
Towards an Arithmetic for

Partial Computable

Functionals

Basil A. Karádais

Munich 2013

Towards an Arithmetic for

Partial Computable

Functionals

Basil A. Karádais

Dissertation

an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig–Maximilians–Universität

München

vorgelegt von

Basil A. Karádais

aus Thessaloniki

München, den 24. Juni 2013

Erstgutachter: Prof. Dr. Helmut Schwichtenberg

Zweitgutachter: Prof. Giovanni Sambin

Tag der mündlichen Prüfung: 12. August 2013

Eidesstattliche Versicherung

Hiermit erkläre ich an Eidesstatt, dass die Dissertation von mir selbstständig, ohne

unerlaubte Beihilfe angefertigt ist.

Vasileios Karádais

München, den 21. Juni 2013

Abstract

In English. The thesis concerns itself with non-flat Scott information systems as an ap-

propriate denotational semantics for the proposed theory TCF+, a constructive theory

of higher-type partial computable functionals and approximations. We prove a defin-

ability theorem for type systems with at most unary constructors via atomic-coherent

information systems, and give a simple proof for the density property for arbitrary

finitary type systems using coherent information systems. We introduce the notions

of token matrices and eigen-neighborhoods, and use them to locate normal forms of

neighborhoods, as well as to demonstrate that even non-atomic information systems

feature implicit atomicity. We then establish connections between coherent informa-

tion systems and various point-free structures. Finally, we introduce a fragment of

TCF+ and show that extensionality can be eliminated.

Auf Deutsch. Diese Dissertation befasst sich mit nicht-flachen Scott-Informations-

systemen als geeignete denotationelle Semantik für die vorgestellte Theorie TCF+,

eine konstruktive Theorie von partiellen berechenbaren Funktionalen und Approxi-

mationen in höheren Typen. Auf Basis von atomisch-kohärenten Informationssyste-

men wird ein Definierbarkeitssatz für Typsysteme mit höchstens einstelligen Konstruk-

toren gegeben und ein einfacher Beweis des Dichtheitssatzes von beliebigen finitären

Typsystemen auf kohärenten Informationssystemen erbracht. Token-Matrizen und

Eigenumgebungen werden eingeführt und verwendet, um Normalformen von Umge-

bungen aufzufinden und um aufzuzeigen, dass auch nicht-atomische Information-

ssysteme über implizite Atomizität verfügen. Im Anschluss werden Verbindungen

zwischen kohärenten Informationssystemen und verschiedenen punktfreien Strukturen

geknüpft. Schlussendlich wird ein Fragment von TCF+ vorgestellt und gezeigt, dass

Extensionalität umgangen werden kann.

Dues

Mathematical research texts, according to the modern norm, bear to my mind a certain

ironic resemblance to the sort of narratives you typically get when reading stories by

Raymond Carver or watching films by Clint Eastwood: you’re shown the waves, but

it’s the undercurrent that matters. It’s an ironic resemblance, since the modern math-

ematician takes frantic care in leaving out any possible hint at the undercurrent; it’s

perceived as a taboo. Mathematics after all, as we all so dutifully agree, is no art; it’s

not historic, nor political, stormy love affairs, family tragedies, international financial

trends or crises are all irrelevant, and so on and so forth.

Yet the undercurrent is strong, and usually manages to sneak in the text anyway.

Like in the acknowledgments. So let me follow the norm.

It’s not wise to let an endeavor like this last for so long, nor, rather equivalently, is it

wise to allow yourself a truly social life in the meantime: people you become thankful

to accumulate at an unwieldy rate. I’ll try nevertheless.

Helmut Schwichtenberg is the one who really gave me the chance to live and work

in Munich. He’s been patient and trustful all these years, he gave me a lot of leeway,

and yet he was always alert and ready to spring to aid when I would get lost in all this

freedom. I guess I will have to let it sink in for a while before I can tell just how much

I really owe him.

I am deeply thankful to my family, my mom, my sister, and my little niece Christina

who always tried to help me with my mathematical problems over the phone—if I gath-

ered her suggestions in a little book, I’d get a collection of mathy fairy tales reminiscent

of both Edwin Abbott and E.E. Cummings. I’m especially thankful to my father, who

nevertheless won’t be reading this (as far as I know; my metaphysics is a bit rusty).

And I have to thank all people who I hold dear, like Giorgos, Thanos, Apostolos,

Kostas, Brent (who also did a great job shaping up my englisch), Pavel, Ian ’n’ Leah,

Sarah, Spyros, Dirk, and certainly Rhea, who’s been there when I’d otherwise be truly

alone—let alone she taught me a couple of cool programming tricks. Most of these

people have even had a traceable impact on the work itself, but to follow these traces

would be to dive deep into the undercurrent. There are more I could mention here, but

I kept it to the guys and girls that I burdened with the thesis the most, I guess.

Then the colleagues: Diana Ratiu, Lucchino Chiarabini, Bogomil Kovachev, Trifon

Trifonov, Stefan Schimanski, Freiric Barral, Klaus Thiel; Florian Ranzi and Simon

Huber; Parmenides Garcia Cornejo; Josef Berger; Daniel Bembé, Kathrin Bild, Sifis

Petrakis, Kenji Miyamoto, Davide Rinaldi, and Fredrik Nordvall Forsberg; Andreas

Abel, too. All of them, at one time or another, have helped, both as friends as well as

scientifically.

And the teachers: Giovanni Sambin, Peter Schuster, Douglas Bridges, Detlef Dürr,

Sofia Kalpazidou, Symeon Bozapalidis, Giorgos Rachonis, Thanasis Tzouvaras. I must

x Dues

also mention Thierry Coquand, whose few and strictly scientific remarks guided this

work to an unexpected degree.

The indirect teachers too: Thomas Kuhn [26], Imre Lakatos [27], and especially

Ludwig Wittgenstein’s [58], have been invaluable, instructive, and highly soothing

companions whose influence ran deep throughout my research experience. It’s sad

how downplayed, at times even ridiculed (see Georg Kreisel’s unfortunate [23]), such

works are by the modern working mathematician, but this is I believe a topic not best

suited here. These people are now dead, and aren’t going to read this text either, but

hopefully somebody else who reads this will read them.

Finally, a thanks to the places: Alter Simpl and Zeitgeist of Türkenstraße; Land-

haus at Tal, a.k.a. “the tree bar”; Cabane of Theresienstraße; Flaschenöffner of Fraun-

hoferstraße; Altes Kreuz of Falkenstraße; Gartensalon of Amalienpassage; all of them,

places fit to ponder over calculations, when the office or home felt too small and the

streets too open. At least, of course, up to the time when Munich was still farther east

than any U.S. city and you could still have a decent smoke indoors without feeling

guilty like a teenager does after sex; it’s a shame how this picturesque city’s gotten too

sterile to allow for an honest way of life, but again, I guess this is a topic for some other

kind of text.

Acknowledgments

I was supported by a Marie Curie Early Stage Training fellowship (MEST-CT-2004-

504029) for three years. Unfortunately, I don’t know who to thank for that, other than

the local MATHLOGAPS committee in Munich who trusted me with the allotted funds,

and our dutiful secretary, Gerlinde Bach, who dealt with much of the dreary paperwork;

for despite the outrageous bureaucratic disguise, Marie Curie funding is a blessing in

most ways.

I also want to thank the people who’ve trusted me to help as a TA with their

students, providing me with the means to pay my rent in my post-fellowship years:

Schwichtenberg and Schuster again, and also Günther Krauss, Erwin Schörner, Rudolf

Fritsch, Michael Prähofer, Max von Renesse, Martin Hofmann, and Franz Merkl.

At this point, I would like to give a big thanks to the students too, whose trust has

often been more precious and motivating than that of peers or supervisors. Clichés are

often based on truths.

That’s about it.

Basil K., Summer 2013

Contents

Abstract vii

Dues ix

Contents xi

Introduction 1

1 Atomic-coherent information systems 5

1.1 Acises and function spaces . 5

1.2 Ideals . 18

1.3 Algebraic acises . 28

1.4 Computability over arithmetical functionals 34

1.5 Notes . 46

2 Matrices and coherent information systems 49

2.1 A formal matrix theory . 53

2.2 Algebraic matrices . 62

2.3 Algebraic function spaces . 87

2.4 Totality and density . 97

2.5 Notes . 100

3 Connections to point-free structures 105

3.1 Scott information systems . 105

3.2 Atomicity and coherence in information systems 111

3.3 Coherent point-free structures . 113

3.4 Notes . 124

4 Elimination of extensionality 127

4.1 Heyting arithmetic in all finite types 127

4.2 Elimination of extensionality in E-HAω 129

4.3 Notes . 133

A Some domain theory 135

Bibliography 139

Index 143

Introduction

In computability theory one has to deal with algorithms which are not sure to termi-

nate. These algorithms naturally give rise to functionals that are definable only on the

arguments for which the algorithm does terminate, that is, to partial functionals. The

classical way to deal with this notion of partiality, originating in Stephen Kleene’s [21]

and Georg Kreisel’s [24], is to suppose that the arguments of these functionals are them-

selves total, in the sense that they are always defined; this approach does not prove so

elegant though when one wants to develop a general theory of computation at higher

types: one needs a unified and intuitively natural way to deal with functionals, which

can accept partial arguments as well as total ones.

A more appropriate setting for this, where partiality is not introduced externally

anymore, is provided by the theory of domains, which started with Dana Scott’s [50]:

here one handles functionals which are total, in that they respond to every given ar-

gument, but where the arguments themselves might be “partial”, in a sense to be ac-

knowledged on the formal level: the notion of partiality should come built-in with the

corresponding logical theory. The notion of approximations would then be formulated

quite naturally in terms of concrete elements, characterizing the arguments at hand,

as it happens for example in computations on real numbers in terms of their rational

approximations.

Types and algebras

The type system that we consider in what follows builds upon “algebras”. A higher

type will be formed by already given types ρ and σ as the corresponding function

space ρ → σ , and every base type α will be given by an algebra, that is, by a finite set

of constructors; every such constructor C is given with a constructor type:

C :~ρ0 → (~ρ1 → α)→ ·· · → (~ρr → α)→ α ,

where ~ρi, for i≥ 0, are vectors of type variables which may not include α—obviously,

our type system is defined by mutual induction1. The arity ar(C) of the constructor is

defined by

ar(C)≔ (~ρ0,~ρ1 → α, · · · ,~ρr → α) .

The arguments of type~ρ0 are parametric arguments and the arguments of type~ρi → α ,

for i > 0, are called recursive arguments.

The vectors~ρi, for all i’s, may be empty. When this is the case for i≥ 0, we call α a

finitary algebra; when ~ρ0 may not be empty but ~ρi is, for all i > 0, we call it structure-

finitary; in the cases where ~ρi, for some i > 0, are not empty, we talk of an infinitary

1Also called simultaneous induction. The type system we employ in this thesis is a simplified version of

the one defined in [49, Chapter 6].

2 Introduction

algebra. In a finitary algebra, a constructor with r recursive arguments is simply said

to have arity r. In the case of a non-parametric algebra (where ~ρ0 is empty), to avoid it

being empty we require that it comes with at least one nullary constructor, often written

0.

So, the algebra N of the natural numbers comes with a nullary constructor 0 : N

and a unary constructor S : N→ N. The algebra B of the boolean numbers comes with

two nullary constructors tt : B and ff : B. The algebra O of the ordinal numbers comes

with a nullary constructor 0 :O, and two unary ones, S :O→O and ∪ : (N→ O)→O.

Algebras N and B are finitary, but O is infinitary.

As for parametric examples, the algebra L(ρ) of lists of ρ-objects comes with a

nullary constructor nil : L(ρ) and a binary constructor cons : ρ → L(ρ)→ L(ρ). An-

other parametric example is the product algebra ρ × σ of ordered pairs of ρ- and

σ -objects, with a binary constructor (,) : ρ → σ → ρ×σ (observe here the absence

of nullary constructors). Both of these parametric algebras are structure-finitary.

Constructor expressions and partiality

A naive understanding of the structure that elements in such algebras must have comes

from universal algebra (see for example in [56]). If we view the set K of all construc-

tors involved in the simultaneous consideration of given algebras as a many-sorted

signature—one sort per algebra—then we can easily form the free K-algebra in the

well-known way, namely, as the class of all K-trees (or K-terms).

In particular, supposing for example that we had to deal with the algebras

N and O, the aforementioned free K-algebra would be two-sorted, with K =
{0N,SN,0O,SO,∪O}, and among its trees one would expect to find expressions like

the following2:

sort N: 0,S0,SS0,SSS0, . . .

sort O: 0,S0,SS0,SSS0, . . . ,∪(0N,0O), . . . ,∪(SS0,∪(SSS0,SS0)),

Indeed, these expressions form the backbone of the carrier sets which we will use in

practice; the differences will stem from the desire to allow for partiality.

If we think of the above expressions as denoting “completed”, “total” entities, we

want to allow for expressions denoting “incomplete”, “partial” entities as well; in or-

der for these to be completed more information would be needed. We achieve that

by introducing yet another symbol ∗α for each algebra α we consider, meaning “least

information of sort α” and behaving exactly like an extra nullary constructor, the (par-

tial) pseudo-constructor, so that, in the previous setting, we would additionally obtain

expressions like the following:

sort N: ∗,S∗,SS∗,SSS∗, . . .

sort O: ∗,S∗,SS∗,SSS∗, . . . ,∪(∗N,∗O), . . . ,∪(SS∗,∪(SSS∗,SS∗)),

However, since we really want to discuss computability—in other words, informa-

tion on the construction and behavior of numbers, functions, and functionals that may

not always be defined—the carrier sets have to be so devised, as to portray partial enti-

ties in a bit more intricate way than the straightforward free K-algebra above; namely,

2Note that the pairs (aN,bO) in expressions with the supremum constructor refer to elements of the graph

of a sequence of ordinals, understood as a mapping of type N→O, and not to elements of the corresponding

product space N×O.

Introduction 3

in a way that will treat consistency and entailment of computational information in sat-

isfactory technical detail. This calls for more structure upon our free algebras, which

will be given by so called Scott information systems; for example, in algebra N, the

information token S0 is considered consistent with the token S∗ but not to SS0, and,

in algebra O, the neighborhood (combined information) {∪(0,S0),∪(S0,S0)} entails

the token ∪(S0,S∗) but not ∪(S0,0). One may already see that in this way we ob-

tain non-flat domains (see Figure 1.1 on page 30), as was already premised by Helmut

Schwichtenberg in [47].

Contributions to the semantics: acises, matrices, and point-free

structures

It is known (see for example [49]) that every free algebra induces a non-flat Scott

information system which, as it turns out, always falls into the subclass of “coherent”

information systems, where consistency can be fully described by a binary predicate.

Moreover, in the special case of algebras with at most unary constructors, like N or

B, and function spaces over them, an even simpler version of coherent information

systems suffices, the ones called “atomic” in [47], where also entailment can be fully

described by a binary predicate.

Non-superunary algebras like the latter, that is, algebras with at most unary con-

structors, represent data types that govern a reasonably essential part of known ap-

plications, and we focus on atomic-coherent information systems in Chapter 1. We

introduce a version of them that we call acis, as in [47]3, but given directly as a struc-

ture of tokens with two binary relations. We investigate varying notions of functions

over acises, in particular token- and neighborhood-mappings versus ideals. We isolate

a maximal normal form for neighborhoods. We then prove a definability theorem for

non-superunary type systems, that is, for type systems based on non-superunary alge-

bras, extending previously known results. In the end, we outline limits to our proof

of definability through a characterization of non-superunary algebras by comparability

properties.

In Chapter 2 we lose the strict atomicity demand and engage in general coherent

information systems. Still, the main feature of the chapter is actually the uncovering

of atomicity that hides even in these more general structures, making acises important

not just because of their simplicity but also because of their fundamental role in the

model. We introduce the idea of forming a matrix of tokens, and then develop a matrix

theory over acises for both finitary and infinitary algebras; we show that entailment

at base type is implicitly atomic by characterizing it through matrix application, since

matrices form an atomic information system. We isolate yet another normal form for

base type neighborhoods, the homogeneous normal form and prove a matrix represen-

tation theorem for it. We then show that in the basic case of finitary algebras, base type

neighborhoods attain an even simpler normal form, their eigentoken.

Then we move on to higher types, where we single out a crucial special case of a

neighborhood, the eigen-neighborhood; we show that higher type entailment is again

implicitly atomic by characterizing it through atomic entailment on the level of eigen-

neighborhoods. We also find canonical monotone forms for finitary neighborhoods.

Finally, in way of exemplifying the introduced notions, we point the way to an intrinsic

approach to the well-known density theorem for finitary type systems: we first give a

3Pronounce \‘eIsIs\ to avoid sounding vulgar. We will be using the term as a proper english noun,

allowing for the forms acises for the plural and acis’s for the possessive.

4 Introduction

proof that considerably simplifies previously known proofs in settings close to ours,

and then we give examples of how it may be applied.

In Chapter 3 we broaden our viewpoint to answer a simple and reasonable, yet

up to this point lurking question: what kind of point-free structures correspond to the

coherent information systems that we use here? Point-free topology and higher-type

computability are intertwined to a considerable extent—the former providing the topo-

logical understanding for the type systems of the latter—and this is a connection that

ought to be made. To this end, besides domains, we consider two well-known point-

free structures, namely precusls and formal topologies, and impose further coherence

conditions on them that achieve the correspondence that we seek.

. . . and a contribution to the syntax: towards an arithmetic for par-

tial computable functionals

The motivation for delving so deeply into a mathematical theory of coherent Scott in-

formation systems, comes from implementation considerations. The overall project is

a logical theory of arithmetic with approximations to be implemented in a proof assis-

tant—the first steps in such a theory are described in [18]—but for such a goal one must

firstly have a refined enough understanding of the model of the theory. Implementation

guides one to (a) avoid using abstract domains as abstract higher-type computability

theory would have it and rather turn to their tangible representation through informa-

tion systems, (b) narrow one’s focus on the relevant coherent information systems, and

(c) try to find viewpoints within the model that present it in both intuitive and tech-

nically simple ways; the premise being that the latter should lead to a simpler logical

theory and thus to a simpler implementation.

This necessary process of understanding the model, that is, the mathematical theory

of coherent information systems, proved enough to fill up three chapters, and for the

anticipated logical theory we can afford here merely one. In Chapter 4 we provide a

version of the old argument of Robin Gandy’s [12] and show how extensionality can

be eliminated in such a theory, as one would like to have.

Organization of the material

Every chapter starts with a brief preview, followed by the main sections and ending

with notes, where we pay dues to colleagues and existing literature, discuss issues that

digress from the main route, and give an outlook on future work. Particularly important

results are labeled “theorems”. Well-known results from domain theory which didn’t

fit in the main text were relegated to Appendix A. A selective index can be found at the

end of the text.

Chapter 1

Atomic-coherent information

systems

In this chapter we concentrate on data types as simple as the natural or the boolean

numbers—in general, types of objects that constructors of at most unary arity1 can

build. Such objects are of well-known value application-wise, but also play a funda-

mental role in the mathematical theory, as we will see in Chapter 2. To model such

types we use the atomic-coherent information systems, or acises, that were introduced

in [47].

Preview

The main plot of the chapter concerns definability for non-superunary types. In sec-

tion 1.1 we go through basic facts concerning acises and their function spaces, and we

linger a bit on a study of different notions of mappings between them. In section 1.2 we

study ideals of acises from an elementary topological and category-theoretic viewpoint.

In section 1.3 we show how given non-superunary algebras induce acises, state simple

facts about them, and describe a normal form for their neighborhoods. In section 1.4 we

prove the definability theorem 1.46, as well as the characterization of non-superunary

algebras via comparability properties in Theorem 1.50.

1.1 Acises and function spaces

Consistency and entailment as binary predicates

An atomic-coherent information system, being a special kind of a Scott information

system, was first described in [47] as a triple ρ = (T,Con,≻)2, whereby T is a count-

able set, Con is a nonempty set of finite subsets of T , and ≻ is a binary relation, such

that

1. ≻ is reflexive and transitive, that is, a preorder,

1For the arity of a constructor see page 1.
2A notational convention throughout the text is that ι , α , β , γ . . . denote base types, whereas ρ , σ ,

τ . . . either denote arbitrary types, or, in absence of a type system (namely, in sections 1.1, 1.2, 2.1, as well

as in Chapter 3), they denote arbitrary Scott information systems.

6 1. Atomic-coherent information systems

2. ∅ ∈ Con∧∀a∈T{a} ∈ Con,

3. U ∈ Con⇔ ∀a,b∈U{a,b} ∈ Con,

4. {a,b} ∈ Con∧b≻ c→{a,c} ∈ Con.

Call the elements of T tokens, of Con neighborhoods (or consistent sets), and ≻ en-

tailment relation of ρ , and write U ≻ a for ∃b∈U b≻ a and U ≻V for ∀a∈V U ≻ a.

