existence of the thermodynamic
limit.

Define the numbers ek >∼ 0 by

fK =
K−1∑
j=0

δK−j

27
fj − eK .

163



22 The thermodynamic limit for matter

This renewal equation can be iterated and one gets soon the clue that the solution is
given by

fK =
f0

28
−

K∑
j=1

ej
28
− δeK (2)

which can be checked. Note that fK satisfies the recursion

fK − fK−1 =
1
28
fK−1 + eK−1 − eK .

Since fK is bounded below we get that

K∑
j=1

ej
28

is bounded above and hence must converge. In particular this shows that eK → 0 as
K →∞ and hence

f = lim
K→∞

fK =
f0

28
−

∞∑
j=1

ej .
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23 The cheese theorem

First some notation: Let Ω be some domain in Rn. If h > 0 then we denote by the inner
rim of Ω the set

Ωh = {x ∈ Ω : dist(x, ∂Ω) <∼ h}

and for h < 0 we define the inner rim

Ωh = {x ∈ Ωc : dist(x, ∂Ω) <∼ −h} ,

where Ωc denotes the complement of Ω.

Lemma 79 Let Ω be a domain in Rn and assume that it is covered by a collection of closed
cubes of side length a whose interior are disjoint. Denote by N the nuber of cubes that are
inside Ω. Denote by ∆Ω the set Ω with all these cubes removed, then

|∆Ω| = |Ω| −Nan <∼ |Ω√
nd| .

Proof Remove all the cubes that are inside Ω. The cubes left over intersect the boundary
and hence the interior of these cubes is not farther away than

√
na from the boundary.

Hence, the union of the intersection of these cubes with Ω is contained in the inner rim
of size

√
na from which the above estimate follows.

From this we deduce the bound

N <∼
1
an

(|Ω| − |Ω√
na|) . (1)

A further elementary lemma concerning the geometry of balls is the following one.

Lemma 80 Let B(r) be a ball of radius r. Pick b so that

r >∼ 2b
√
n >∼ 0 .

Then
|B2b

√
n| <∼ |B−2b

√
n| <∼ γnωnr

n−1b

where
γn = 2

√
n[2n − 1]

and ωn is the volume of the unit ball in Rn.
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23 The cheese theorem

Proof The first inequality is obvious. We therefore have that

ωn[rn − (r − 2b
√
n)n] <∼ ωn[(r + 2b

√
n)n − rn] = ωrn[(1 + ε)n − 1]

where

0 <∼ ε =
2b
√
n

r <∼ 1 .

Now, by the binomial formula

[(1 + ε)n − 1] = ε

n∑
k=1

(
n

k

)
εk−1

<∼ ε

n∑
k=1

(
n

k

)
= ε[2n − 1] .

The main goal of this section is the proof of the following theorem of Lieb and
Lebowitz.

Theorem 81 (Cheese theorem) Let p be a positive integer and for all j >∼ 1 define the
radii

rj =
1

(1 + p)j

and the integers
mj = pj−1(1 + p)j(n−1) .

Then, if

1 + p >∼ γnωn +
2n

ωn

it is possible to pack
∪∞j=1(mj balls of radius rj)

in the unit n-dimensional ball.

Proof Cover the unit ball with closed cubes of size 2r1 and put balls of radius r1 into
each of the cubes that sit inside the unit ball. Removing these balls wee get a remaining
set Ω1 which we cover by closed cubes of size 2r2. Again, we fill those that are inside
Ω1 with balls of radius r2 and so on. Having done this j-times we have to show that the
remaining uncovered set Ωj can be packed with balls of radius rj+1. Let is start with
j = 0, i.e., with the ball itself. We have that

|Ω1| = ωn(1−m1r
n
1 ) == ωn(1− (1 + p)(n−1)(1 + p)−n) = ωn

p

1 + p
.

Now, we look at the inner rim
Ω1

2
√
nr2

which consists of all points that are inside Ω1 but are not more than a distance 2
√
nr2

away from the boundary of Ω1. Each of these points is either in the outer rim

B1
−2

√
nr2
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of the balls that have been removed or in the inner rim

B2
√
nr2

of the unit ball. Hence

|Ω1
2
√
nr2
| <∼ γnωnr2(1 + n1r

n−1
1 ) = 2γnωn

1
(1 + p)2

since
2
√
nr2 < r1 ,

because of Lemma 2. Next, we know from Lemma 1 that the number of cubes that have
size r2 and that sit inside Ω1 is not less than

1
(2r2)n

(|Ω1| − |Ω1
2
√
nr2
|) <∼

1
2n

(1 + p)2n(ωn
p

1 + p
− 2γnωn

1
(1 + p)2

) .

Thus, if it is true that

m2 = p(1 + p)2(n−1)
<∼

1
2n

(1 + p)2n(ωn
p

1 + p
− 2γnωn

1
(1 + p)2

)

we have completed the first step. But this says that p has to satisfy

1 <∼
ωn
2n

(1 + p− 2γn
p

) .

Since p > 1 this is implied by

1 <∼
ωn
2n

(1 + p− 2γn)

which is precisely our condition. Thus we have done the first inductive step.
Suppose that we have arrived at Ωj which is what remains of the unit ball after re-

moving the m1 balls of radius r1, the m2 balls of radious r2 etc. and at the end removing
the mj balls of radius rj . Its volume is

|Ωj | = ωn(1−
j∑

k=1

mkr
n
k = ωn(

p

1 + p
)j .

Next we consider the inner rim
Ωj

2
√
nrj+1

which is the collection of all points in Ωj that have at most distance 2
√
nrj+1 to the

boundary of Ωj . Thus, each of these points is either in the outer rim of some of the balls
that have been removed or in the inner rim of the unit ball. Thus by Lemma 2

|Ωj
2
√
nrj+1

| <∼ γnωnrj+1(1 +
j∑

k=1

mkr
n−1
k = γnωn

(pj + p− 2)
(p− 1)(1 + p)j+1

.
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23 The cheese theorem

Again, by Lemma 1 we now that we can pack Ωj at least

1
(2rj+1)n

(|Ωj | − |Ωj
2
√
nrj+1

|)

cubes of size 2rj+1. Since

(|Ωj | − |Ωj
2
√
nrj+1

|) >∼ ωn[(
p

1 + p
)j − γn

(pj + p− 2)
(p− 1)(1 + p)j+1

]

this amounts to show that

mj+1 = pj(1 + p)(j+1)(n−1)
<∼
ωn
2n

(1 + p)(j+1)n[(
p

1 + p
)j − γn

(pj + p− 2)
(p− 1)(1 + p)j+1

]

or

1 <∼
ωn
2n

[(1 + p)− γn
(1 + p−j(p− 2))

(p− 1)
]

which holds if
1 <∼

ωn
2n

[(1 + p)− γn]

which is again our condition. Note that we have used that p > 1. Thus, we can continue
with our packing indefinitely. �

Corrolary 82 The packing is asymptotically complete and rapid.

Since

N∑
j=1

mjr
n
j =

N∑
j=1

pj−1(1 + p)j(n−1) 1
(1 + p)jn

=
1

1 + p

N−1∑
j=0

(
p

1 + p
)j = 1− δN

where
δ =

p

1 + p
< 1 .

As N →∞ this converges to 1.
Further the set that is not covered up and including the N -th packing has volume δN

and hence the convergence of the packing is exponential.
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