The coherence property, stated in axiom 3 above, makes it possible to describe this

structure graph-theoretically, as a set with two binary relations. Call an acis graph a

triple ρ = (T,≍,≻), whereby T is again a countable set and ≍ and ≻ are two binary

relations on T such that

1. ≍ is reflexive and symmetric,

2. ≻ is reflexive and transitive,

3. if a≍ b and b≻ c then a≍ c, for all a,b,c ∈ T .

Call ≍ a consistency relation and write U ≍ a for ∀b∈U b≍ a and U ≍V for ∀a∈V U ≍
a. Let us also call the third axiom propagation of consistency. One can see that such a

graph has all ≍- and ≻-loops and is ≍-undirected but ≻-directed.

The notion of an acis graph is equivalent to the notion of an atomic-coherent infor-

mation system. First, it is easy to notice that in an acis graph (T,≍,≻) it is

∀
a,b∈A

a≻ b→ a≍ b ,

by the reflexivity and propagation of consistency. Then we have the following.

Proposition 1.1. Every acis graph corresponds to an atomic-coherent information sys-

tem, and vice-versa.

Proof. For the right direction, define the neighborhoods of an acis graph to be the finite

sets which have the coherence property, that is

U ∈ Con≔U ⊆ f T ∧ ∀
a,b∈U

a≍ b

—in graph-theoretic terms, the neighborhoods of an acis graph are exactly its finite ≍-

clusters. For the left direction, define the consistency relation in an atomic-information

system by

a≍ b≔ {a,b} ∈ Con .

It is easy to check that the details hold. �

This justifies our use of the term atomic-coherent information system with the

meaning “acis graph”, and indeed in what follows we will not differentiate between

the two.3

3For a more general discussion of atomicity and coherence in the context of Scott information systems as

we know them see Chapter 3.

1.1 Acises and function spaces 7

Basic notions and facts

So an atomic-coherent information system, or simply an acis, is a triple ρ = (T,≍,≻),
where T is the carrier, a nonempty countable set, the elements of which are called

tokens (or atoms), ≍ is the consistency, a reflexive and symmetric binary relation on

T and ≻ is the entailment, a reflexive and transitive binary relation on T , such that

consistency propagates through entailment, that is,

∀
a,b,c∈T

(a≍ b∧b≻ c→ a≍ c) .

For U,V ⊆ T , write U ≍V for ∀a∈U ∀b∈V a≍ b and U ≻V for ∀b∈V ∃a∈U a≻ b.

The classes of (formal) neighborhoods (or consistent sets) and ideals (or elements)

in ρ are defined respectively by

U ∈ Con≔ (U ⊆ f T)∧ (∀
a,b∈U

a≍ b) ,

u ∈ Ide≔ ∀
a,b∈u

a≍ b∧ ∀
a∈u

(a≻ b→ b ∈ u) .

Denote the empty ideal ∅ ∈ Ide by ⊥.

Proposition 1.2. The following hold in any acis, for tokens a,a′,b,b′, neighborhoods

U,U ′,V,V ′,W and ideals u,v:

1. a≻ b→ a≍ b.

2. a≻ b∧a′ ≻ b′∧a≍ a′→ b≍ b′.

3. U ≻V ∧U ′ ≻V ′∧U ≍U ′→V ≍V ′.

4. U ≍V ∧V ≻W →U ≍W.

5. U,V ∈ Con→U ∩V ∈ Con.

Proof. The first two statements follow from reflexivity and propagation of consis-

tency. For the third statement: Suppose that U1 ≻ V1 and U2 ≻ V2; this unfolds to

∀b1∈V1 ∃a1∈U1
a1 ≻ b1 and ∀b2∈V2 ∃a2∈U2

a2 ≻ b2; since also ∀a1∈U1 ∀a2∈U2
a2 ≍ a1, by

the second statement, we obtain ∀b1∈V1 ∀b2∈V2
b1 ≍ b2, that is, V1 ≍V2.

For the fourth statement: Let U ≍V and V ≻W ; we have U ∪V ≻U and U ∪V ≻
W , so by the previous statement we take U ≍W . More concretely: let a∈U and c∈W ;

then there is a b ∈V for which a≍ b and b≻ c; propagation for tokens yields a≍ c.

The fifth statement is direct to show. �

For a set of tokens X ⊆ T , define its (deductive) closure and the cone (of ideals)

above it by

X ≔ {a ∈ T | X ≻ a} and ∇X ≔ {u ∈ Ide | X ⊆ u}

respectively. Denote by Con the class of all closures of neighborhoods and by Kgl

the class of all cones in the acis and write a for {a} and ∇a for ∇{a}. Note that

the closure of a neighborhood is finite—hence itself a neighborhood—only if the en-

tailment relation is finitarily branching and well-founded; so, in general, Con * Con.

Note moreover, that the cone above a set of tokens is nonempty only when the set is

consistent, that is, a neighborhood.

The following are straightforward to check by the previous proposition:

8 1. Atomic-coherent information systems

Proposition 1.3. Let X ,Y ⊆ T and U,V ∈ Con.

1. If X is finite then X ∈ Con if and only if X ∈ Ide.

2. X ∪Y = X ∪Y .

3. X ∩Y ⊇ X ∩Y .

4. X =
⋃

a∈X a.

5. X ≍ Y if and only if X ≍ Y .

6. X ≻ Y if and only if X ⊇ Y .

7. ∇⊥= Ide.

8. U ∈ ∇U.

9. ∇U = ∇U.

10. U ≍V → ∇U ∩∇V = ∇(U ∪V).

11. ∇U =
⋂

a∈U ∇a.

Simple constructs

Given an acis ρ , any acis (T,≍,≻) with T ⊆ Tρ , ≍⊆≍ρ and ≻⊆≻ρ is a sub-acis of

ρ . In particular, for any subset Ω ⊆ Tρ , we can define ρ|Ω ≔ (Ω,≍ρ |Ω×Ω,≻ρ |Ω×Ω).
Clearly, this is again an acis, and

Ideρ |Ω = Ideρ |Ω .

Let ρ = (Tρ ,≍ρ ,≻ρ) and σ = (Tσ ,≍σ ,≻σ) be two acises. Define their disjoint

union ρ ∪σ by

Tρ∪σ ≔ Tρ ∪Tσ ,

a≍ρ∪σ b≔ a≍ρ b∨a≍σ b ,

a≻ρ∪σ b≔ a≻ρ b∨a≻σ b ,

provided they have disjoint carriers, that is, Tρ ∩Tσ =∅. Define their intersection ρ∩σ
by

Tρ∩σ ≔ Tρ ∩Tσ ,

a≍ρ∩σ b≔ a≍ρ b∧a≍σ b ,

a≻ρ∩σ b≔ a≻ρ b∧a≻σ b .

Define their set-theoretic product ρ⊗σ by

Tρ⊗σ ≔ Tρ ×Tσ ,

(a1,b1)≍ρ⊗σ (a2,b2)≔ a1 ≍ρ a2∧b1 ≍σ b2 ,

(a1,b1)≻ρ⊗σ (a2,b2)≔ a1 ≻ρ a2∧b1 ≻σ b2 ,

1.1 Acises and function spaces 9

and their cartesian product ρ×σ by

Tρ×σ ≔ Tρ ∪Tσ ,

a≍ρ×σ b≔ (a ∈ Tρ ∧b ∈ Tσ)∨ (a ∈ Tσ ∧b ∈ Tρ)∨a≍ρ b∨a≍σ b ,

a≻ρ×σ b≔ a≻ρ b∨a≻σ b ,

provided again that Tρ ∩Tσ = ∅. It is easy to check the following.

Proposition 1.4. The disjoint union, intersection, set-theoretic product and cartesian

product of two acises is again an acis. Furthermore, for the corresponding ideals, the

following statements hold up to isomorphism: Ideρ⋆σ = Ideρ ⋆ Ideσ , for ⋆ ∈ {⊎,∩,⊗},
and Ideρ×σ ⊇ Ideρ × Ideσ .

Proof. All of the cases are pretty much direct to show. We show the equality of ideals

in the set-theoretic product case. Let u ∈ Ideρ×σ and set uρ
≔ {a ∈ Tρ | ∃b(a,b) ∈ u}

and uσ
≔ {b ∈ Tσ | ∃b(a,b) ∈ u}. We show that uρ ∈ Ideρ (we work similarly for the

σ case): For consistency, let a1,a2 ∈ uρ , so there is a bi for i = 1,2 with (ai,bi) ∈ u;

since u is an ideal, it is (a1,b1)≍ρ×σ (a2,b2); by the definition of≍ρ×σ , it is a1 ≍ρ a2.

For closure under entailment, let a ∈ uρ and a≻ρ a′; by the definition of uρ , there is a

b with (a,b) ∈ u; by the definition of ≻ρ×σ , we have (a,b)≻ρ×σ (a′,b); since u is an

ideal, it is (a′,b) ∈ u, that is, a′ ∈ uρ .

Conversely, let uρ ∈ Ideρ , uσ ∈ Ideσ and set u≔ uρ×uσ . We show that u∈ Ideρ×σ .

For consistency, let (ai,bi) ∈ u, i = 1,2; since uρ and uσ are ideals, it is a1 ≍ρ a2 and

b1 ≍σ b2, so, by the definition of ≍ρ×σ , it is (a1,b1)≍ρ×σ (a2,b2). For closure under

entailment, let (a,b) ∈ u and (a,b) ≻ρ×σ (a′,b′); by the definition of ≻ρ×σ , we get

a ≻ρ a′ and b ≻σ b′ and since uρ and uσ are ideals, it is a′ ∈ uρ and b′ ∈ uσ , that is,

(a′,b′) ∈ u.

For the cartesian product case: The properties of ≍ρ×σ and ≻ρ×σ are direct. For

the propagation of consistency, starting without loss of generality with the definition,

we have:

a≍ρ×σ b∧b≻ρ×σ c⇔
(

(a ∈ Tρ ∧b ∈ Tσ)∨a≍ρ b∨a≍σ b
)

∧
(

b≻ρ c∨b≻σ c
)

⇔
(

(a ∈ Tρ ∧b ∈ Tσ ∧b≻ρ c)

∨ (a ∈ Tρ ∧b ∈ Tσ ∧b≻σ c)
)

∨
(

(a≍ρ b∧b≻ρ c)∨ (a≍ρ b∧b≻σ c)
)

∨
(

(a≍σ b∧b≻ρ c)∨ (a≍σ b∧b≻σ c)
)

⇒(⊥∨ (a ∈ Tρ ∧ c ∈ Tρ))∨ (a≍ρ c∨⊥)∨ (⊥∨a≍σ c)
def
⇔a≍ρ×σ c .

For the inclusion of the ideals, consider the correspondence defined by (u,v) 7→
u∪ v, for u ∈ Ideρ , v ∈ Ideσ , which is bijective. �

10 1. Atomic-coherent information systems

Function Spaces

For our purposes, the most important construct between two acises ρ and σ is their

function space ρ → σ = (T,≍,≻), which is defined by

T ≔ Conρ ×Tσ ,

(U,a)≍ (V,b)≔U ≍ρ V → a≍σ b ,

(U,a)≻ (V,b)≔V ≻ρ U ∧a≻σ b .

Proposition 1.5. The function space between two acises is again an acis.

Proof. The axioms for ≍ and ≻ are easy to check. For the axiom of propagation:

Suppose that (U,a) ≍ (V,b) and (V,b) ≻ (W,c); by the definition of consistency and

entailment in the function space we have U ≍ρ V → a ≍σ b and W ≻ρ V ∧ b ≻σ c;

we want to show that (U,a) ≍ (W,c), or equivalently that U ≍ρ W → a ≍σ c; let

U ≍ρ W ; by the second statement of Proposition 1.2, since U ≍ρ W ∧W ≻ρ V , we have

U ≍ρ V , which by the assumption of consistency in ρ → σ yields a≍σ b; propagation

of consistency in σ gives a≍σ c. �

The following are direct consequences of the definition of the function space.

Proposition 1.6. For a function space ρ → σ the following hold:

1. U 6≍ρ V → ∀a,b∈Tσ (U,a)≍ρ→σ (V,b).

2. (U,a)≍ρ→σ (V,b)→ (U,b)≍ρ→σ (V,a).

3. a≻σ b→ ∀U∈Conρ (U,a)≻ρ→σ (U,b).

4. V ≻ρ U → ∀a∈Tσ (U,a)≻ρ→σ (V,a).

Morphisms of acises

Token-mappings

A token-mapping f from ρ to σ is a total mapping f : Tρ → Tσ . It is monotone when

a≻ρ b→ f (a)≻σ f (b) ,

consistency-preserving when

a≍ρ b→ f (a)≍σ f (b) ,

and a homomorphism when it is both monotone and consistency-preserving. A ho-

momorphism is furthermore a monomorphism, epimorphism or isomorphism when the

token-mapping is injective, surjective or bijective respectively.

For an arbitrary token-mapping f : Tρ → Tσ define the idealization of f by the class

ı̇ı f ⊆ Tρ→σ by

ı̇ı f ≔ {(U,b) | ∃
a∈Tρ

(

U ≻ρ a∧ f (a)≻σ b
)

} .

For example, consider the identity token-mapping id : Tρ → Tρ , defined by id(a)≔ a;

then

ı̇ıid = {(U,a) |U ≻ρ a} .

1.1 Acises and function spaces 11

Another example is the constant token-mapping cnstb0
: Tρ → Tσ , defined by

cnstb0
(a)≔ b0, for a fixed b0 ∈ Tσ ; then

ı̇ıcnstb0
= {(U,b) | b0 ≻σ b} .

The choice of the name stems from the following observation, due to Helmut Schwicht-

enberg.

Proposition 1.7. A token-mapping f : Tρ → Tσ is consistency-preserving if and only if

ı̇ı f ∈ Ideρ→σ .

Proof. For the right direction: To show consistency, let (U1,b1),(U2,b2)∈ ı̇ı f ; we want

to show that (U1,b1)≍ρ→σ (U2,b2), so let U1 ≍ρ U2; by the definition of ı̇ı f we get ai’s

such that Ui ≻ρ ai∧ f (ai)≻σ bi, for i = 1,2; by the assumption we have U1∪U2 ≻ρ ai,

for i = 1,2, hence a1 ≍ρ a2; since f preserves consistency, it is f (a1) ≍σ f (a2), so

Proposition 1.2(2) yields b1 ≍σ b2.

To show closure under entailment, let (U1,b1)∈ ı̇ı f and (U1,b1)≻ρ→σ (U2,b2), or,

equivalently, U2 ≻ρ U1 ∧ b1 ≻σ b2; by the definition of ı̇ı f we have an a with U1 ≻ρ

a∧ f (a)≻σ b1; by the transitivity we have U2≻ρ a∧ f (a)≻σ b2, which is by definition

(U2,b2) ∈ ı̇ı f .

For the left direction: Let ı̇ı f ∈ Ideρ→σ and a≍ρ b. Since ({a}, f (a)),({b}, f (b))∈
ı̇ı f and ı̇ı f is an ideal, it follows that f (a)≍σ f (b). �

Clearly, ı̇ıid and ı̇ıcnstb0
, as defined above, are ideals of ρ → ρ and ρ → σ respectively.

Neighborhood-mappings

It is tempting to carry the idea of idealization from the case of mappings between

tokens to the case of mappings between sets of tokens: given a mapping from P(Tρ)
to P(Tσ), induce an ideal of the corresponding function space ρ → σ by collecting all

(U,b)’s that have an “intermediary” X ⊆ Tρ , that is, a set entailed by U and having an

image that entails b. Clearly, such an intermediary X has to be consistent, otherwise it

couldn’t possibly be entailed by the neighborhood U .

A neighborhood-mapping f from ρ to σ is a total mapping f : Conρ → Conσ . It

is monotone when

U ≻ρ V → f (U)≻σ f (V) ,

consistency-preserving when

U ≍ρ V → f (U)≍σ f (V) ,

and a homomorphism when it is both monotone and consistency-preserving. A ho-

momorphism is furthermore a monomorphism, epimorphism or isomorphism when the

neighborhood-mapping is injective, surjective or bijective respectively.4

Proposition 1.8. If a neighborhood-mapping f : Conρ×σ → Conτ is consistency-

preserving then it is consistency-preserving in each component.

Proof. Let U1 ≍ρ U2 and V1 ≍σ V2; then f (U,V1)≍τ f (U,V2) for each U ∈ Conρ and

similarly f (U1,V)≍τ f (U2,V) for each V ∈ Conσ . �

4A neighborhood-mapping from ρ to σ is nothing but a token-mapping from Nρ to Nσ , where by Nρ
we denote the corresponding neighborhood information system of an acis ρ (see page 108).

12 1. Atomic-coherent information systems

For an arbitrary neighborhood-mapping f : Conρ → Conσ define the idealization

of f by the class ı̇ı f ⊆ Tρ→σ by

ı̇ı f ≔ {(U,b) | ∃
V∈Conρ

(

U ≻ρ V ∧ f (V)≻σ b
)

} .

For example, consider the identity neighborhood-mapping id : Conρ → Conρ , defined

by id(U)≔U ; then

ı̇ıid = {(U,a) |U ≻ρ a} .

Another example is the constant neighborhood-mapping cnstV0
: Conρ → Conσ , de-

fined by cnstV0
(U)≔V0, for a fixed V0 ∈ Conσ ; then

ı̇ıcnstV0
= {(U,b) |V0 ≻σ b} .

Proposition 1.9. A neighborhood-mapping f : Conρ → Conσ is consistency-

preserving if and only if ı̇ı f ∈ Ideρ→σ .

Proof. We proceed similarly as in the proof of Proposition 1.7. For the right direction:

To show consistency, let (U1,b1),(U2,b2) ∈ ı̇ı f ; we want to show that (U1,b1) ≍ρ→σ

(U2,b2), so let U1 ≍ρ U2; by the definition of ı̇ı f we get Vi’s such that Ui ≻ρ Vi ∧
f (Vi) ≻σ bi for i = 1,2; by the assumption and Proposition 1.2(3) we have V1 ≍ρ V2;

since f preserves consistency, it is f (V1) ≍σ f (V2), so, again by Proposition 1.2(3), it

is b1 ≍σ b2.

To show closure under entailment, let (U1,b1)∈ ı̇ı f and (U1,b1)≻ρ→σ (U2,b2), or,

equivalently, U2 ≻ρ U1 ∧ b1 ≻σ b2; by the definition of ı̇ı f we have a V with U1 ≻ρ

V ∧ f (V)≻σ b1; by transitivity and assumption we have U2 ≻ρ V ∧ f (V)≻σ b2, which

is by definition (U2,b2) ∈ ı̇ı f .

For the other direction: Let ı̇ı f ∈ Ideρ→σ and U ≍ρ V . Since, for any a ∈ f (U)
and b ∈ f (V), it is (U,a),(V,b) ∈ ı̇ı f and ı̇ı f is an ideal, it follows that a ≍σ b, so

f (U)≍σ f (V). �

Clearly again, ı̇ıid and ı̇ıcnstV0
, as defined above, are ideals of ρ → ρ and ρ → σ re-

spectively.

We now link neighborhood-mappings to token-mappings. Let f : Tρ → Tσ be a

token-mapping. Define a mapping ın f : Conρ →P f (Tσ) by

ın f (U)≔ { f (a) | a ∈U} .

Proposition 1.10. Let ρ and σ be acises.

1. The mapping ın f is a well-defined neighborhood-mapping from ρ to σ when f

is consistency-preserving. In this case, ın f is also consistency-preserving.

2. The mapping ın f is monotone when f is monotone.

3. If f is a consistency-preserving token-mapping then ı̇ı f = ı̇ıın f .

Proof. For the first statement: Let U ∈ Conρ ; the set ın f (U) is finite by definition,

since U is finite; furthermore, if b,b′ ∈ ın f (U), then there must exist a,a′ ∈U for which

f (a) = b and f (a′) = b′; but U is a neighborhood, so a ≍ρ a′; since f is consistency-

preserving we get b ≍σ b′. Now, let U ≍ρ V and b ∈ ın f (U), b′ ∈ ın f (V); then there

are a ∈U , a′ ∈V with f (a) = b, f (a′) = b′; by the assumption and by the preservation

of consistency of f , we get b≍σ b′.

1.1 Acises and function spaces 13

For the second statement: Let U ≻ρ V and b′ ∈ ın f (V); by definition there exists

an a′ ∈V such that f (a′) = b′; by the assumption, there must be some a ∈U such that

a≻ρ a′; set b≔ f (a) ∈ ın f (U); by monotonicity of f we get b≻σ b′.

For the third statement: Let f : Tρ → Tσ be a consistency-preserving token-

mapping; then we have

(U,b) ∈ ı̇ıın f
def
⇔ ∃

V∈Conρ

(

U ≻ρ V ∧ ın f (V)≻σ b
)

def
⇔ ∃

V∈Conρ

(

U ≻ρ V ∧ ∃
a∈Tρ

(a ∈V ∧ f (a)≻σ b)

)

⇔ ∃
a∈Tρ

∃
V∈Conρ

(

U ≻ρ V ∧a ∈V ∧ f (a)≻σ b
)

(⋆)
⇔ ∃

a∈Tρ

(

U ≻ρ a∧ f (a)≻σ b
)

def
⇔ (U,b) ∈ ı̇ı f ,

where (⋆) holds leftwards for V ≔ {a}. �

Closure-mappings

Given the well-foundedness of entailment in the source acis, we can move a step further

and consider mappings between closures U of neighborhoods. The primary reason for

this is that we can achieve a decent converse route from ideals to mappings between

sets of tokens, which we cannot have in the case of token-mappings. In particular, we

will establish a bijective correspondence between closure-homomorphisms from ρ to

σ and a class of ideals of ρ → σ , when ρ has a well-founded entailment relation.

A closure-mapping f from ρ to σ is a total mapping f : Conρ → Conσ . It is

monotone when

U ≻ρ V → f (U)≻σ f (V) ,

or, equivalently by Proposition 1.2(5),

U ⊇ρ V → f (U)⊇σ f (V) ,

consistency-preserving when

U ≍ρ V → f (U)≍σ f (V) ,

and a homomorphism when it is both monotone and consistency-preserving. A ho-

momorphism is furthermore a monomorphism, epimorphism or isomorphism when the

closure-mapping is injective, surjective or bijective respectively.

For an arbitrary closure-mapping f : Conρ → Conσ define the idealization of f by

the class ı̇ı f ⊆ Tρ→σ by

ı̇ı f ≔ {(U,b) | ∃
V∈Conρ

(

U ≻ρ V ∧ f (V)≻σ b
)

} .

For example, consider the identity closure-mapping id : Conρ → Conρ , defined by

id(U)≔U ; then

ı̇ıid = {(U,a) |U ≻ρ a} .

Another example is the constant closure-mapping cnstV0
: Conρ → Conσ , defined by

cnstV0
(U)≔V0, for a fixed V0 ∈ Conσ ; then

ı̇ıcnstV0
= {(U,b) |V0 ≻σ b} .

14 1. Atomic-coherent information systems

Proposition 1.11. If f : Conρ → Conσ is a consistency-preserving closure-mapping

then ı̇ı f ∈ Ideρ→σ .

Proof. Again, we proceed similarly as in the proof of Proposition 1.7. To show consis-

tency, let (U1,b1),(U2,b2) ∈ ı̇ı f ; we want to show that (U1,b1) ≍ρ→σ (U2,b2), so let

U1 ≍ρ U2; by the definition of ı̇ı f we get Vi’s with Ui ≻ρ Vi∧ f (Vi)≻σ bi for i = 1,2; by

the assumption and Proposition 1.2(3) we have V1≍ρ V2; since f preserves consistency,

it is f (V1)≍σ f (V2), so, again by Proposition 1.2(3), we have b1 ≍σ b2.

To show closure under entailment, let (U1,b1)∈ ı̇ı f and (U1,b1)≻ρ→σ (U2,b2), or,

equivalently, U2 ≻ρ U1 ∧ b1 ≻σ b2; by the definition of ı̇ı f we have a V with U1 ≻ρ

V ∧ f (V)≻σ b1; by transitivity and assumption we have U2 ≻ρ V ∧ f (V)≻σ b2, which

is by definition (U2,b2) ∈ ı̇ı f . �

Clearly again, ı̇ıid and ı̇ıcnstV0
, as defined above, are ideals of ρ → ρ and ρ → σ re-

spectively.

Now let u ∈ Ideρ→σ . Call u a finitely valued ideal, if for all U ∈ Conρ the set

mxlu(U)≔mxl{b ∈ Tσ | (U,b) ∈ u}

is finite. Denote the class of all finitely valued ideals of ρ → σ by FVIdeρ→σ . In

general

FVIdeρ→σ ⊆ Ideρ→σ .

It is easy to see that ı̇ıid ∈ FVIdeρ→ρ and ı̇ıcnstV0
∈ FVIdeρ→σ .

Remark. For the sake of a counterexample, let us anticipate the arithmetical acis N→
N (see page 30); it is easy to see that {0,Sn∗ | n = 0,1, . . .} ∈ IdeN→NrFVIdeN→N. �

For a finitely valued ideal u ∈ Ideρ→σ , define a mapping Ihu : Conρ → Conσ by

Ihu(U)≔mxlu(U) .

Proposition 1.12. If u ∈ FVIdeρ→σ then the mapping Ihu is a well-defined closure-

homomorphism from ρ to σ .

Proof. For the well-definedness: It is easy to see that Ihu is indeed single-valued. Fur-

thermore, the class mxlu(U) is finite, since u is finitely valued. Now let U ∈ Conρ and

b,b′ ∈ mxlu(U); we have (U,b),(U,b′) ∈ u; since u is an ideal, (U,b) ≍ρ→σ (U,b′),

and since U ≍ρ U , it is b≍σ b′, so mxlu(U) ∈ Conσ , and then mxlu(U) ∈ Conσ .

For the preservation of consistency: Let U,V ∈ Conρ with U ≍ρ V and arbitrary

b ∈ Ihu(U) and c ∈ Ihu(V); by the definition of Ihu we have (U,b),(V,c) ∈ u; by the

definition of an ideal, (U,b) ≍ρ→σ (V,c); by the consistency in ρ → σ and by the

assumption, we get b≍σ c, that is, Ihu(U)≍σ Ihu(V).

For the monotonicity: Let U,V ∈ Conρ with U ≻ρ V and let c ∈ Ihu(V); by the

definition of Ihu we have (V,c) ∈ u; by the assumption we get (V,c) ≻ρ→σ (U,c) and

since u is an ideal, (U,c) ∈ u, that is, c ∈ Ihu(U). �

Proposition 1.13. If ≻ρ is well-founded and f : Conρ → Conσ is a consistency-

preserving closure-mapping then ı̇ı f ∈ FVIdeρ→σ .

1.1 Acises and function spaces 15

Proof. We have proved that ı̇ı f is indeed an ideal in Proposition 1.9. It remains to

prove that it is moreover finitely valued. So let U ∈ Conρ and consider the set MU ≔

mxl ı̇ı f (U); by definition it is

MU = mxl{b ∈ Tσ | (U,b) ∈ ı̇ı f};

by the definition of ı̇ı f , it is

MU = mxl{b ∈ Tσ | ∃
V∈Conρ

(

U ≻ρ V ∧ f (V)≻σ b
)

} ,

or, since f (V) ∈ Conσ , by the definition of deductive closure we have

MU = mxl{b ∈ Tσ | ∃
V∈Conρ

(

U ≻ρ V ∧b ∈ f (V)
)

} ;

in particular, since f (V) is the deductive closure of a neighborhood, namely, there is a

WV ∈ Conσ such that f (V) =WV , we can write

MU = mxl{b ∈ Tσ | ∃
V∈Conρ

(

U ≻ρ V ∧b ∈WV

)

} ;

by the definition of deductive closure again, it is

MU = mxl{b ∈ Tσ | ∃
V∈Conρ

(

U ≻ρ V ∧WV ≻σ b
)

} .

Now, since ≻ρ is well-founded, the index set IU ≔ {V ∈ Conρ |U ≻ρ V} is finite,

hence

MU =
⋃

V∈IU

mxl{b ∈ Tσ |WV ≻σ b}=
⋃

V∈IU

mxlWV

is also finite, because every WV is. �

Theorem 1.14 (Finitely valued ideals). Let ρ , σ be acises with≻ρ being well-founded.

The closure-homomorphisms f : Conρ → Conσ and the finitely valued ideals u ∈

FVIdeρ→σ are in a bijective correspondence, that is, Hom(Conρ ,Conσ) � FVIdeρ→σ .

Proof. We have to show that Ih and ı̇ı are mutually inverse, that is, that Ihı̇ı f = f as well

as ı̇ıIhu = u. For the first one we have

b ∈ Ihı̇ı f (U)
def
⇔ b ∈mxl ı̇ı f (U)

def
⇔ b ∈mxl{b′ ∈ Tσ | (U,b′) ∈ ı̇ı f}

def
⇔mxl{b′ ∈ Tσ | (U,b′) ∈ ı̇ı f} ≻σ b

⇔{b′ ∈ Tσ | (U,b′) ∈ ı̇ı f} ≻σ b

def
⇔ ∃

b′∈Tσ

(

(U,b′) ∈ ı̇ı f ∧b′ ≻σ b
)

⇔ (U,b) ∈ ı̇ı f

def
⇔ ∃

V∈Conρ

(

U ≻ρ V ∧ f (V)≻σ b
)

mon
⇔ ∃

V∈Conρ

(

f (U)≻σ f (V)∧ f (V)≻σ b
)

⇔ f (U)≻σ b

⇔ b ∈ f (U) ,

16 1. Atomic-coherent information systems

and for the second one

(U,b) ∈ ı̇ıIhu
def
⇔ ∃

V∈Conρ

(

U ≻ρ V ∧ Ihu(V)≻σ b
)

def
⇔ ∃

V∈Conρ

(

U ≻ρ V ∧mxlu(V)≻σ b
)

def
⇔ ∃

V∈Conρ

(

U ≻ρ V ∧mxl{b′ ∈ Tσ | (V,b′) ∈ u} ≻σ b
)

⇔ ∃
V∈Conρ

(

U ≻ρ V ∧mxl{b′ ∈ Tσ | (V,b
′) ∈ u} ≻σ b

)

⇔ ∃
V∈Conρ

(

U ≻ρ V ∧{b′ ∈ Tσ | (V,b
′) ∈ u} ≻σ b

)

def
⇔ ∃

V∈Conρ

(

U ≻ρ V ∧ ∃
b′∈Tσ

(

(V,b′) ∈ u∧b′ ≻σ b
)

)

⇔ ∃
V∈Conρ

(

U ≻ρ V ∧ (V,b) ∈ u
)

⇔ (U,b) ∈ u ,

as we wanted. �

Finally, we link closure-mappings to token-mappings. Let f : Tρ → Tσ be a token-

mapping. Define a mapping f : Conρ →P(Tσ) by

f (U)≔ { f (a) |U ≻ρ a} .

Proposition 1.15. Let ρ and σ be acises.

1. The mapping f is a well-defined closure-mapping from ρ to σ when f is

consistency-preserving. In this case, f is also consistency-preserving.

2. The mapping f is monotone when f is monotone.

3. If f is a consistency-preserving token-mapping then ı̇ı f = ı̇ı f .

Proof. We prove the third statement, merely using the definitions. Let f : Tρ → Tσ be

a consistency-preserving token-mapping; then its closure is well-defined, and we have:

(U,b) ∈ ı̇ı f
def
⇔ ∃

V∈Conρ

(

U ≻ρ V ∧ f (V)≻σ b
)

def
⇔ ∃

V∈Conρ

(

U ≻ρ V ∧ ∃
b′∈Tσ

(

b′ ∈ f (V)∧b′ ≻σ b
)

)

def
⇔ ∃

V∈Conρ

(

U ≻ρ V ∧ ∃
a∈Tρ

(

f (a) ∈ f (V)∧ f (a)≻σ b
)

)

def
⇔ ∃

V∈Conρ

(

U ≻ρ V ∧ ∃
a∈Tρ

(

V ≻ρ a∧ f (a)≻σ b
)

)

⇔ ∃
a∈Tρ

∃
V∈Conρ

(

U ≻ρ V ∧V ≻ρ a∧ f (a)≻σ b
)

⇔ ∃
a∈Tρ

(

U ≻ρ a∧ f (a)≻σ b
)

def
⇔ (U,b) ∈ ı̇ı f ,

as we wanted. �

1.1 Acises and function spaces 17

Approximable maps

We now turn to a more traditional path. A relation r ⊆ Conρ ×Tσ between two acises

ρ and σ is called a (unary) approximable map from ρ to σ , and we write r ∈ Apxρ→σ ,

if it is consistently defined, that is,

r(U,a)∧ r(U,b)→ a≍σ b ,

and furthermore,

V ≻ρ U ∧ r(U,a)∧a≻σ b→ r(V,b) ,

which expresses that r is closed under entailment (that is, deductively closed). Write

r(U)≔ {b ∈ Tσ | r(U,b)}. The intuition is that r(U,a), where r behaves like a black-

box, means “input U suffices for the output a”.

Proposition 1.16. The ideals of ρ → σ are exactly the approximable maps from ρ to

σ , that is, Ideρ→σ = Apxρ→σ .

Proof. For the right direction: Let u ∈ Ideρ→σ . Suppose that (U,a) ∈ u∧ (U,b) ∈ u;

since ideals are consistent, we have (U,a) ≍ (U,b); by definition this is U ≍ρ U →
a≍σ b, that is, a≍σ b. Suppose furthermore that V ≻ρ U ∧ (U,a) ∈ u∧a≻σ b; by the

definition of entailment in a function space we get (U,a) ∈ u∧ (U,a) ≻ (V,b), which

by closure under propagation yields (V,b) ∈ u; so u ∈ Apxρ→σ .

For the other direction: Let f ∈ Apxρ→σ . Suppose that f (U,a)∧ f (V,b). We want

to show that (U,a)≍ (V,b); suppose that U ≍ρ V ; we can then write U ∪V ≻ρ U ∧U ∪
V ≻ρ V ; by the second property of approximable maps we get f (U∪V,a)∧ f (U∪V,b);
since the first property of approximable maps yields a≍σ b, we have proved that U ≍ρ

V → a≍σ b, that is (U,a)≍ (V,b). Suppose furthermore that f (U,a)∧(U,a)≻ (V,b);
by the definition of entailment in function spaces we have f (U,a)∧V ≻ρ U ∧a≻σ b,

which by the second property of approximable maps gives f (V,b); so f ∈ Ideρ→σ . �

Application

In the following we will be largely concerned with the “application of ideals”. In

general, define (set) application · : P(Tρ→σ)×P(Tρ)→P(Tσ), by

{(Xi,ai)}i∈I ·Y ≔σ {ai | Y ≻ρ Xi} .

Proposition 1.17. For the application operation the following hold.

1. It is consistency-preserving, that is, if {(Ui,ai)}i∈I ∈ Conρ→σ and U ∈ Conρ ,

then {(Ui,ai)}iU ∈ Conσ , and so it is a well-defined operation on Conρ→σ ×
Conρ → Conσ . In particular, it is consistency-preserving as a neighborhood

mapping, that is, if {(Ui,bi)}i ≍ρ→σ {(Vj,c j)} j and U ≍ρ V then {(Ui,bi)}i ·
U ≍σ {(Vi,ci)}i ·V . Consequently, the idealization of application is an ideal,

that is, ı̇ı· ∈ Ide(ρ→σ)×ρ→σ .

2. It is {(Ui,ai)}i ≻ρ→σ {(Vj,b j)} j if and only if, for all U ∈ Conρ , {(Ui,ai)}i ·
U ≻σ {(Vj,b j)} j ·U.

3. For all {(Ui,ai)}i ∈ Conρ→σ , if U ≻ρ V then {(Ui,ai)}i ·U ≻σ {(Ui,ai)}i ·V .

4. It commutes with deductive closure, that is, {(Ui,ai)}i∈I ·U = {(Ui,ai)}i∈I ·U.

18 1. Atomic-coherent information systems

5. Fix ρ and σ . For X ⊆ f Tρ→σ , Y ⊆ f Tρ and Z ⊆ f Tσ , the relation Z = X ·Y is

Σ0
1-definable.

Proof. For the first statement: It is easy to see that set application is single-valued.

Furthermore, let {(Ui,ai)}iU = {ai |U ≻ρ Ui}; we want to show that for all i1, i2 ∈ I

it is ai1 ≍σ ai2 , so let i1, i2 ∈ I; since {(Ui,ai)}i∈I ∈ Conρ→σ , it is (Ui1 ,ai1) ≍ρ→σ

(Ui2 ,ai2), or, equivalently, (Ui1 ≍ρ Ui2 → ai1 ≍σ ai2); by Proposition 1.2 we have what

we wanted.

Furthermore, let U ≻ρ Ui and V ≻ρ Vj for some i and j; since U ≍ρ V , Proposi-

tion 1.2(3) gives us Ui ≍ρ Vj; by the definition of consistency in function spaces we get

bi ≍σ c j. That the idealization of application is an ideal follows from Proposition 1.9.

For the second statement: For the right direction, let {(Ui,ai)}i∈I ≻ρ→σ

{(Vj,b j)} j∈J , which by definition is ∀ j∈J∃i∈I(Vj ≻ρ Ui∧ai ≻σ b j); we want to show

that {(Ui,ai)}i ·U ≻σ {(Vj,b j)} j ·U , which by definition is {ai |U ≻ρ Ui} ≻σ {b j |
U ≻ρ Vj}, which is provided by the assumption. For the other way around, let

{(Ui,ai)}i ·U ≻σ {(Vj,b j)} j ·U , or {ai | U ≻ρ Ui} ≻σ {b j | U ≻ρ Vj}; we have to

show that {(Ui,ai)}i∈I ≻ρ→σ {(Vj,b j)} j∈J , which by definition is ∀ j∈J∃i∈I(Vj ≻ρ

Ui ∧ ai ≻σ b j); for every l ∈ J we may put U ≔ Vl and the assumption then yields

{ai | Vl ≻ρ Ui} ≻σ {b j | Vl ≻ρ Vj}; since Vl ≻ρ Vi, there is a k ∈ I such that Vl ≻ρ Uk

and ak ≻σ bl .

For the third statement: Let U ≻ρ V ; due to transitivity of entailment we have

∀i

(

V ≻ρ Ui →U ≻ρ Ui

)

, which proves what we need.

For the fourth statement, we have

{(Ui,ai)}i∈I ·U
def
= {a | ∃

V∈Conρ

∃
i∈I

(

U ≻ρ V ∧V ≻ρ Ui∧ai ≻σ a
)

}

= {a | ∃
i∈I

(

U ≻ρ Ui∧ai ≻σ a
)

}

def
= {ai |U ≻ρ Ui}

def
= {(Ui,ai)}i∈I ·U .

For the last statement, we write

Z =σ {(Xi,ai)}i∈I ·Y ⇔ Z =σ {ai | Y ≻ρ Xi}

⇔ a ∈ Z ↔ ∃
i∈I

(

a = ai∧ ∀
b∈Xi

∃
c∈Y

c≻ρ b

)

.

Since X , Y and Z are finite, this is a Σ0
1-expression. �

1.2 Ideals

In this section we make a minimal exposition of topological as well as category-

theoretic aspects of the collection of ideals of a given acis.

Topological spaces

We recall basic notions and facts that we will use later. Let P be a (nonempty) set of

points and T a collection of subsets of P. The couple (P,T) is a topological space

with open sets the elements of T , if the following are fulfilled:

1.2 Ideals 19

• the empty subset as well as the universal set is in T , that is, ∅,P ∈T .

• the collection T is closed under finite intersection, that is, if X1, . . . ,Xn ∈T then
⋂

1≤i≤n Xi ∈T .

• the collection T is closed under arbitrary union, that is, if X1, . . . ,Xn, . . . ∈ T

then
⋃

i Xi ∈T .

An open set X is a neighborhood of a point p if p ∈ X .

A topological space (P,T) is a Kolmogorov space if it satisfies the T0-separation

axiom:

p . q→ ∃
X∈T

(p ∈ X ∧q < X)∨ (q ∈ X ∧ p < X)) ,

and a Hausdorff space if it satisfies the T2-separation axiom:

p . q→ ∃
X ,Y∈T

p ∈ X ∧q ∈ Y ∧X ∩Y = ∅ .

A basis for T is a family {Ui}i∈I ⊆ T of basic open sets that can provide a union

decomposition for every nonempty open set:

∀
X∈T

X =
⋃

{U |U ∈ {Ui}∧U ⊆ X} .

Fact 1.18. Let (P,T) be a topological space and B ⊆ T . The following are equiva-

lent:

1. The family U is a topological basis.

2. For every point of the space and every neighborhood of the point there is a set in

U which contains the point and is a subset of its neighborhood:

∀
p∈P,X∈T

(p ∈ X → ∃
U∈U

(p ∈U ∧U ⊆ X)) .

3. Every point of the space belongs to some set in U :

∀
p∈P

∃
U∈U

p ∈U ,

and whenever a point belongs to two sets in U , there is a third set in U which

contains it, which is a subset of the other two:

∃
U,V∈U

p ∈U ∩V → ∃
W∈U

(p ∈W ∧W ⊆U ∩V) .

Let (T,≥) be an ordered set. The Alexandrov topology (T,T≥) on (T,≥) is defined

by the upward closed subsets of T :

X ∈T≥ ≔ ∀
a,b∈T

(a ∈ X ∧b≥ a→ b ∈ X) .

Let (P,T) and (P′,T ′) be two topological spaces. A continuous mapping f from

(P,T) to (P′,T ′) is a mapping f : P→ P′ whose inverse preserves openness, that is,

such that if X ∈T ′ then f−1(X) ∈T .

Fact 1.19. A mapping f : (P,T)→ (P′,T ′) is continuous if and only if its inverse

preserves openness on basic sets, that is, if and only if, for a base B′ in P′, f−1(U)∈T

for all U ∈B′.

20 1. Atomic-coherent information systems

The Scott topology

The most commonly used, natural topology over ideals of information systems, the

so called Scott topology, turns out to form a Kolmogorov space.5 Call a collection of

ideals U ⊆ Ide a Scott-open set if it is closed under supersets (Alexandrov condition),

∀
u∈U

(u⊆ v→ v ∈U) ,

and is “finitely representable” (Scott condition), in the sense that

∀
u∈U

∃
U⊆ f u

U ∈U .

Denote the set of Scott-open sets by S . Recall (page 7) that the cone of ideals over

U ∈ Con is given by ∇X = {u ∈ Ide | X ⊆ u} and that Kglρ denotes the collection of

cones of ρ .

Proposition 1.20. For every acis ρ , the collection of its cones Kglρ provides a base for

its Scott topology. Furthermore, (Ideρ ,Sρ) constitutes a Kolmogorov space.

Proof. For the base: Every u ∈ Ideρ satisfies u ∈ ∇⊥. Furthermore, let u ∈ ∇U ∩∇V ;

it is U ≍ρ V , since otherwise the intersection would be empty; by Proposition 1.3, we

have u ∈ ∇(U ∪V).
For the Kolmogorov separation: Let u , v; then, by choice, there is a token a ∈ Tρ

such that either a ∈ u∧ a < v or a ∈ v∧ a < u, which yields either u ∈ ∇a∧ v < ∇a or

v ∈ ∇a∧u < ∇a. �

Proposition 1.21. The following hold.

1. A collection of ideals U ⊆ Ide is a Scott-open set if and only if U =
⋃

U∈U
∇U.

2. Let U ⊆ Ide satisfy the strong Scott condition

∀
u∈U

∃
a∈u

a ∈U .

Then U is a Scott-open set if and only if U =
⋃

a∈U ∇a.

Proof. For the first statement, let U be a Scott-open set and let u ∈ U ; by the Scott

condition, there exists a U ⊆ f u such that U ∈ U , that is, u ∈ ∇U ; conversely, let

u ∈ ∇U for some U with U ∈U ; then U ⊆ u; since U ∈U , the Alexandrov condition

gives u ∈ U . For the other direction, let U =
⋃

U∈U
∇U ; then it is a Scott-open set

because the cones make up a topological basis.

For the second statement proceed similarly. �

Continuous mappings

Traditionally, an ideal-mapping (or just mapping) f : Ideρ → Ideσ will be called Scott-

continuous if it preserves Scott-openness on basic sets, that is, on cones:

∇V ∈ Kglσ → f−1[∇V] ∈Sρ ,

5For recent thoughts on using a more manageable Hausdorff topology, the so called liminf topology in [13,

p. 232], see [34].

1.2 Ideals 21

where f−1[∇V]≔ {u |V ⊆ f f (u)}. Call an ideal-mapping f : Ideρ → Ideσ monotone,

if it preserves inclusion, that is,

u⊆ v→ f (u)⊆ f (v) .

Furthermore, say that it satisfies the principle of finite support if

b ∈ f (u)→ ∃
U⊆ f u

b ∈ f (U) .

Finally, say that it commutes with directed unions if

f (
⋃

u∈D

u) =
⋃

u∈D

f (u) ,

where D is a directed set of ideals in ρ .

Proposition 1.22. Let ρ and σ be two acises and f : Ideρ → Ideσ an ideal-mapping.

The following are equivalent.

1. The mapping f is Scott-continuous.

2. The mapping is monotone and satisfies the principle of finite support.

3. The mapping is monotone and commutes with directed unions.

Proof. For the equivalence of (1) and (2): Let f be a Scott-continuous mapping; for

monotonicity, let u ⊆ v and let b ∈ f (u), that is, {b} ⊆ f f (u); the Scott-open set

f−1[∇b] = {w | {b} ⊆ f f (w)} satisfies the Alexandrov condition, so, since u ⊆ v, we

have {b} ⊆ f f (v), that is, b ∈ f (v); for the principle of finite support, let b ∈ f (u);
the Scott-open set f−1[∇b] satisfies the Scott condition, so for U ⊆ f u we have

{b} ⊆ f f (U).
Conversely, let f be monotone and satisfy the principle of finite support and let

V ∈ Conσ ; we have to show that the set f−1[∇V] = {u |V ⊆ f f (u)} is Scott-open; we

show that

{u |V ⊆ f f (u)}= ∪{∇U |U ∈ Conρ ∧V ⊆ f f (U)};

for the right direction, let V ⊆ f f (u); by finite support there exists a U ∈ Conρ for

which U ⊆ f u and V ⊆ f f (U), that is, u ∈ ∇U ; for the left direction, let u ∈ ∇U for

some U ∈Conρ for which V ⊆ f f (U); then U ⊆ u, and monotonicity gives V ⊆ f f (u).
For the equivalence of (2) and (3): Let f be monotone and satisfy the principle of

finite support and let D ⊆ Ideρ be a directed set of ideals; by monotonicity we immedi-

ately get f (
⋃

u∈U u)⊇
⋃

u∈D f (u); for the converse inclusion, let b ∈ f (
⋃

u∈D u); finite

support gives a U ⊆ f
⋃

u∈D u; directedness and finiteness of U gives a w for which

U ⊆ f w; since b ∈ f (U) and f is monotone, we have b ∈ f (w).
Conversely, let f commute with directed unions and let b ∈ f (u); then

f (u) = f (
⋃

U⊆ f u

U) =
⋃

U⊆ f u

f (U) ,

and b ∈ f (U), for some U ⊆ f u. �

A direct consequence of Propositions 1.7 and 1.22 is that consistency-preserving

token-mappings induce monotone ideal-mappings. Moreover, we have the following.

22 1. Atomic-coherent information systems

Proposition 1.23. Let f : Ideρ → Ideσ be monotone and U1,U2 ∈ Conρ . Then U1 ≍ρ

U2 implies f (U1)≍σ f (U2), and U1 ≻ρ U2 implies f (U2)⊆ f (U1).

Proof. For the preservation of consistency, let bi ∈ f (Ui), i = 1,2. It is Ui ⊆U1 ∪U2

for both i = 1,2, and monotonicity of f yields bi ∈ f (Ui)⊆ f (U1∪U2), so b1 ≍σ b2.

For the preservation of entailment, we have

U1 ≻ρ U2 ⇒U2 ⊆U1 ⇒ f (U2)⊆ f (U1) . �

Say that an ideal-mapping f : Ideρ → Ideσ satisfies the principle of atomic support

if

b ∈ f (u)→ ∃
a∈u

b ∈ f (a) .

Proposition 1.24. Let ρ , σ be acises where for every U ∈ Conρ , {a | a ∈U} is a

directed set. An ideal-mapping f : Ideρ → Ideσ is Scott-continuous if and only if it is

monotone and it satisfies the principle of atomic support.

Proof. That atomic support implies finite support is direct. Conversely, let f satisfy the

principle of finite support and let b ∈ f (u) for some u ∈ Ideρ ; by finite support we get

U ⊆ f u with b ∈ f (U), or, by Proposition 1.3(4), with b ∈ f (
⋃

a∈U a); therefore

∃
U⊆ f u

b ∈
⋃

a∈U

f (a)⇒ ∃
U⊆ f u

∃
a∈U

b ∈ f (a)⇒ ∃
a∈u

b ∈ f (a) .

The commutativity of f with the union of {a | a ∈U} follows from the assumption. �

Proposition 1.25. Let ρ , σ be acises. The continuous ideal-mappings f : Ideρ → Ideσ

and the ideals r ∈ Ideρ→σ are in a bijective correspondence, that is, Ideρ → Ideσ �

Ideρ→σ .

Proof. With an ideal r ∈ Ideρ→σ , associate a mapping cm(r) : Ideρ → Ideσ by

cm(r)(u)≔ {b ∈ Tσ | ∃
U∈Conρ

(U ⊆ u∧ (U,b) ∈ r)} .

This is well-defined: Let b,b′ ∈ cm(r)(u); there are U,U ′ ⊆ f u such that

(U,b),(U ′,b′)∈ r; but r is an ideal, so (U,b)≍ρ→σ (U ′,b′), that is U ≍ρ U ′→ b≍σ b′;

since U,U ′ ⊆ u and u is an ideal, U ≍ρ U ′, so b ≍σ b′ and cm(r)(u) is consistent.

Furthermore, let b ∈ cm(r)(u) and b ≻σ b′; there is a U ⊆ f u such that (U,b) ∈ r;

but U ≻ρ U ∧ b ≻σ b′, we get (U,b) ≻ρ→σ (U,b′) and since r is an ideal, we have

(U,b′) ∈ r, that is, b′ ∈ cm(r)(u) and cm(r)(u) is closed under entailment.

It is also continuous: Let V ∈ Conσ ; we shall prove that cm(r)−1(∇V) is a Scott-

open set. For the Alexandrov condition, let u ∈ cm(r)−1(∇V) and u⊆ v; we have

u ∈ cm(r)−1(∇V)⇒ cm(r)(u) ∈ ∇V

⇒V ⊆ f cm(r)(u)

⇒V ⊆ f {b ∈ Tσ | ∃
U∈Conρ

(U ⊆ u∧ (U,b) ∈ r)}

⇒V ⊆ f {b ∈ Tσ | ∃
U∈Conρ

(U ⊆ u⊆ v∧ (U,b) ∈ r)}

⇒V ⊆ f cm(r)(v)

⇒ cm(r)(v) ∈ ∇V

⇒ v ∈ cm(r)−1(∇V) ,

1.2 Ideals 23

and for the Scott condition, let u ∈ cm(r)−1(∇V); we have

u ∈ cm(r)−1(∇V)⇒ cm(r)(u) ∈ ∇V

⇒V ⊆ f cm(r)(u)

⇒V ⊆ f {b ∈ Tσ | ∃
U∈Conρ

(U ⊆ u∧ (U,b) ∈ r)}

⇒V ⊆ f {b ∈ Tσ | ∃
U∈Conρ

(

U ⊆U ⊆ u∧ (U,b) ∈ r
)

}

⇒V ⊆ f cm(r)(U)

⇒ cm(r)(U) ∈ ∇V

⇒U ∈ cm(r)−1(∇V) .

Conversely, with a continuous ideal-mapping f : Ideρ → Ideσ , associate a set

is(f) ∈ Ideρ→σ by

(U,b) ∈ is(f)≔ b ∈ f (U) .

It is well-defined: For consistency, let (Ui,bi) ∈ is(f), i = 1,2, with U1 ≍ρ U1; by

definition, bi ∈ f (Ui) and so, by Proposition 1.23, bi ∈ f (U1∪U2), which is an ideal,

so b1 ≍σ b2. For closure under entailment, let (U,b) ∈ is(f) and (U,b)≻ρ→σ (U ′,b′);
by the definition of entailment in function spaces, U ′ ≻ρ U ∧ b ≻σ b′; by definition,

b ∈ f (U); by Proposition 1.23 again, f (U ′)≻σ f (U); since both of them are ideals, by

Proposition 1.2 we have b′ ∈ f (U ′), that is, (U ′,b′) ∈ is(f).
Finally, the associations cm and is are inverse to each other, that is,

cm(is(f)) = f and is(cm(r)) = r .

For the left one

b ∈ cm(is(f))(u)
def
⇔ ∃

U∈Conρ

(

U ⊆ f u∧ (U,b) ∈ is(f)
)

def
⇔ ∃

U∈Conρ

(

U ⊆ f u∧b ∈ f (U)
)

⇔ b ∈ f (u) ,

and for the right one

(U,b) ∈ is(cm(r))
def
⇔ b ∈ cm(r)(U)
def
⇔ ∃

U ′∈Conρ

(

U ′ ⊆ f U ∧ (U ′,b) ∈ r
)

(⋆)
⇔ (U,b) ∈ r ,

where at (⋆) we let U ≔U ′. �

Let r ∈ Ideρ→σ and u ∈ Ideρ ; the ideal cm(r)(u), written r(u), is called the appli-

cation of r to u. By the proposition above, the application of an ideal to an ideal is a

continuous operation.

The following are easy observations that we will need in section 1.4.

Proposition 1.26. The following hold for all ideals of proper types:

1. ⊥(u) =⊥.

2. r1∪ r2(u) = r1(u)∪ r2(u).

24 1. Atomic-coherent information systems

Cartesian products

We turn our attention now to cartesian products. Let ρ and σ be two acises with

Tρ ∩Tσ = ∅. Define the projections πρ : ρ×σ → ρ and πσ : ρ×σ → σ by

πρ(u,v)≔ u and πσ (u,v)≔ v .

Proposition 1.27. The projections from a cartesian product to its components are con-

tinuous mappings.

Proof. For monotonicity: Let (u,v) ⊆ (u′,v′), that is, u ⊆ u′ and v ⊆ v′; then immedi-

ately by definition π(u,v)⊆ π(u′,v′), for both projections.

For the principle of finite support: Without no loss of generality, let b ∈ πρ(u,v),

that is, b ∈ u; then b ∈ πρ(b,∅). �

Proposition 1.28 (Universal property of the cartesian product). Let ρ , σ and τ be

acises with Tρ ∩Tσ = ∅. For every pair f : τ → ρ , g : τ → σ of continuous mappings,

there exists a unique continuous mapping h : τ → ρ × σ such that f = πρ ◦ h and

g = πσ ◦h.

Proof. For all u ∈ Ideτ let h(u) ≔ (f (u),g(u)). Monotonicity of h follows directly

from the motonicity of f and g. For the principle of finite support, let b ∈ h(u); since

the carriers are disjoint, suppose with no loss of generality that b ∈ Tρ , so it will be

b ∈ f (u); but f is continuous, so it satisfies the principle of finite support, that is, there

is a U ⊆ f u such that b ∈ f (U); hence b ∈ h(U). The uniqueness of h follows directly

from its definition. �

By the previous result we can define the cartesian product f × g : ρ ×σ → τ ×υ
of two continuous mappings f : ρ → τ and g : σ → υ , where Tρ ∩Tσ = ∅, by

f ×g(u,v)≔ (f (u),g(v)) .

Finally, we have the following.

Proposition 1.29. Let ρ , σ and τ be acises with Tρ ∩Tσ =∅. A mapping f : ρ×σ → τ
is continuous if and only if it is continuous in each component separately, that is, if and

only if all sections f v
ρ : ρ → τ , v fixed and all sections f u

σ : σ → τ , u fixed, defined by

f v
ρ(u)≔ f (u,v) and f u

σ (v)≔ f (u,v), are continuous.

Proof. The mapping u 7→ (u,v) for a fixed v is obviously continuous. Since composi-

tion preserves continuity, f v
ρ is also continuous. For f u

σ the argument is similar.

Conversely, let all sections f v
ρ , f u

σ be continuous. For monotonicity: Let u⊆ u′ and

v⊆ v′, where u,u′ ∈ Ideρ , v,v′ ∈ Ideσ ; by monotonicity of the sections we immediately

have

f (u,v)⊆ f (u′,v)⊆ f (u′,v′) .

For the principle of finite support: Let b ∈ f (u,v); by the principle of finite support for

f u
σ we have

b ∈ f u
σ (V) = f (u,V) = f V

ρ (u) ,

for some V ⊆ f v; by the principle of finite support for f v
ρ and Proposition 1.3(2) we

have

b ∈ f V
ρ (U) = f (U ,V) = f (U ∪V) ,

for some U ⊆ f u. �

1.2 Ideals 25

Evaluation and currying

Let ρ , σ and τ be acises. Define the evaluation mapping eval : (ρ → σ)×ρ → σ by

eval(f ,u)≔ f (u) ,

and the currying mapping curry : (ρ×σ → τ)→ (ρ → (σ → τ)) by

curry(f)(u,v)≔ f (u,v) .

Proposition 1.30. The evaluation and currying mappings are well-defined and contin-

uous.

Proof. By Proposition 1.29 it suffices to show continuity in separate components. For

evaluation. For the second argument: For monotonicity, let u⊆ v; then by monotonicity

of the fixed f we get

eval(f ,u)≔ f (u)⊆ f (v) =: eval(f ,v) .

For the principle of finite support, let b ∈ eval(f ,u), that is, b ∈ f (u); the fixed f

satisfies the principle of finite support, so there is a Y ⊆ f u such that b ∈ f (U), hence

b ∈ eval(f ,U).
For the first argument: For monotonicity, let f ⊆ g; by the definition of the associ-

ated continuous mapping to an ideal, for a fixed u we have:

b ∈ eval(f ,u)
def
⇔ b ∈ f (u) = cm(f)(u)

def
⇔ ∃

U∈Conρ

(U ⊆ u∧ (U,b) ∈ f)

⇒ ∃
U∈Conρ

(U ⊆ u∧ (U,b) ∈ g)

def
⇔ b ∈ cm(g)(u) = g(u)

def
⇔ b ∈ eval(g,u) ,

so eval(f ,u) ⊆ eval(g,u). For the principle of finite support, let b ∈ eval(f ,u),
that is, b ∈ cm(f)(u); by definition, there is a U ⊆ f u such that (U,b) ∈ f ; then

b ∈ eval({U,b},u).
For currying. Fix f ∈ Ideρ×σ→τ . For a fixed u ∈ Ideρ , the mapping cm(f)u

σ (that

is, f u
σ viewed as a continuous mapping) is continuous as a section of the continuous

cm(f).
We show that the mapping h : u 7→ is(cm(f)u

σ) (where now f u
σ is viewed as an ideal)

is continuous. For monotonicity, let u⊆ u′; since cm(f) is monotone we have

(V,c) ∈ h(u)
def
⇔ (V,c) ∈ is(cm(f)u

σ)
def
⇔ c ∈ cm(f)u

σ (V)
def
⇔ c ∈ cm(f)(u,V)

⇒ c ∈ cm(f)(u′,V)
def
⇔ c ∈ cm(f)u′

σ (V)
def
⇔ (V,c) ∈ is(cm(f)u

σ)
def
⇔ (V,c) ∈ h(u′) .

26 1. Atomic-coherent information systems

For the principle of finite support, by finite support for cm(f)v
ρ , we have

(V,c) ∈ h(u)
def
⇔ (V,c) ∈ is(cm(f)u

σ)

def
⇔ c ∈ cm(f)u

σ (V)

def
⇔ c ∈ cm(f)(u,V)

def
⇔ c ∈ cm(f)Vρ (u)

⇒ ∃
U⊆ f u

c ∈ cm(f)Vρ (U)

def
⇔ ∃

U⊆ f u

c ∈ cm(f)(U ,V)

def
⇔ ∃

U⊆ f u

c ∈ cm(f)Uσ (V)

def
⇔ ∃

U⊆ f u

(V,c) ∈ is(cm(f)Uσ)

def
⇔ ∃

U⊆ f u

(V,c) ∈ h(U) .

We show finally that the mapping g : f 7→ is(h) is continuous. Monotonicity follows

from the definition of cm(f). For the principle of finite support, let (U,V,c) ∈ g(f);
then (U,V,c) ∈ g({U ∪V,c}), with {U ∪V,c} ⊆ f f . �

Category theoretic characterization of ideals

Let ρ be an acis. Define the identity idρ ∈ Ideρ→ρ by

(U,a) ∈ idρ ≔U ≻ρ a .

Furthermore, define the composition of u∈ Ideρ→σ and v∈ Ideσ→τ to be the set v◦u⊂
Tρ→τ where

(U,c) ∈ v◦u≔ ∃
V∈Conσ

(

∀
b∈V

(U,b) ∈ u∧ (V,c) ∈ v

)

.

Proposition 1.31. The sets of ideals of acises together with the ideals of their function

spaces form a category. Namely:

1. The identity is an ideal.

2. The composition of two ideals is again an ideal.

3. The identity is neutral with respect to composition.

4. The composition of ideals is associative.

Proof. For the first statement, let ρ be an acis. For consistency, let (Ui,ai) ∈ idρ ,

i = 1,2, and U1 ≍ρ U2; by the definition of the identity we have Ui ≻ρ ai, which, by

Proposition 1.2, gives a1 ≍ρ a2. Closure under entailment follows by the definition of

entailment, identity and by transitivity of entailment.

For the second statement, let u ∈ Ideρ→σ and v ∈ Ideσ→τ . For consistency: Let

(Ui,ci) ∈ v ◦ u, i = 1,2, and U1 ≍ρ U2; by the definition of composition, there are

V1,V2 ∈ Con such that

∀
bi∈Vi

(Ui,bi) ∈ u∧ (Vi,ci) ∈ v ,

1.2 Ideals 27

for i = 1,2; since U1 ≍ρ U2, we have b1 ≍σ b2 for all bi ∈Vi, that is, V1 ≍σ V2; then, by

the consistency of v, we get c1 ≍τ c2. For closure under entailment: Let (U,c) ∈ v◦u

and (U,c) ≻ρ→τ (U ′,c′); by the definition of entailment in function spaces, we have

U ′ ≻ρ U ∧ c≻τ c′; by the definition of composition, there is a V ∈ Conσ for which

∀
b∈V

(U,b) ∈ u∧ (V,c) ∈ v ;

for all b ∈V it is (U ′,b) ∈ u as well as (V,c′) ∈ v, hence (U ′,c′) ∈ v◦u.

For the third statement, let u ∈ Ideρ→σ and v ∈ Ideσ→ρ . We prove that the identity

ideal is left-neutral, that is, that idρ ◦ v = v. For the right direction we have

(U,a) ∈ idρ ◦ v
def
⇔ ∃

V∈Conρ

(

∀
b∈V

(U,b) ∈ v∧ (V,a) ∈ idρ

)

def
⇔ ∃

V∈Conρ

(

∀
b∈V

(U,b) ∈ v∧V ≻ρ a

)

def
⇔ ∃

V∈Conρ

(

∀
b∈V

(U,b) ∈ v∧ ∃
b∈V

b≻ρ a

)

⇒ (U,a) ∈ v ,

and for the left direction

(U,a) ∈ v⇒ (U,a) ∈ v∧{a} ≻ρ a

(⋆)
⇒ ∃

V∈Conρ

(

∀
b∈V

(U,b) ∈ v∧V ≻ρ a

)

def
⇔ ∃

V∈Conρ

(

∀
b∈V

(U,b) ∈ v∧ (V,a) ∈ idρ

)

def
⇔ (U,a) ∈ idρ ◦ v ,

where at (⋆) we let V ≔ {a}. Now we prove that the identity ideal is right-neutral, that

is, that u◦ idρ = u. For the right direction we have

(U,b) ∈ u◦ idρ
def
⇔ ∃

V∈Conρ

(

∀
a∈V

(U,a) ∈ idρ ∧ (V,b) ∈ u

)

def
⇔ ∃

V∈Conρ

(

∀
a∈V

U ≻ρ a∧ (V,b) ∈ u

)

def
⇔ ∃

V∈Conρ

(

U ≻ρ V ∧ (V,b) ∈ u
)

⇒ (U,b) ∈ u ,

and for the left direction

(U,b) ∈ u⇒ ∀
a∈U

U ≻ρ a∧ (U,b) ∈ u

(⋆)
⇒ ∃

V∈Conρ

(

∀
a∈V

(U,a) ∈ idρ ∧ (V,b) ∈ u

)

def
⇔ (U,b) ∈ u◦ idρ ,

28 1. Atomic-coherent information systems

where at (⋆) we let V ≔U .

For the fourth statement, let u ∈ Ideρ→σ , v ∈ Ideσ→τ , and w ∈ Ideτ→υ . We prove

the associativity, that is, that (w◦ v)◦u = w◦ (v◦u). We have, from left to right

(U,d) ∈ (w◦ v)◦u

def
⇔ ∃

V∈Conσ

(

∀
b∈V

(U,b) ∈ u∧ (V,d) ∈ w◦ v

)

def
⇔ ∃

V∈Conσ

(

∀
b∈V

(U,b) ∈ u∧ ∃
W∈Conτ

(

∀
c∈W

(V,c) ∈ v∧ (W,d) ∈ w

))

⇔ ∃
V∈Conσ

∃
W∈Conτ

(

∀
b∈V

(U,b) ∈ u∧ ∀
c∈W

(V,c) ∈ v∧ (W,d) ∈ w

)

,

and similarly, from right to left

(U,d) ∈ w◦ (v◦u)

def
⇔ ∃

W∈Conτ

(

∀
c∈W

(U,c) ∈ v◦u∧ (W,d) ∈ w

)

def
⇔ ∃

W∈Conτ

(

∀
c∈W

∃
V∈Conσ

(

∀
b∈V

(U,b) ∈ u∧ (V,c) ∈ v

)

∧ (W,d) ∈ w

)

⇔ ∃
W∈Conτ

∃
V∈Conσ

(

∀
b∈V

(U,b) ∈ u∧ ∀
c∈W

(V,c) ∈ v∧ (W,d) ∈ w

)

,

as we needed. �

From the above it follows that the category of ideals is cartesian closed.

1.3 Algebraic acises

We introduced the notion of an algebra given by constructors on page 1. For the pur-

poses of this chapter it suffices for α to be finitary (we will allow for more generality

in Chapter 2).

Let α be an algebra given by constructors C1, . . . ,Ck, with at least one nullary con-

structor among them. To α we further attach a nullary partiality pseudo-constructor

∗α . We may drop subscripts when the context suffices.

For each constructor C of arity r define inductively the following:

• if a1, . . . ,ar ∈ Tα then Ca1 · · ·ar ∈ Tα ; moreover, ∗α ∈ Tα ;

• if a1 ≍α a′1, . . . ,ar ≍α a′r then Ca1 · · ·ar ≍α Ca′1 · · ·a
′
r; moreover, ∗α ≍α a and

a≍α ∗α for all a ∈ Tα ;

• if a1 ≻α a′1, . . . ,ar ≻α a′r then Ca1 · · ·ar ≻α Ca′1 · · ·a
′
r; moreover, a ≻α ∗α , for

all a ∈ Tα .

These inductive clauses define the predicates Tα , ≍α and ≻α .

Remark. Notice that equality of tokens in α , =α , is defined by

a =α b≔ a = b = ∗∨

(

∃
i

(

a =Ci~a∧b =Ci
~b
)

∧∀
j

a j =α b j

)

.

1.3 Algebraic acises 29

Consequently, equality for neighborhoods of tokens should be understood as set equal-

ity (though in Chapter 2 it will be list equality). For simplicity’s sake though, we keep

this implicit in what follows. �

Proposition 1.32. For an algebra α given by constructors, the triple (Tα ,≍α ,≻α) is

an acis.

Proof by induction on the formation of tokens. We show that propagation holds, while

the rest of the properties are shown similarly. Let Ca1 · · ·ar ≍α Ca′1 · · ·a
′
r and

Ca′1 · · ·a
′
r ≻α Ca′′1 · · ·a

′′
r . By the definition of consistency and entailment, we have

ai ≍α a′i and a′i ≻α a′′i , for each i = 1, . . . ,r. The induction hypothesis gives ai ≍α a′′i ,

for each i, and the definition of consistency yields Ca1 · · ·ar ≍α Ca′′1 · · ·a
′′
r . �

This is the acis induced by α . Call an acis algebraic if it is either induced by an

algebra or it is a function space composed by algebraic acises. When in need of distin-

guishing between the two, use basic algebraic and composite algebraic respectively;

we denote basic algebraic acises by α,β ,γ . . . and composite ones by ρ,σ ,τ
It is easy to see that every basic algebraic acis has a well-founded entailment re-

lation. Furthermore, the homomorphisms between basic algebraic acises are exactly

their monotone token-mappings, as the following proposition establishes.

Proposition 1.33. Let α and β be basic algebraic acises.

1. If two tokens in α are consistent then they have a least common entailer, that is,

a least upper bound: for any a,b ∈ Tα , if a≍α b then there exists a token c ∈ Tα

such that c≻α a, c≻α b, and c′ ≻α c, for any c′ ∈ Tα with c′ ≻α a and c′ ≻α b.

2. If f : Tα → Tβ is a monotone token-mapping then it also preserves consistency.

Proof. For statement 1. By induction on the formation of the tokens, if, without loss

of generality, b = ∗, then a≻α {a,b} and obviously it is the least such token; if a =C~a

and b =C~b, with ai ≍α bi, for every i, then by the induction hypothesis, it is

∀
i
∃
ci

(

ci ≻α {ai,bi}∧ ∀
c′i∈Tα

(
c′i ≻α {ai,bi}→ c′i ≻α ci

)

)

,

and then,

C~c≻α {a,b}∧ ∀
c′∈Tα

(
c′ ≻α {a,b}→ c′ ≻α C~c

)
.

For statement 2: Let a,b ∈ Tα be such that a ≍α b; by 1, they will have a least

common entailer c≔ lub(a,b); by monotonicity we get f (c)≻β { f (a), f (b)}, and by

Proposition 1.2, f (a)≍β f (b). �

We now turn our attention to constructors. First, it is easy to see that, by the defi-

nition of entailment in an algebraic acis, every constructor defines a monotone token-

mapping. Furthermore, every constructor C of arity n generates a subset of Conα
n×Tα

by

r∗C ≔ {(~U ,∗)}∪{(~U ,C~a) | ∀
1≤ j≤n

U j ≻ a j)} ;

of particular importance is also the set rC ≔ r∗C r {(
~U ,∗)}. If ρ and σ are algebraic

acises, then a relation r ⊆ Conn
α × Tσ is an n-ary approximable map from ρ to σ—

write r : ρn → σ—if

30 1. Atomic-coherent information systems

⊥

0 S⊥

S0 S(S⊥)

S(S0)

∞S

...

...

...

...

.......................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

⊥

tt ff
..

..

Figure 1.1: The ideals of N and B, and their inclusion.

• r(~U ,a)∧ r(~U ,b)→ a≍σ b, and

• ∀1≤ j≤n Vj ≻ρ U j ∧ r(~U ,a)∧a≻σ b→ r(~V ,b),

and the corresponding n-ary continuous mapping is

cm(r)(~u)≔ {b ∈ Tσ | ∃
U1⊆u1

· · · ∃
Un⊆un

r(~U ,b)} .

It is easy to check the following.

Proposition 1.34. Let C and C′ be two distinguished constructors of arities n and n′

respectively.

1. The sets r∗C,rC : αn → α are n-ary approximable maps.

2. The continuous map

cm(rC)(~u) = {C~a ∈ Tα | ∃
U1⊆u1,...,Un⊆un

∀
1≤ j≤n

U j ≻α a j}

is injective. Furthermore, it is

cm(rC)(Conα
n)∩ cm(rC′)(Conα

n′) = ∅ .

Natural and boolean numbers

The algebra of natural numbers N is given by the nullary constructor 0 for zero and

the unary S for the successor. For brevity, we may write Sn for S · · ·S (n times) and

n for Sn0. For all n = 0,1, . . ., the pair ({Sn+m0 | m≥ 0}∪{Sn+m∗ | m≥ 0},≍N) is a

(graph-theoretic) star centered at Sn∗. The ideals of N take one of the following forms:

{n,Sn∗, . . . ,S∗},{Sn∗, . . . ,S∗},{. . . ,Sn∗, . . . ,S∗} ,

while the neighborhoods are all the possible finite subsets of an ideal. Notice that the

empty set⊥ is also an ideal. Call the ideals of N partial natural numbers and the ideals

of function spaces above N partial arithmetical functionals. The set rS induced by the

successor constructor is such an arithmetical function, as an ideal of N→ N.

Other important examples of algebras are the algebra of boolean numbers B, given

by two nullary constructors, tt and ff, as well as the parametric algebra of lists of ρ-

tokens L(ρ), given by a nullary constructor Nilρ for the empty list, and a unary con-

structor Consρ for the concatenator.

1.3 Algebraic acises 31

Call algebraic acises based on N and B arithmetical acises, and use ι to denote ei-

therN or B. The equivalence between ideals, approximable maps and Scott-continuous

maps justifies the definition of a model C ω of partial continuous functionals (of finite

type), based on arithmetical acises, by

C0 ≔ Ideι , Cρ⇒σ ≔ Ideρ→σ , C
ω
≔
⋃

ρ∈T

Cρ .

Here are two simple but useful observations.

Proposition 1.35. Let ι be a basic arithmetical acis and ρ an arithmetical acis.

1. For all a,b ∈ Tι , we have the following comparability property: if a ≍ι b then

either a≻ι b or b≻ι a.

2. The application of a finitely generated ideal of type ~ρ → N to an ideal of type ~ρ
is finite: if W ∈ Con~ρ→N and~u ∈ Ide~ρ , then W (~u) ∈ ConN.

Define the total ideals Gρ ⊆ Ideρ , in an arithmetical acis ρ , inductively on the

types:

• It is tt ∈ GB and ff ∈ GB. It is 0 ∈ GN and if u ∈ GN then Su ∈ GN.

• If for every v ∈ Gρ it is u(v) ∈ Gσ , then u ∈ Gρ→σ .

In the remainder of the chapter we will not elaborate on totality, but merely use it to

formalize indices, namely, we will use GN as our standard denumerable set of indices

when needed (see section 1.4). In section 2.4, we will discuss totality in the more

general setting of not necessarily atomic information systems.

Partial height of partial numbers

We need a continuous means to compare partial numbers. A reasonable idea is to use

their height, that is, the number of constructors they are built upon, but this quickly

leads to discontinuity, since this number is total. Indeed, if we define l : TN→ TN by

l(∗)≔ 0 and l(Ca)≔ S (l(a)), for C = 0,S, then ı̇ıl < IdeN→N, since l is not consistency-

preserving (see Proposition 1.7): it is

Sm∗ ≍N Sn ∗ ∧ l(Sm∗) = m 6≍N n = l(Sn∗) ,

for any m , n in GN.

We use instead a notion of “partial height”, which intuitively stands for the pro-

jection of an ideal on the partial axis of the constructor S. Define a token-mapping

plength : TN→ TN by

plength(∗)≔ ∗ ,

plength(Ca)≔ S plength(a) ,

where C is either 0 or S. This token-mapping is trivially consistency-preserving, so

its idealization is indeed an ideal of N→ N, and we have for example ı̇ıplength(2) =
ı̇ıplength(S3⊥) = S3⊥, or ı̇ıplength(∞) = ∞.

Let u,v ∈ IdeN. Say that u is above v, and write u⊲ v, if

ı̇ıplength(u)≻N ı̇ıplength(v) .

32 1. Atomic-coherent information systems

Note that aboveness is not antisymmetric, since Sn0⊲Sn+1⊥ and Sn+1⊥⊲Sn0 for all n.

It is also obvious that aboveness between ideals is a total preorder with single maximum

element ∞ and single minimum element ⊥, as well as that, for total ideals, it reduces

to the standard ≥ relation. Aboveness will prove crucial in section 1.4. Indeed, it is a

sufficient step, beyond the techniques used by Plotkin, towards proving definability in

our non-flat setting.

Proposition 1.36. Concerning aboveness ⊲⊆ IdeN× IdeN the following hold:

1. An ideal is above everything it entails, that is, if u≻N v then u⊲ v.

2. Aboveness is antisymmetrical for consistent ideals; more generally, for u∈ IdeN,

if v⊲w and w⊲ v for all v,w⊆ u, then v = w.

3. For consistent ideals, aboveness reduces to entailment, that is, if u≍N v and u⊲v

then u≻N v.

4. Ideals that are inconsistent with ideals above them are total, that is, if u⊲ v and

u 6≍N v then v ∈ GN.

Proof. The first statement derives from transitivity of entailment. For the second state-

ment we have

v≍N w∧ v⊲w∧w⊲ v
def
⇔ v≍N w∧∀

n
(v⊲n↔ w⊲n)

⇒ ∀
n

(

v = w = Sn−10∨ (v≻N Sn∗↔ w≻N Sn∗)
)

⇒ v = w .

The third one derives from the comparability property and the previous statement:

u≍N v∧u⊲ v
P. 1.35
⇔ (u≻N v∨ v≻N u)∧u⊲ v

⇒ (u≻N v∧u⊲ v)∨ (v≻N u∧u⊲ v)
(2)
⇔ u≻N v∨ (v⊲u∧u⊲ v)
(3)
⇔ u≻N v∨u = v

⇔ u≻N v .

The last statement is obvious. �

Maximal form of algebraic neighborhoods

Now we address the issue of making neighborhoods as parsimonious as possible, that

is, with no redundant information: the subset {S3∗,S∗} informs us that the successor

has been applied three times and that the successor has been applied one time—clearly,

the second piece of information is redundant.

By the very definition of entailment in an abstract acis, we have non-

antisymmetricity, that is, we can have two different tokens entailing one another. Call

an acis antisymmetric when antisymmetricity for entailment holds. By induction on

the formation of tokens one can directly prove the following.

Proposition 1.37. All basic algebraic acises are antisymmetric.6

6A parametric basic algebraic acis, like L(ρ), is antisymmetric if the parameter acis ρ is antisymmetric.

For simplicity’s sake, we focus here on non-parametric algebraic acises.

1.3 Algebraic acises 33

Even in the case of an antisymmetric acis though, non-antisymmetricity may appear

in its neighborhoods as well as in tokens and neighborhoods of its function spaces. For

any acis ρ , recall the equivalence relation of mutual entailment on Conρ :

U ∼ρ V ≔U ≻ρ V ∧V ≻ρ U .

Nontrivial examples of equivalent neighborhoods in arithmetical acises are the follow-

ing:

{S2∗} ∼ι {S
2∗,S∗} ,

{
(

{S2∗},S2∗
)

} ∼ι→ι {
(

{S2∗},S2∗
)

,({2},S∗)} ,

{({({0},S∗)},0)} ∼(ι→ι)→ι {({({0},S∗)},0) ,({({0},S∗) ,({0},1)},0)} ,

{
(

{S2∗},{S2∗},S∗
)

} ∼ι→(ι→ι) {
(

{S2∗,S∗},{S2∗,S∗},S∗
)

} .

We would like to have a notion of “normal form” for neighborhoods, so that every

neighborhood would have a normal form and two neighborhoods in normal form would

be equivalent if and only if they were equal. This turns out to be easily feasible for

algebraic acises, as we now show.

The definition of the set NFα of neighborhoods in (atomic) maximal form, for an

algebraic acis ρ , is inductive on the formation of the acis:

• for a basic algebraic acis α , a neighborhood U ∈ Conα is in maximal form if it

contains no entailments, that is, if none of its elements entails some other:

{ai}i ∈ NFα ≔ ∀
i
∀
j,i

ai 6≻α a j ;

• for a composite algebraic acis ρ → σ , a neighborhood {(Ui,bi)}i ∈ Conρ→σ is

in maximal form if all its lower-type objects are either already in maximal form

or else tokens and if it contains no entailments:

{(Ui,ai)}i ∈ NFρ→σ ≔

∀
i

(

Ui ∈ NFρ ∧ai ∈ NFσ ∪Tσ ∧ ∀
j,i
(Ui,ai) 6≻ρ→σ (U j,a j)

)

.

Theorem 1.38 (Atomic maximal form). For all algebraic acises ρ the following hold:

1. For all U ∈ Conρ there is a U ′ ∈ NFρ such that U ∼ρ U ′.

2. For all U,V ∈ NFρ it is U ∼ρ V ↔U =V .

Proof. We prove the more general step cases. For the first statement: Let {(Ui,ai)}i∈I ∈
Conρ→σ with Ui ∈ NFρ , ai ∈ NFσ ∪Tσ , for every i; suppose that there are k, l ∈ I such

that (Uk,ak) ≻ρ→σ (Ul ,al); set I′ ≔ I−{l}; it is easy to see that {(Ui,ai)}i∈I ∼ρ→σ

{(U ′
i ,a

′
i)}i′∈I′ .

The left direction of the second statement is obvious. For the right direction let

{(Ui,ai)}i∈I ,{(Vj,b j)} j∈J ∈NFρ→σ be such that {(Ui,ai)}i∈I ∼ρ→σ {(Vj,b j)} j∈J ; this

unfolds to

∀
j
∃

i(j)
(Ui(j),ai(j))≻ρ→σ (Vj,b j) ∧ ∀

i
∃
j(i)

(Vj(i),b j(i))≻ρ→σ (Ui,ai) ,

which is equivalent to ∀ j∃i(Vj,b j) ∼ρ→σ (Ui,ai); by definition we get ∀ j∃i(Vj ∼ρ

Ui ∧ b j ∼σ ai), which, by the assumption and the induction hypothesis, yields

∀ j∃i(Vj,b j) = (Ui,ai); similarly we have ∀i∃ j(Ui,ai) = (Vj,b j), which concludes the

proof. �

34 1. Atomic-coherent information systems

Notice that, in the special case of arithmetical acises, neighborhoods have fairly simple

maximal forms, since they are built on singletons of Tι : a at ι , {(a1
i ,a

2
i)}i at ι → ι ,

{({(a1
ji
,a2

ji
)} ji ,a

3
i)}i at (ι → ι)→ ι , {(a1

i ,(a
2
i ,a

3
i))}i at ι → (ι → ι), and so on, where

curly brackets of singletons have been omitted.

It is also important to notice that NFα is not closed under application; for example,

{({S∗},S∗) ,
(

{S2∗},S2∗
)

} ∈ NFN→N and {2} ∈ NFN but

{({S∗},S∗) ,
(

{S2∗},S2∗
)

} · {2}= {S2∗,S∗} < NFι .

Nevertheless, we have the following monotonicity property.

Proposition 1.39. If ρ is an arithmetical acis and {(Ui,bi)}i<n ∈ NFρ→N, then

Ui ≻ρ U j → bi ≻N b j ,

for all i, j < n.

Proof. Let Ui ≻ρ U j for some i, j < n with i , j (no loss of generality); then Ui ≍ρ U j,

hence, by the consistency of the neighborhood, bi ≍N b j; the property of comparability

gives bi ≻N b j, since b j ≻N bi would contradict normality. �

Remark. Note that it can be Ui ≍ρ U j∧bi ≻N b j, with Ui 6≻ρ U j and U j 6≻ρ Ui; take for

example

{({(S0,S0)},S0) ,
(

{(S20,S20)},S∗
)

} ∈ NF(N→N)→N .

We will revisit monotone neighborhoods in not necessarily atomic information systems

on page 96. �

1.4 Computability over arithmetical functionals

In this section we have the main result of this chapter, a definability result (Theo-

rem 1.46): we show that a functional is computable exactly when it is defined in terms

of certain basic arithmetical functionals. Results of this kind for given PCF-like lan-

guages have been considered numerous times, for example in [35, 11, 46, 31]. We

prove this result here directly for arithmetical acises, in a way that is directly appli-

cable to any non-superunary algebra. Yet, in the case of algebras with superunary

constructors, one cannot hope to apply the same methods, as we show in the end of the

chapter.

For the remainder of the section we consider exclusively arithmetical acises, unless

otherwise stated.

Recursion on parallel conditionals and existentials

Call a partial continuous functional computable if it is Σ0
1-definable as a set of tokens.

It is direct to check that evaluation and currying functionals are computable, that com-

position, application and cartesian products of computable functionals are computable,

as well as that projections are computable.

Let ρ be an acis and f : ρ → ρ a continuous mapping. An ideal u ∈ Ideρ is said to

be the least fixed point of f if

f (u) = u∧ ∀
v∈Ideρ

(f (v) = v→ u⊆ v) .

1.4 Computability over arithmetical functionals 35

Proposition 1.40. Let ρ be an acis and f : ρ → ρ a continuous mapping. The mapping

f has a least fixed point given by the equation

Y(f) =
⋃

n∈GN

f n(⊥) .

Proof. Since f is continuous, it is monotone and commutes with directed unions. By

monotonicity,

⊥⊆ f (⊥)⊆ ·· · ⊆ f n(⊥)⊆ ·· · ,

which yields u≔
⋃

n∈GN
f n(⊥) ∈ Ideρ ; by commutativity with directed unions,

f (u) = f (
⋃

n∈GN

f n(⊥)) =
⋃

n∈GN

f (f n(⊥)) =
⋃

n∈GN

f n+1(⊥) = u .

So u is a fixed point. Let v be another fixed point of f ; we have

⊥⊆ v⇒ f (⊥)⊆ f (v) = v⇒ ·· · ⇒ f n(⊥)⊆ v⇒ ·· · ,

which yields u =
⋃

n∈GN
f n(⊥)⊆ v, so u is the least fixed point. �

Proposition 1.41. The least fixed point functional Y : (ρ → ρ)→ ρ is continuous and

computable for any ρ .

Proof. For monotonicity, if f ⊆ g, then trivially
⋃

n∈GN
f n(⊥)⊆

⋃

n∈GN
gn(⊥). For the

principle of finite support, let b ∈ Y(f), that is, b ∈
⋃

n∈GN
f n(⊥); equivalently,

∃
n∈GN

b ∈ f n(⊥)
PFS
⇒ ∃

n∈GN
∃

W⊆ f f

b ∈W
n
(⊥)

def
⇔ ∃

W⊆ f f

b ∈
⋃

n∈GN

W
n
(⊥) ,

so ∃W⊆ f f b ∈ Y(W). For Σ0
1-definability, let (U,a) ∈ Yρ , that is, a ∈ Yρ(U); then

equivalently

a ∈
⋃

n∈GN

U
n
(⊥)

def
⇔ ∃

n∈GN

a ∈U
n
(⊥)

P. 1.17(4)
⇔ ∃

n∈GN

a ∈Un∅
def
⇔ ∃

n∈GN

Un∅≻ρ a ;

but this is equivalent to the formula

∃
n∈GN

∃
V0

· · ·∃
Vn

(

V0 = ∅∧ ∀
i<n

(Vi+1 =UVi)∧Vn ≻ρ a

)

,

which is a Σ0
1-expression by Proposition 1.17(5). �

Define the parallel conditional functional pcond : B→ N→ N→ N by

pcond(p,u,v)≔

u , p = tt ,

v , p = ff ,

u∩ v , p =⊥ .

Proposition 1.42. The parallel conditional functional is continuous and computable.

36 1. Atomic-coherent information systems

Proof. For monotonicity: Let u⊆ u′ and v⊆ v′; we distinguish cases according to the

boolean values:

pcond(tt,u,v) = u⊆ u′ = pcond(tt,u′,v′) ,

pcond(ff,u,v) = v⊆ v′ = pcond(ff,u′,v′) ,

pcond(⊥,u,v) = u∩ v⊆ u′∩ v′ = pcond(⊥,u′,v′) ,

pcond(⊥,u,v) = u∩ v⊆ u⊆ u′ = pcond(tt,u′,v′) ,

pcond(⊥,u,v) = u∩ v⊆ v⊆ v′ = pcond(ff,u′,v′) .

For the principle of finite support: if a ∈ pcond(tt,u,v) then a ∈ pcond(tt,a,∅); if

a ∈ pcond(ff,u,v) then a ∈ pcond(ff,∅,a); finally, if a ∈ pcond(⊥,u,v) then a ∈
pcond(∅,a,a). For Σ0

1-definability, let (P,U,V,a)∈ pcond, that is, a∈ pcond(P,U ,V);
this is equivalent to the formula

(P≻B tt∧U ≻N a)∨ (P≻B ff∧V ≻N a)∨ (P = ∅∧U ≻N a∧V ≻N a) ,

which is a Σ0
1-expression. �

Define the (parallel) existential functional exist : (N→ B)→ B by

exist(f) =

ff , ∃n∈GN (f (Sn⊥) = ff∧∀k≤n f (k) = ff) ,

tt , ∃n∈GN f (n) = tt ,

⊥ , otherwise .

Proposition 1.43. The existential functional is continuous and computable.

Proof. For monotonicity: Let f , f ′ ∈ IdeN→B be such that f ⊆ f ′. We distinguish three

cases: In case ∃n∈GN (f (Sn⊥) = ff∧∀k≤n f (k) = ff), then, by definition,

∃
n∈GN

(

∃
U∈ConN

(Sn⊥≻N U ∧ (U, ff) ∈ f)∧ ∀
k≤n

∃
Vk∈ConN

(k ≻N Vk ∧ (Vk, ff) ∈ f)

)

;

since f ⊆ f ′, we trivially get

∃
n∈GN

(

∃
U∈ConN

(

Sn⊥≻N U ∧ (U, ff) ∈ f ′
)

∧ ∀
k≤n

∃
Vk∈ConN

(

k ≻N Vk ∧ (Vk, ff) ∈ f ′
)

)

,

which in turn means that ∃n∈GN (f ′(Sn⊥) = ff∧∀k≤n f ′(k) = ff), so exist(f) =
exist(f ′) = ff. In case ∃n∈GN f (n) = tt, we have

∃
n∈GN

∃
U∈ConN

(

n≻N U ∧ (U, tt) ∈ f ⊆ f ′
)

,

which gives ∃n∈GN f ′(n) = tt, so exist(f) = exist(f ′) = tt. Finally, in case exist(f) =⊥,

it is obviously exist(f)⊆ exist(f ′) for any possible value of the latter.

For the principle of finite support: Let b ∈ exist(f); if there exists an n ∈ GN such

that f (Sn⊥) = ff∧∀k≤n f (k) = ff then b∈ exist((Sn∅, ff)); if there exists an n∈GN such

that f (n) = tt then b ∈ exist((n, tt)) (the case b ∈ ⊥ is absurd).

For Σ0
1-definability: Let ({(Ui,bi)}i≤m,b) ∈ exist, that is, b ∈ exist({(Ui,bi)}i≤m);

this is equivalent to the formula
(

tt≻B b∧ ∃
n∈GN

{(Ui,bi)}i≤m ≻N→B (S
n0, tt)

)

∨

(

ff≻B b∧ ∃
n∈GN

(

{(Ui,bi)}i≤m ≻N→B (S
n∅, ff)∧ ∀

k≤n
{(Ui,bi)}i≤m ≻N→B (S

k0, ff)

))

,

1.4 Computability over arithmetical functionals 37

which is a Σ0
1-expression. �

In terms of pcond and exist we can easily define the following:

1. The conditional functional cond : B→ N→ N→ N defined by

cond(p,u,v)≔ pcond(p,pcond(p,u,⊥),pcond(p,⊥,v)) ,

which can be unfolded to

cond(p,u,v) =

u , p = tt ,

v , p = ff ,

⊥ , p =⊥ .

Note that pcond(p,u,v) = cond(p,u,v) if and only if u∩ v =⊥.

2. The disjunction functional or : B→ B→ B defined by

or(p,q)≔ pcond(p, tt,q) ,

which unfolds to

or(p,q)≔

tt , p = tt∨q = tt ,

ff , p = q = ff ,

⊥ , otherwise .

3. The conjunction functional and : B→ B→ B defined by

and(p,q)≔ pcond(p,q, ff) ,

which unfolds to

and(p,q)≔

tt , p = q = tt ,

ff , p = ff∨q = ff ,

⊥ , otherwise .

4. The negation functional not : B→ B defined by

not(p)≔ pcond(p, ff, tt) ,

which unfolds to

not(p)≔

tt , p = ff ,

ff , p = tt ,

⊥ , otherwise .

5. The implication functional implies : B→ B→ B defined by

implies(p,q)≔ or(not(p),q) ,

which unfolds to

implies(p,q)≔

tt , p = ff∨q = tt ,

ff , p = tt∧q = ff ,

⊥ , otherwise .

All of these are continuous and computable functionals since they are defined by

pcond. The p-ary generalization of or we will denote by OR
p
i=1.

38 1. Atomic-coherent information systems

Enumeration and inconsistency functionals

To make case distinctions in subsequent proofs less branching, we hereafter adopt the

following convention: let ρ , σ and τ be arithmetical acises; a functional f : ρ → N→
σ → τ that satisfies f (u,x,v) =⊥ for x < GN, will be informally typed by ρ → GN→
σ → τ , and will be treated only on its arguments where x is total.

For every arithmetical acis we fix an enumeration of neighborhoods {Un}n∈GN ,

such that (i) U0 = ∅ holds, and (ii) the following are primitive recursive relations:

Un ≍ρ Um, Un ≻ρ Um, Un ·Um = Uk (for appropriate types), and Un ∪Um = Uk, with

k = 0 if Un 6≍ρ Um. In the following we may write b for singleton neighborhoods {b},
whenever we want to stress that they behave as tokens.

Define the conditional extension functional (also continuous union, see note on

page 47) condext : N→ GN→ N by

condext(v,n)≔

{

v , bn ∈ v ,

bn , otherwise .

The condext operator extends bn to v whenever this is allowed.

Proposition 1.44. The conditional extension functional is continuous and computable.

Proof. For monotonicity: Let v,v′ ∈ IdeN, with v ⊆ v′. In case bn ∈ v, then bn ∈ v′

as well, so condext(v,n) = v ⊆ v′ = condext(v′,n). In case bn < v, then either bn ∈ v′

and so condext(v,n) = bn ⊆ v′ = condext(v′,n), or bn < v′ and so condext(v,n) = bn =
condext(v′,n).

For the principle of finite support, let b∈ condext(v,n). If bn ∈ v then b∈ v as well,

and b ∈ condext(b∪bn,n). If bn < v then b ∈ bn, and b ∈ condext(bn,n).
For Σ0

1-definability, consider a token (V,N,b) ∈ condext. This means that b ∈
condext(V ,N), which is equivalent to the formula

∃
n∈GN

(N ≻N n∧ (V 6≻N bn∨V ≻N b∨bn ≻N b)) ;

this is a Σ0
1-expression. �

Proposition 1.45. Let ρ be an arithmetical acis.

1. There exists an enumeration functional enρ : GN→ N→ ρ , with the properties

enρ(m,x) =Um, when x < GN ,

enρ(m,n) =Un, when Un ≻ρ Um .

2. There exists an inconsistency functional incnsρ : ρ →GN→B, with the property

incnsρ(u,n) =

{

tt , u 6≍ρ Un ,

ff , u≻ρ Un .

The inconsistency functionals concern application: let σ be an arithmetical acis and

(Un,bn) a token of a partial continuous functional v of type ρ → σ ; the only case where

the token may contribute the information bn to the value v(u) is when incnsρ(u,n) is

ff. In order to define the functionals incnsρ , we will need the enumeration functionals,

that enumerate all finitely generated extensions of Um, for Um ∈ Conρ .

1.4 Computability over arithmetical functionals 39

Proof by induction on types. First we deal with the enumeration functionals. Let

ρ = ρ1 → ·· · → ρp → N, Um ∈ Conρ1→···→ρp→N and f1, . . . , fp, g, and h be primitive

recursive functions such that

Um = {(U f1(m,l), . . . ,U fp(m,l),bg(m,l))}l<h(m) ,

with

l > l′→ bg(m,l)⊲bg(m,l′) . (1.1)

In this representation we have U fi(m,l) ∈Conρi
and bg(m,l) ∈ConN, for all l < h(m) and

all 1≤ i≤ p, while h(m) denotes the number of elements of Um. Consider the collection

{Um,l}l of progressive approximations of Um; in particular, for l ∈ GN, define:

Ux,l ≔ ∅ if x < GN ,

Um,0 ≔ ∅ ,

Um,l+1 ≔Um,l ∪{(U f1(m,l), . . . ,U fp(m,l),bg(m,l))} .

Observe that Um,h(m) =Um.

For an arbitrary argument ~u ∈ Ideρ1→···→ρp , define an argument test q~u,m,l express-

ing whether the application Um,l+1(~u) does not contribute information to the value of

Um,l(~u):

q~u,m,l ≔

p

OR
i=1

incnsρi
(ui, fi(m, l)) =

tt , ∃p
i=1 ui 6≍ρi

U fi(m,l) ,

ff , ∀p
i=1 ui ≻ρi

U fi(m,l) ,

⊥ , otherwise .

Observe that in the last case we have that ∃p
i=1 ui 6≻ρi

U fi(m,l) while we still have that

∀p
i=1 ui ≍ρi

U fi(m,l). Similarly, for an arbitrary partial number v ∈ IdeN, we will use

condext(v,g(m, l))—written condext(v,m, l)—as a value test.

Define now an auxiliary functional Ψ : ρ1 → ·· · → ρp → N→ N→ GN→ N by

Ψ~u,x(v, l)≔ v if x < GN ,

Ψ~u,m(v,0)≔ v ,

Ψ~u,m(v, l +1)≔ pcond
(

q~u,m,l ,Ψ~u,m(v, l),condext(Ψ~u,m(v, l),m, l)
)

.

The following two claims show that this functional is designed to yield extensions of

Um. In particular, Ψ~u,m(v, l) is meant to add v to the value of the application of the l-th

progressive approximation of Um, to~u, whenever possible.

Claim 1. It is Ψ~u,x(⊥, l) =Ux,l(~u).

Proof. For x < GN it is obvious. For m ∈ GN, we proceed by induction on l. For l = 0,

it is obvious. For l +1, we reason by cases on q~u,m,l :

• If q~u,m,l = tt then ∃p
i=1 ui 6≍ρi

U fi(m,l), so

(U f1(m,l), . . . ,U fp(m,l),bg(m,l))(~u) =⊥ ,

which yields Um,l+1(~u) =Um,l(~u). On the other hand,

Ψ~u,m(⊥, l +1) = Ψ~u,m(⊥, l)
IH
=Um,l(~u) .

40 1. Atomic-coherent information systems

• If q~u,m,l = ff then ∀p
i=1 ui ≻ρi

U fi(m,l), so

(U f1(m,l), . . . ,U fp(m,l),bg(m,l))(~u) = bg(m,l) ,

which gives Um,l+1(~u) = bg(m,l), due to (1.1) and Proposition 1.36(3). On the

other hand,

Ψ~u,m(⊥, l +1) = condext(Ψ~u,m(⊥, l),m, l)
IH
= condext(Um,l(~u),m, l)

= bk(m,l) .

For the last step: for bg(m,l) ∈Um,l(~u) it is Um,l(~u) = bg(m,l) by (1.1), while for

bg(m,l) <Um,l(~u) it is immediate.

• Finally, if q~u,m,l =⊥ then ∃p
i=1 ui 6≻ρi

U fi(m,l) and ∀p
i=1 ui ≍ρi

U fi(m,l), so

(U f1(m,l), . . . ,U fp(m,l),bg(m,l))(~u) =⊥ ,

which yields Um,l+1(~u) =Um,l(~u). On the other hand,

Ψ~u,m(⊥, l +1) = Ψ~u,m(⊥, l)∩condext(Ψ~u,m(⊥, l),m, l)
IH
=Um,l(~u)∩condext(Um,l(~u),m, l)

=Um,l(~u) .

For the last step: If bg(m,l) ∈ Um,l(~u), the result is immediate. If bg(m,l) <

Um,l(~u), then let Um,l(~u) = bg(m,l′), for some l′ < l (if Um,l(~u) = ⊥ there is

nothing to show). By (1.1) it is bg(m,l) ⊲ bg(m,l′). Since ∀p
i=1 ui ≍ρi

U fi(m,l)

and ∀p
i=1 ui ≻ρi

U fi(m,l′), by the propagation of consistency in each ρi we have

∀p
i=1 U fi(m,l) ≍ρi

U fi(m,l′); this, by the definition of consistency in function spaces,

yields bg(m,l) ≍N bg(m,l′); by Proposition 1.36(3) we get bg(m,l) ≻N bg(m,l′), and

so, bk(m,l′)∩bk(m,l) = bk(m,l′) =Um,l(~u). �

Claim 2. For a given v ∈ IdeN, suppose that q~u,m,l = ff → v ≻N bg(m,l) and q~u,m,l =

⊥→ bg(m,l) ≍N v. Then ∀l<h(m) Ψ~u,m(v, l) = v.

Proof. We proceed again by induction on l. For l = 0 it is trivial. For l +1, we reason

by cases on q~u,m,l .

• If q~u,m,l = tt then Ψ~u,m(v, l +1) = Ψ~u,m(v, l)
IH
= v.

• If q~u,m,l = ff then Ψ~u,m(v, l+1) = condext(Ψ~u,m(v, l),m, l)
IH
= condext(v,m, l)

H
= v.

• If q~u,m,l = ⊥ then Ψ~u,m(v, l + 1) = Ψ~u,m(v, l)∩ condext(Ψ~u,m(v, l),m, l)
IH
= v∩

condext(v,m, l). In case bg(m,l) ∈ v we’re done; in case bg(m,l) < v, by hypothesis

and comparability, bg(m,l) ≻N v, so bg(m,l)∩ v = v.

So in all cases the claim holds. �

1.4 Computability over arithmetical functionals 41

Now let

en(m,x)(~u)≔Ψ~u,m(Ψ~u,x(⊥,h(x)),h(m)) .

We show that the desired properties of en hold: For the first one, suppose that x < GN;

we have

en(m,x)(~u) = Ψ~u,m(Ψ~u,x(⊥,h(x)),h(m))
def
= Ψ~u,m(⊥,h(m))
Cl. 1
= Um,h(m)(~u)

=Um(~u) .

For the second one, suppose that Un ≻ρ1→···→ρp→N Um, for n ∈ GN; we have:

en(m,n)(~u) = Ψ~u,m(Ψ~u,n(⊥,h(n)),h(m))
Cl. 1
= Ψ~u,m(Un,h(n)(~u),h(m))

= Ψ~u,m(Un(~u),h(m))
Cl. 2
= Un(~u) .

Claim 2 that we appealed to in the last step indeed holds: it is Un(~u) ≻N Um(~u) by

Proposition 1.17; let l < h(m); if q~u,m,l = ff, then

p

∀
i=1

ui ≻ρi
U fi(m,l)⇒Um,l(~u) = bg(m,l)⇒Um(~u)≻N bg(m,l) ,

while if q~u,m,l =⊥, then, by hypothesis,

p

∀
i=1

ui ≍ρi
U fi(m,l)∧ ∃

l′<h(n)

(
p

∀
i=1

U fi(m,l) ≻ρi
U fi(n,l′)∧bg(n,l′) ≻N bg(m,l)

)

prpg

⇒ ∃
l′<h(n)

(
p

∀
i=1

ui ≍ρi
U fi(n,l′)∧bg(n,l′) ≻N bg(m,l)

)

def
⇒ ∃

l′<h(n)

(

Un(~u)≍N bg(n,l′)∧bg(n,l′) ≻N bg(m,l)

)

prpg

⇒Un(~u)≍N bg(m,l) .

Now we deal with the inconsistency functionals. Since we are working with atomic-

coherent structures, we can start by expressing inconsistency between an ideal and a

token (again, expressed as a singleton neighborhood). For all types ρ , σ , fix an enumer-

ation {(U f (i),bg(i))}i∈GN ⊆ Conρ→σ of Tρ→σ , through primitive recursive functions f

and g. We need a term for a functional with the following behavior:

icρ→σ (u, i) =

{

tt u 6≍ρ→σ (U f (i),bg(i)) ,

ff u≻ρ→σ (U f (i),bg(i)) .

We have

icρ→σ (u, i) = tt
def
⇔ u 6≍ρ→σ (U f (i),bg(i))

(∗)
⇔ ∃

n′

(

U f (n′) ≻ρ U f (i)∧u(U f (n′)) 6≍σ bg(i)

)

(∗)
⇔ ∃

n′

(

u(enρ(f (i), f (n′))) 6≍σ bg(i)

)

def
⇔ ∃

n′

(

icσ (u(enρ(f (i), f (n′))), i) = tt
)

,

42 1. Atomic-coherent information systems

where for (∗)’s we let U f (n′) ≔U ∪U f (i), for U ≍ρ U f (i); furthermore

icρ→σ (u, i) = ff
def
⇔ u≻ρ→σ (U f (i),bg(i))

⇔ u(U f (i))≻σ bg(i)

def
⇔ u(enρ(f (i),⊥))≻σ bg(i)

def
⇔ icσ (u(enρ(f (i),⊥)), i) = ff ,

so, writing n for f (n′), define

icρ→σ (u, i)≔ exist(λn icσ (u(enρ(f (i),n)), i)) .

We are now able to express inconsistency between an ideal and a neighborhood Un =
{b j(n,l)}l<h(n), by letting

incnsρ(u,n)≔ OR
l<h(n)

icρ(u, j(n, l)) =

{

tt , ∃l<h(n) icρ(u, j(n, l)) = tt ,

ff , ∀l<h(n) icρ(u, j(n, l)) = ff ,

which is exactly what we were after. �

Definability

Call a partial continuous functional u ∈ Ideρ1→···→ρp→N recursive in pcond, exist and

condext if it can be defined explicitly for all arguments v1, . . . ,vp by an equation

u(v1, . . . ,vp) = t(v1, . . . ,vp) ,

where t is a simply-typed lambda term built up from variables v1, . . . ,vp, λ -abstraction,

application, algebra constructors, fixed point functionals, parallel conditional function-

als, existential functionals, and conditional extension functionals.

Theorem 1.46 (Definability). A partial continuous functional of type ρ → N over N

and B is computable if and only if it is recursive in pcond, exist, and condext.

Proof. Let Ω : ρ1 → ·· · → ρp → N be a computable functional. It will be represented

as a primitive recursively enumerable set of tokens, that is,

Ω = {(U f1(n), . . . ,U fp(n),bg(n))}n∈GN ,

where, for each i = 1, . . . , p, U fi(n) follows an enumeration of Conρi
, bg(n) follows an

enumeration of ConN, and f1, . . . , fp,g are fixed primitive recursive functions.

For arbitrary~u ∈ Ideρ1→···→ρp and v ∈ IdeN, define an argument test by

q~u,n ≔
p

OR
i=1

incnsρi
(ui, fi(n)) =

tt , ∃p
i=1 ui 6≍ρi

U fi(n) ,

ff , ∀p
i=1 ui ≻ρi

U fi(n) ,

⊥ , otherwise ,

and use condext(v,n) as a value test. Define a functional ω : ρ1 → ·· · → ρp → (N→
N)→ GN→ N by

ω~u(ψ)(n)≔ pcond
(

q~u,n,ψ(n+1),condext(ψ(n+1),n)
)

.

1.4 Computability over arithmetical functionals 43

We show that Ω(~u) = Y(ω~u)(0). In particular, we show that both recursion on ω~u at 0

and Ω(~u) entail the very same information, that is,

∀
b∈TN

(Ω(~u)≻N b↔ Y(ω~u)(0)≻N b) .

For the right direction, suppose that there exists a token b∈ TN such that Ω(~u)≻N b.

This means that

∃
n∈GN

(
p

∀
i=1

ui ≻ρi
U fi(n)∧bg(n) ≻N b

)

. (1.2)

We claim that

∀
k≤n

ωk+1
~u (λx ⊥)(n− k)≻N bg(n) (1.3)

and we prove it by induction on k. For k = 0:

ω~u(λx ⊥)(n)
(1.2)
= condext((λx ⊥)(n+1),n) = condext(⊥,n) = bg(n) ≻N bg(n) .

For brevity, let v≔ωk+2
~u (λx ⊥)(n−k−1) and v0≔ωk+1

~u (λx ⊥)(n−k). The induction

hypothesis is that v0 ≻N bg(n). For k+1 we have:

v = ω~u(ω
k+1
~u (λx ⊥))(n− k−1) = pcond

(

q~u,n−k−1,v0,condext(v0,n− k−1)
)

.

We argue by cases on the argument test:

• If q~u,n−k−1 = tt, then v = v0 ≻N bg(n) by the induction hypothesis.

• If q~u,n−k−1 = ff, then, for bg(n−k−1) ∈ v0, it is v = condext(v0,n−k−1) = v0 ≻N
bg(n), by the induction hypothesis. For bg(n−k−1) < v0, it is v = bg(n−k−1). By the

definition of incns we have
p

∀
i=1

ui ≻ρi
U fi(n−k−1)

(⋆)
⇒

p

∀
i=1

U fi(n) ≍ρi
U fi(n−k−1)

def
⇒ bg(n) ≍N bg(n−k−1)

(⋆⋆)
⇒ bg(n) ≻N bg(n−k−1)∨bg(n−k−1) ≻N bg(n)

(⋆⋆⋆)
⇒ bg(n−k−1) ≻N bg(n) ,

where: (⋆) holds by (1.2) and Proposition 1.2; (⋆⋆) holds by Proposition 1.35;

and (⋆⋆⋆) holds since if it was bg(n) ≻N bg(n−k−1), then the induction hypothesis

would yield v0 ≻N bg(n−k−1), which contradicts the running hypothesis. So v≻N
bg(n).

• If it is q~u,n−k−1 = ⊥, then, for bg(n−k−1) ∈ v0, it is v = v0 ∩ v0 = v0 ≻N bg(n),

by the induction hypothesis. For bg(n−k−1) < v0, it is v = v0 ∩ bg(n−k−1). By the

definition of incns we have
p

∀
i=1

ui ≍ρi
U fi(n−k−1)

(⋆)
⇒U fi(n−k−1) ≍ρi

U fi(n)

def
⇒ bg(n−k−1) ≍N bg(n)

(⋆⋆)
⇒ bg(n) ≻N bg(n−k−1)∨bg(n−k−1) ≻N bg(n)

(⋆⋆⋆)
⇒ bg(n−k−1) ≻N bg(n) ,

44 1. Atomic-coherent information systems

where: (⋆) holds by (1.2) and propagation of consistency; (⋆⋆) holds by Proposi-

tion 1.35; and (⋆⋆⋆) holds since if it was bg(n) ≻N bg(n−k−1), then the induction

hypothesis would yield v0 ≻N bg(n−k−1), which contradicts the running hypothe-

sis. So v≻N bg(n).

We proved that v≻N bg(n) in all cases. Letting k = n in statement (1.3), we get

ωn+1
~u (λx ⊥)(0)≻N bg(n)⇒ Y(ω~u)(0)≻N b ,

by (1.2) and the definition of the fixed point functional. So, Y(ω~u)(0) entails all infor-

mation of Ω(~u).

Conversely, suppose that

Y(ω~u)(0)≻N b . (1.4)

We claim that

∀
m∈GN

(

ωn+1
~u (λx ⊥)(m)≻N b→

m+n

∃
l=m

(
p

∀
i=1

ui ≻ρi
U fi(l)∧bg(l) ≻N b

))

, (1.5)

and we prove it by induction on n. For n = 0:

ω(λx ⊥)(m)≻N b

def.
⇔ pcond(q~u,m,(λx ⊥)(m+1),condext((λx ⊥)(m+1),m))≻N b

def.
⇔ pcond(q~u,m,⊥,condext(⊥,m))≻N b

⇒ q~u,m = ff∧condext(⊥,m) = bg(m) ≻N b

def.
⇔

p

∀
i=1

ui ≻ρi
U fi(m)∧bg(m) ≻N b ,

so l ≔ m does the job. For n+1 we have

ω(ωn+1(λx ⊥))(m)≻N b

def.
⇔ pcond(q~u,m,ω

n+1(λx ⊥)(m+1),condext(ωn+1(λx ⊥)(m+1),m))≻N b

def.
⇔

(

q~u,m = tt∧ωn+1(λx ⊥)(m+1)≻N b
)

∨
(

q~u,m = ff∧bg(m) ≻N b
)

,

which is granted by the induction hypothesis. So, Ω(~u) entails all information of

Y(ω~u)(0). �

Comparability properties

Entailment in general—indeed, in most natural instances as well—does nothing more

than preorder the carrier set. In the proof of Theorem 1.46 however we saw that com-

parability of tokens (stated in Proposition 1.35) proves of crucial importance. Is it

possible to extend the definability result using the same techniques in order to cover

algebras with constructors of arbitrary arity?

The answer is no. In this section we explore principles of comparability for an acis

in general and then clarify the connection to algebraic coherent information systems.

We show that the demand that constructors be at most unary is essential to our proof of

Theorem 1.46.

1.4 Computability over arithmetical functionals 45

Given an arbitrary acis ρ , introduce a principle of comparability (or conditional

dichotomy) for its tokens, its neighborhoods, and its ideals, as follows:

∀
a,b∈T

(a≍ b→ a≻ b∨b≻ a) , (PC-T)

∀
U,V∈Con

(U ≍V →U ≻V ∨V ≻U) , (PC-N)

∀
u,v∈Ide

(u≍ v→ v⊆ u∨u⊆ v) . (PC-I)

We will readily show that all three principles are equivalent.

For an arbitrary neighborhood U , call a maximum of U , denoted by maxU , an

element a∈U that entails all elements of U , that is,∀b∈U a≻ b. If a maximum exists at

all it doesn’t have to be unique, as (T,≻) is in general just a preorder. Assuming PC-T

though, entailment would order any nonempty neighborhood totally, so a maximum

element would exist and be unique. So we have the following.

Proposition 1.47. If principle PC-T holds, then for any nonempty U ∈ Con, maxU

exists and is unique.

Proposition 1.48. Principles PC-T and PC-N are equivalent.

Proof. Assume PC-T and let U,V ∈ Con. It is

U ≍V
def
⇔ ∀

a∈U,b∈V
a≍ b

PC-T
⇒ ∀

a∈U,b∈V
(a≻ b∨b≻ a)

P. 1.47
⇒ maxU ≻maxV ∨maxV ≻maxU

Def.
⇒U ≻V ∨V ≻U ,

which proves PC-N. Conversely, assume PC-N and let a,b ∈ T . It is

a≍ b⇔{a} ≍ {b}
PC-N
⇒ {a} ≻ {b}∨{b} ≻ {a}⇔ a≻ b∨b≻ a ,

which proves PC-T. �

Proposition 1.49. Principles PC-T and PC-I must be equivalent.

Proof by contradiction. Assume PC-T and let u,v ∈ Ide, for which u ≍ v. With no

loss of generality, assume u and v to be distinct, so there is either an a0 ∈ T such that

u ∋ a0 < v or a b0 ∈ T such that u = b0 ∈ v. In the first case we have

u≍ v
def
⇔ ∀

a∈u,b∈v
a≍ b

⇒ ∀
b∈v

a0 ≍ b

PC-T
⇒ ∀

b∈v
(a0 ≻ b∨b≻ a0)

(⋆)
⇒ ∀

b∈v
a0 ≻ b ,

so v ⊆ u. For step (⋆), should there exist some b ∈ v such that b ≻ a0, then, by the

definition of an ideal, we would have a0 ∈ v, against our supposition. In the second

case we similarly have u⊆ v. This proves PC-I.

46 1. Atomic-coherent information systems

Conversely, assume PC-I and let a,b ∈ T . Then

a≍ b⇒ a≍ b
PC-I
⇒ b⊆ a∨a⊆ b⇒ a≻ b∨b≻ a ,

which proves PC-T. �

The sole presence of at most unary constructors in an algebra yields comparability.

In fact, comparability characterizes algebras with at most unary constructors within

our type system.

Theorem 1.50 (Comparability). An acis induced by an algebra has at most unary

constructors if and only if it satisfies PC-T.

Proof. Let α have at most unary constructors; we perform induction on the length of

the tokens. Let Ci and C j be two constructors of α , both nullary. Then

Ci ≍C j ⇒ i = j .

Let Ca and Cb be two tokens. We have

Ca≍Cb
def.
⇔ a≍ b

IH
⇒ a≻ b∨b≻ a

def.
⇔Ca≻Cb∨Cb≻Ca .

This proves PC-T for all tokens of Tα .

Conversely, let C be a constructor of arity r > 1 in α; for a nullary constructor 0,

we have tokens of the form a =C~a0~b∗~c and b =C~a∗~b0~c, for which:

a≍ b∧a 6≻ b∧b 6≻ a ,

so comparability fails. �

Based on this observation we may think of non-superunary algebras as compara-

bility algebras.

1.5 Notes

On binary entailment

The notion of atomic information systems was introduced by Helmut Schwichtenberg

in [47], after a suggestion by Ulrich Berger, as a particularly simple though far-reaching

special case of Scott information systems. As far as we know, apart from this thesis, the

structure has not been particularly studied in its own right, though an interesting excep-

tion is its use by Bucciarelli, Carraro, Ehrhard and Salibra as a model for intuitionistic

linear logic in [8].

Normal forms of neighborhoods

Normal forms for neighborhoods in flat information systems were already treated

in [44]. The maximal form that we describe in section 1.3 (page 32) actually gen-

eralizes the normal form that is described there. We will return to the subject of normal

and canonical forms of neighborhoods more than once in Chapter 2.

1.5 Notes 47

The conditional extension functional

In page 38 we define the conditional extension functional condext, which also features

in [18] as continuous union and denoted by ∪♯. This functional is actually decidable.

Algorithms for this conditional extension are

condext(v, ♯b) = cond
(

implies(v⊲b,b ∈ GN),b,v
)

and

condext(v, ♯Sna) = cond
(

or(a ∈ GN,v
.
− (n

.
− 1) = 0),Sna,v

)

,

where ♯b denotes the code of token b, a is either ∅ or 0, and
.
− is the standard modified

subtraction. Notice that “∈ GN” expresses a totality test in the first case and a zero test

in the second—the latter is due to Simon Huber and Florian Ranzi.

Plotkin’s definability theorem

Our Theorem 1.46 originates in Gordon Plotkin’s original definability theorem for the

language PCF in his seminal paper [35] (the result there is listed as Theorem 5.1).

Helmut Schwichtenberg in [46] recounts Plotkin’s result using flat information systems

for the denotational semantics. Here we adapt the former to the setting of non-flat

information systems, which seems to be more appropriate for a development of a theory

of higher-type computability with approximations.

Our proof departs from the one in [46] in two main points, both due to the non-

flatness of the setting that we adopted: (a) it makes heavy and nontrivial use of compa-

rability of base-type tokens (see Proposition 1.35 and section 1.4)—recall that compa-

rability for non-partial (that is, non-bottom) base-type tokens in flat systems reduces to

identity; (b) it uses an extra “parallel” functional, namely, conditional extension.

Our approach was presented for the first time at the CiE 2008 conference. For a

formalization of the result in the theory TCF+, see [18].

The Coquand counterexample

The structure of acises begins to show fatigue with Theorem 1.50: comparability, a

basic tool for our argument of definability, fails in acises induced by algebras with

constructors of superunary arities.

There is another problem with atomic systems, not so much of a technical but rather

of a conceptual nature. In an algebra α with a binary constructor B : α → α → α and

a nullary 0 : α , together with the partiality pseudo-constructor ∗, it is natural to expect

that the combined information B0∗ and B∗0 should entail the information B00; this can

not be explained atomically in a direct manner, since neither of B0∗ and B∗0 can afford

the information B00 on its own:

{B0∗,B∗0} 6≻ B00 . (⋆)

We refer to this as the Coquand counterexample to atomicity, as it was initially pointed

out by Thierry Coquand in a session of the MAP 2006 summer school, where acises

were presented. We will invoke it again and again—see in particular pages 106 and 113.

The observation, simple as it is, proves fundamentally crucial. It points to the limits

of the applicability of acises, since it shows that the problem (⋆) propagates to the case

of functional information, that is, information on the graph of a function: this informa-

tion comes as a pair of combined information on the argument of the intended function

48 1. Atomic-coherent information systems

and simple information on the respective value of the intended function; consequently,

the problem propagates further to the case of infinitary algebras, since they involve

constructors with nontrivial recursive arguments, as in ∪ : (N→ O)→ O (for the al-

gebra of ordinal numbers see page 2). The counterexample really marks the transition

from the realm of atomicity to the realm of non-atomicity.

In fact, we embark on non-atomic information systems in the next chapter based on

a counter-observation to Coquand’s counterexample: the reason that we would rather

have the pair {B0∗,B∗0} entail B00, is that the information in every position of the

latter is atomically entailed by the former; that is, despite the apparent non-atomicity,

the entailment in (⋆) features implicit atomicity, and this lends itself to elaboration.

Outlook

In view of the previous note, maybe the most reasonable question to ask is how to

approach the definability requirement for types over algebras where superunary con-

structors are present. As already noted, this calls for different and more advanced

techniques. We move in this direction in the context of the more general coherent

information systems in the next chapter.

Chapter 2

Matrices and coherent

information systems

In Chapter 1 we already alluded to the inadequacy of acises. In order to embrace more

complicated—but nonetheless indispensable—kinds of algebras, namely, algebras with

superunary constructors and infinitary algebras, we need to move to a non-atomic set-

ting. But how?

A way to do it would be top-down: to consider Scott information systems and

impose the property of coherence upon them, as we do in Chapter 3. This is a simple

way—it is actually the way that has governed the relevant research for the most part up

to now—but it is also a rather naive way: in doing so we miss the close and intricate

relation between algebraic atomicity and algebraic nonatomicity. This relation can

be best revealed in a bottom-up fashion, that is, starting from acises and arriving at

coherent information systems.

Non-atomic coherent information systems

To justify better the bottom-up course of this chapter, let us first see what a direct

definition of an algebraic coherent system looks like, and what it might be hiding.

The standard definition of a coherent Scott information system (T,Con,⊢), for T a

countable set, Con a collection of finite subsets of T , and ⊢ a relation of the sort

Con× T , demands that the following axioms be fulfilled (in section 3.1 we go into

more detail concerning information systems in general, but for now the definitions

suffice).

1. consistency is reflexive, that is, {a} ∈ Con, for all a ∈ T ,

2. consistency is closed under subsets, that is, if U ∈Con and V ⊆U then V ∈Con,

3. consistency is coherent, that is, if {a,a′} ∈ Con, for all a,a′ ∈U , then U ∈ Con,

4. entailment is reflexive, that is, if a ∈U then U ⊢ a,

5. entailment is transitive, that is, if U ⊢V and V ⊢ c then U ⊢ c, and

6. consistency propagates through entailment, that is, if U ∈ Con and U ⊢ b then

U ∪{b} ∈ Con,

50 2. Matrices and coherent information systems

where U ⊢V is as usual a shorthand for ∀b∈V U ⊢ b.

To each algebra α given by constructors (see page 1), we assign a nullary partiality

pseudo-constructor ∗α ; we may also say proper constructor when we want to stress

that we don’t mean ∗α . Let α be such an algebra (for simplicity, we assume it is

non-parametric). For any constructor C of arity (~ρ1 → α, . . . ,~ρr → α) we define the

following:

• if a1 ∈ T~ρ1→α , . . . , ar ∈ T~ρr→α , then

Ca1 · · ·ar ∈ Tα ;

moreover, ∗α ∈ Tα ;

• if {a11, . . . ,a1l} ∈ Con~ρ1→α , . . . , {ar1, . . . ,arl} ∈ Con~ρr→α , then

{Ca11 · · ·ar1, . . . ,Ca1l · · ·arl} ∈ Conα ;

moreover, if U ∈ Conα then U ∪{∗α} ∈ Con;

• if {a11, . . . ,a1l} ⊢~ρ1→α a1, . . . , {ar1, . . . ,arl} ⊢~ρr→α ar, with {a11, . . . ,a1l} ∈
Con~ρ1→α , . . . , {ar1, . . . ,arl} ∈ Con~ρr→α , then

{Ca11 · · ·ar1, . . . ,Ca1l · · ·arl} ⊢α Ca1 · · ·ar ;

moreover, if U ∈ Conα , then U ⊢α ∗α .

One can directly show that these definitions qualify for (Tα ,Conα ,⊢α) to form a co-

herent information system; this will be the coherent information system induced by α .

Note that if α had no proper nullary constructors it would be empty, hence the induced

information system would consist solely of partial tokens—here we do not allow this

situation.

As for the function space ρ → σ of two given information systems ρ and σ , which

models the corresponding higher type, one defines the following1:

• if U ∈ Conρ and b ∈ Tσ then

〈U,b〉 ∈ Tρ→σ ;

• let U1, . . . ,Ul ∈Conρ , b1, . . . ,bl ∈ Tσ , and J≔ {1, . . . , l}; if for all I⊆ J, ∪i∈IUi ∈
Conρ implies ∪i∈I{bi} ∈ Conσ , then

{〈U j,b j〉 | j ∈ J} ∈ Conρ→σ ;

• let U1, . . . ,Ul ,U ∈ Conρ , b1, . . . ,bl ,b ∈ Tσ , and J ≔ {1, . . . , l}; if for some I ⊆ J,

it is both U ⊢ρ Ui for all i ∈ I and {bi | i ∈ I} ⊢σ b, then

{〈U j,b j〉 | j ∈ J} ⊢ρ→σ 〈U,b〉 .

The definition of entailment here can be formulated in terms of a (list) application

between formal neighborhoods: {〈U1,b1〉, . . . ,〈Ul ,bl〉}U ≔ {bi |U ⊢ρ Ui, i ∈ J}; so

• if {〈U1,b1〉, . . . ,〈Ul ,bl〉}U ⊢σ b, then {〈U1,b1〉, . . . ,〈Ul ,bl〉} ⊢ρ→σ 〈U,b〉.

Again, one can directly show that the triple (Tρ→σ ,Conρ→σ ,⊢ρ→σ) is a coherent

information system every time ρ and σ are coherent information systems (it actually

suffices for σ to be coherent, see [49, § 6.1.6]).

1Due to legibility, in this chapter we choose to write 〈U,b〉 instead of (U,b) for tokens in the function

space.

51

Some examples of coherent information systems

Conjunction-implication information system. Call a set of propositional formulas

{F1, . . . ,Fl} consistent if ⊢ Fj, j = 1, . . . , l, and say that {F1, . . . ,Fl} entails F if ⊢ F1∧
·· ·∧Fl → F . It is easy to see that these definitions build a coherent information system

with tokens all valid propositional formulas, which we will call here the conjunction-

implication information system for propositional calculus.

Binary trees. Let D be the algebra given by a nullary constructor 0 : D and a binary

B :D→D→D. In the coherent information system induced by D as explained above,

one has (we write “∗” for “∗D”)

∗,0,B∗0,B0∗,B(B(∗∗))(B0(B00)) ∈ TD ,

{B0∗,B∗0},{∗,B(B0∗)∗,B∗(B0∗)} ∈ ConD ,

{B(B0∗)∗,B(B∗0)0} ⊢D ∗,B∗∗,B(B00)0 .

Ordinal numbers. Having defined the algebra of natural numbers N, the algebra O of

ordinal numbers is given by the constructors 0 : O, S : O→ O, and ∪ : (N→ O)→ O.

In its coherent information system one has

∗O,0,SS0,SSS∗O,S∪〈{S∗N},S∗O〉 ∈ TO ,

{∪〈{S∗},∪〈{SS0,∗},SS0〉〉,∪〈{S0},∪〈{∗},SSS∗〉〉,∪〈{0},SS0〉} ∈ ConO ,

{∪〈{SS∗},∪〈{S0},S0〉〉,∪〈{S∗},∪〈{SS∗},SS0〉〉} ⊢O ∪〈{S0},∪〈{SS0},SS∗〉〉 .

Implicit atomicity

The claim of this chapter is that for any algebra that we may consider, entailment in its

induced information system will implicitly feature atomicity—which is already explicit

in the case of non-superunary algebras.

To see that, consider firstly a finitary algebra α with an r-ary constructor C. By the

above definition, for nullary tokens (that is, either 0’s or ∗α ’s) ai j,ai ∈ Tα , i = 1, . . . ,r,

j = 1, . . . , l, we have

{Ca11 · · ·ar1, . . . ,Ca1l , · · ·arl} ⊢α Ca1 · · ·ar

⇔
r

∀
i=1
{ai1, . . . ,ail} ⊢α ai

⇔
r

∀
i=1

l

∃
j=1
{ai j} ⊢α ai

⇔
r

∀
i=1
{ai1, . . . ,ail} ≻α ai ,

where ≻α is the atomic entailment as we defined it in the previous chapter. We can

phrase this situation as follows: nonatomic entailment translates to point-wise atomic

entailment.

It seems fair to anticipate that this implicit atomicity carries over to more complex

tokens so that it will permeate the whole entailment relation of α; in other words, that

⊢α may be completely explained in terms of ≻α . But even supposing that this turns

out to be true, what about the function spaces of algebras, or, to take it a step further,

what about infinitary algebras?

To this, consider a simple-looking but nasty enough infinitary pseudo-algebra ω
with a nullary constructor 0 : ω and a unary constructor with a functional argument

52 2. Matrices and coherent information systems

Ω : (ω → ω)→ ω . The following example, for a1,a2,a,b1,b2,b ∈ Tω suffices to get a

feeling of how entailment behaves here:

{Ω〈{a1},b1〉,Ω〈{a2},b2〉} ⊢ω Ω〈{a},b〉

⇔ {〈{a1},b1〉,〈{a2},b2〉} ⊢ω→ω 〈{a},b〉

⇔ {〈{a1},b1〉,〈{a2},b2〉}{a} ⊢ω b .

The last formula depends on lower-order entailment again, and it looks plausible that

the procedure eventually stops, and one has to compare sets of nullary tokens on the left

side and a nullary token on the right side (in fact, the presence of proper nullary con-

structors ensures the termination); so again, entailment translates to point-wise atomic

entailment.

In the following we carry out this idea in a rigorous way.

Remark. Structures like the above ω , where constructors may have “negative” recur-

sive argument types, can not be tolerated in a formal higher-type computability theory,

as they can’t afford a natural semantic meaning; they are not algebras as we want them.

Nevertheless, the matrix theory to be developed in the following, deals with such for-

mal structures as well. �

Preview

In section 2.1 we introduce the notion of a matrix consisting of tokens from a given acis,

which generalizes the notion of a formal neighborhood, and develop an elementary

formal matrix theory on arbitrary acises. In section 2.2 we consider algebraic matrices,

that is, matrices over basic algebraic acises. We define the application of a constructor

to a matrix, which basically makes sense of the intuitive equation

{Ca11 · · ·ar1, . . . ,Ca1l · · ·arl} “ = ” C

a11 · · · a1l

...
. . .

...
ar1 · · · arl

 ,

and use it to show that the non-atomic entailment is characterized by the entailment

between matrices, which is essentially atomic. Then we capture the homogeneous

normal form of a neighborhood and prove that it has a unique matrix representation

(Theorem 2.17). The homogeneous form leads to eigentokens in finitary algebras, the

simplest possible normal forms for neighborhoods that one could expect. Finally we

generalize the matrix representation theorem for the infinitary case.

In the rest of the chapter we deal with higher types. In section 2.3 we define non-

atomic function spaces. We investigate maximal neighborhoods of lists and establish

necessary and sufficient conditions for a sublist of a given list to be a maximal neigh-

borhood. Then we introduce the important notion of the set of eigen-neighborhoods of

a neighborhood, and, among several applications, we show that an eigen-neighborhood

behaves as a generalized token in an atomic setting: non-atomic entailment is charac-

terized by a binary preorder on the level of eigen-neighborhoods, thus establishing that

there is an implicit atomicity at higher types as well. Finally, in section 2.4 we give a

proof of the density theorem (Theorem 2.37) that improves previous known arguments

for our setting, and additionally give a couple of applications that aim to shed some

light on the structure of higher types and the role of eigen-neighborhoods.

2.1 A formal matrix theory 53

2.1 A formal matrix theory

Let ρ = (Tρ ,≍ρ ,≻ρ) be an arbitrary acis (for the definition of an acis see page 7). An

r× l matrix over ρ is any two-dimensional array

a11 · · · a1l

...
. . .

...
ar1 · · · arl

 ,

where all ai j’s are in Tρ . Call such a matrix coherently consistent if

r

∀
i=1

l

∀
j, j′=1

ai j ≍ρ ai j′ ,

and write Matρ for the class of all coherently consistent matrices over ρ . When the need

appears, write Matρ(r, l), and Matρ(r) for r× l matrices, and matrices with r rows (and

arbitrarily many columns) respectively. We also allow ourselves to say lists or vectors,

write Lstρ(l) or Vecρ(r), and mean row matrices with l entries or column matrices

with r entries respectively. Denote the (i, j)-th element of a matrix A by A(i, j), and the

i-th row by Ai. Finally, write Arrρ instead of Matρ , for the class of arbitrary, that is, not

necessarily coherently consistent matrices over ρ .

It should now be obvious how matrices generalize formal neighborhoods (the lat-

ter regarded as lists2): a coherently consistent (r, l)-matrix is nothing but a vertical

appending of r formal neighborhoods of length l. The motivation, as we pictured be-

fore, is that this is a correct entity to use as an argument to an r-ary constructor (see

section 2.2).

Let A,B ∈Matρ(r). Call them (mutually) consistent and write A≍ρ B when

r

∀
i=1

l

∀
j=1

l′

∀
j′=1

A(i, j)≍ρ B(i, j′) .

Say that A entails B and write A≻ρ B when

r

∀
i=1

l′

∀
j′=1

l

∃
j=1

A(i, j)≻ρ B(i, j′) .

Proposition 2.1. Given an acis ρ , the triple M(ρ) = (Matρ ,≍ρ ,≻ρ) itself forms an

acis, the matrix acis of ρ .

Proof. We show that M(ρ) satisfies the properties for an acis. For reflexivity of con-

sistency: For any A ∈Matρ(r, l) it is by definition

r

∀
i=1

l

∀
j=1

l

∀
j′=1

A(i, j)≍ρ A(i, j′)⇔ A≍ρ A .

For symmetry of consistency: Let A,B ∈Matρ(r); it is

A≍ B⇔
r

∀
i=1

l

∀
j=1

l′

∀
j′=1

A(i, j)≍ρ B(i, j′)⇔
r

∀
i=1

l′

∀
j′=1

l

∀
j=1

B(i, j′)≍ρ A(i, j)⇔ B≍ρ A .

2It should be noted that in this chapter we move to an ordered environment, that is, we view formal

neighborhoods as lists, rather than sets, and at times we allow ourselves to be sloppy about that: unless

otherwise mentioned, a formal neighborhood will be identified with any list consisting of the same tokens.

54 2. Matrices and coherent information systems

For reflexivity of entailment: Let A ∈Matρ(r, l); then

r

∀
i=1

l

∀
j=1

A(i, j)≻ρ A(i, j)
j′ ≔ j

⇒
r

∀
i=1

l

∀
j=1

l

∃
j′=1

A(i, j′)≻ A(i, j)⇔ A≻ρ A .

For transitivity of entailment: Let A,B,C ∈Matρ(r); it is

A≻ρ B∧B≻ρ C

⇔
r

∀
i=1

(
l′

∀
j′=1

l

∃
j=1

A(i, j)≻ρ B(i, j′)∧
l′′

∀
j′′=1

l′

∃
j′=1

B(i, j′)≻ρ C(i, j′′)

)

trns
⇒

r

∀
i=1

l′′

∀
j′′=1

l

∃
j=1

A(i, j)≻ρ C(i, j′′)

⇔ A≻ρ C .

For propagation of consistency through entailment: Let A,B,C ∈Matρ(r); it is

A≍ρ B∧B≻ρ C

⇔
r

∀
i=1

(
l

∀
j=1

l′

∀
j′=1

A(i, j)≍ρ B(i, j′)∧
l′′

∀
j′′=1

l′

∃
j′=1

B(i, j′)≻ρ C(i, j′′)

)

prpg

⇒
r

∀
i=1

l

∀
j=1

l′′

∀
j′′=1

A(i, j)≍ρ C(i, j′′)

⇔ A≍ρ C ,

as we wanted. �

We now discuss some basic operations on matrices. Let A ∈ Matρ(r, l) and B ∈
Matρ(r

′, l′). The transpose of A is defined as usual by

At(i, j)≔ A(j, i) ,

but notice that it is not necessary that the transpose of a coherently consistent matrix

is itself coherently consistent. In case r = r′, define the horizontal append or sum

A+B ∈ Arrρ(r, l + l′) by

(A+B)(m,n)≔

{

A(m,n) , n≤ l ,

B(m,n− l) , n > l ,

and in case l = l′, define the vertical append or product A ·B ∈ Arrρ(r+ r′, l) by

(A ·B)(m,n)≔

{

A(m,n) , m≤ r ,

B(m− r,n) , m > r .

In addition, we consider empty 0× l- and r×0-matrices, which we collectively denote

by ∅ρ , and depend on the context to determine their exact dimensions. It is ∅ρ ∈Matρ ,

for every such matrix. Empty matrices will be particularly helpful when discussing

infinitary algebras and non-atomic function spaces (pages 85 and 87 respectively).

Proposition 2.2. Let A,B,C,D ∈ Arrρ . The following hold whenever well-defined.

2.1 A formal matrix theory 55

1. If A,B ∈ Matρ then A ·B ∈ Matρ , and if furthermore A ≍ρ B it is also A+B ∈
Matρ .

2. Both append operations are monotone, that is,

A≻ρ A′∧B≻ B′→ A◦A′ ≻ρ B◦B′ ,

where ◦ is either + or ·.

3. It is A≍ρ ∅ and A≻ρ ∅, for every A ∈Matρ .

4. The following equations hold:

(A+B)+C = A+(B+C) ,

A+∅= A = ∅+A ,

(A ·B) ·C = A · (B ·C) ,

A ·∅= A = ∅ ·A ,

(A+B) · (C+D) = (A ·C)+(B ·D) ,

A ·B =
(

At +Bt
)t

.

With the convention of writing a for a one-element matrix [a], Proposition 2.2

yields two alternative notations for an arbitrary matrix A ∈ Arrρ(r, l), an additive-

multiplicative and a multiplicative-additive (or sigma-pi and pi-sigma respectively):

A =
l

∑
j=1

r

∏
i=1

A(i, j) =
r

∏
i=1

l

∑
j=1

A(i, j) ,

both of which will later prove useful.

Mixed matrices

In anticipation of both infinitary algebras (where functional recursive arguments ap-

pear) and parametric algebras, we also introduce a kind of generalized matrices, where

each row might draw from a different acis. By a mixed matrix A of dimensions

(ρ1, . . . ,ρr)× l we will mean a two-dimensional array

a11 · · · a1l

...
. . .

...
ar1 · · · arl

,

where, for each i = 1, . . . ,r, all ai j’s are in Tρi
; we write A ∈ Arr(ρ1, . . . ,ρr, l).

All notions pertaining to simple matrices, like coherent consistency, mutual consis-

tency, and entailment, as well as the structural operations and all relevant facts, carry

over to mixed matrices without any problems—to convince oneself, one should notice

how all definitions work row-wise, as the following observation ensures.

Proposition 2.3. Let ρ1, . . . ,ρr be acises. It is

Arr(ρ1, . . . ,ρr, l)≃ Arrρ1
(1, l)×·· ·×Arrρr(1, l) ,

for all l > 0.

56 2. Matrices and coherent information systems

Proof. A matrix A ∈ Arr(ρ1, . . . ,ρr, l) can be mapped to the r-tuple (A1, . . . ,Ar) of

its rows; conversely, given an r-tuple (A1, . . . ,Ar), with Ai ∈ Arrρi
(1, l) for every i =

1, . . . ,r, we have ∏
r
i=1 Ai ∈Arr(ρ1, . . . ,ρr, l). The mappings are clearly an isomorphism

pair. �

Atomic function spaces I

We already have enough to go on with the main course, which is, matrices over alge-

bras, or algebraic matrices (section 2.2). Still, we linger on the formal level for the

remainder of this section, and examine the case of atomic function spaces. This, apart

from making the formal exposition more complete, will also help obtain a better un-

derstanding of the behavior of matrices, and also, allow to take a glimpse at interesting

structures that arise on the way (see nbr-acises, page 100), and try out ideas that will

play a crucial role in the case of the algebraic matrices, and their non-atomic function

spaces (see test matrices, page 58).

We will readily see that the generalization of the above to atomic function spaces is

not so direct; here logic plays a dominant role, which takes some effort to be translated

into matrix terms. Let us begin in the obvious and natural way. An r× l matrix over

ρ → σ is any two-dimensional array

〈U11,a11〉 · · · 〈U1l ,a1l〉
...

. . .
...

〈Ur1,ar1〉 · · · 〈Url ,arl〉

 ,

where all Ui j’s are in Conρ and ai j’s are in Tσ . We denote the class of all such arrays

by Arrρ→σ . Obstacles appear already when one considers the subclass of coherently

consistent matrices over ρ → σ , and further the notions of mutual consistency and

entailment. For the latter two we have the following. Let

A≔

〈U11,a11〉 · · · 〈U1l ,a1l〉
...

. . .
...

〈Ur1,ar1〉 · · · 〈Url ,arl〉

 and B≔

〈V11,b11〉 · · · 〈V1l′ ,b1l′〉
...

. . .
...

〈Vr1,br1〉 · · · 〈Vrl′ ,brl′〉

 .

The matrices A,B ∈Matρ(r) should be (mutually) consistent when

A≍ρ→σ B⇔
r

∀
i=1

l

∀
j=1

l′

∀
j′=1

A(i, j)≍ρ→σ B(i, j′)

⇔
r

∀
i=1

l

∀
j=1

l′

∀
j′=1
〈Ui j,ai j〉 ≍ρ→σ 〈Vi j′ ,bi j′〉

⇔
r

∀
i=1

l

∀
j=1

l′

∀
j′=1

(

Ui j ≍ρ Vi j′ → ai j ≍σ bi j′
)

—note that coherent consistency of a matrix is a special case of mutual consistency of

2.1 A formal matrix theory 57

two matrices: it is A ∈Mat if and only if A≍ A. Further, A should entail B when

A≻ρ→σ B⇔
r

∀
i=1

l′

∀
j′=1

l

∃
j=1

A(i, j)≻ρ→σ B(i, j′)

⇔
r

∀
i=1

l′

∀
j′=1

l

∃
j=1
〈Ui j,ai j〉 ≻ρ→σ 〈Vi j′ ,bi j′〉

⇔
r

∀
i=1

l′

∀
j′=1

l

∃
j=1

(

Vi j′ ≻ρ Ui j ∧ai j ≻σ bi j′
)

.

Clearly, it is not trivial to formulate the above formulas in matrix terms. In order to

do that we will use some extra tools, in particular, appropriate versions of “adjacency

matrices” for consistency and entailment.

Test matrices

Let I = {1, . . . ,r}, J = {1, . . . , l}, J′ = {1, . . . , l′}, and I′ = {1, . . . ,rl}. Consider the

blocking map b : I× J× J′ → I′× J′, and the unblocking maps u0 : I′× J′ → I, u1 :

I′× J′→ J, and u0 : I′× J′→ J′, that are defined by

b(i, j, j′)≔
(

(i−1)l + j, j′
)

,

u0(i
′, j′)≔ (i′−1)r l +1 ,

u1(i
′, j′)≔ ((i′−1) mod l)+1 ,

u2(i
′, j′)≔ j′ ,

where mrn and m mod n are the integer quotient and the remainder of the division of

m by n, and i ∈ I, j ∈ J, j′ ∈ J′, i′ ∈ I′.

Proposition 2.4. The mappings b : I× J× J′→ I′× J′ and u≔ (u0,u1,u2) : I′× J′→
I× J× J′ form a bijection pair, called block coding (of indices).

Proof. One has to show that

∀
i∈I, j∈J, j′∈J′

u(b(i, j, j′)) =
(

i, j, j′
)

,

∀
i′∈I′, j′∈J′

b(u(i′, j′)) =
(

i′, j′
)

.

For the first property, let i ∈ I, j ∈ J, and j′ ∈ J′. It is

u(b(i, j, j′)) = u
(

(i−1)l + j, j′
)

=
(

u0

(

(i−1)l + j, j′
)

,u1

(

(i−1)l + j, j′
)

,u2

(

(i−1)l + j, j′
))

,

with

u0

(

(i−1)l + j, j′
)

= ((i−1)l + j−1)r l +1 = i ,

u1

(

(i−1)l + j, j′
)

= ((i−1)l + j−1) mod l +1 = j ,

u2

(

(i−1)l + j, j′
)

= j′ ,

so u(b(i, j, j′)) = (i, j, j′).

58 2. Matrices and coherent information systems

For the converse property, let i′ ∈ I′ and j′ ∈ J′. Then

b(u(i′, j′)) = b
(

u0(i
′, j′),u1(i

′, j′),u2(i
′, j′)

)

=
(

(u0(i
′, j′)−1)l +u1(i

′, j′),u2(i
′, j′)

)

=
(

((i′−1)r l)l +(i′−1) mod l +1, j′
)

= (i′, j′) ,

where for the last step we used the identity

(mrn)n+m mod n = m ,

for m,n ∈ N. �

If A ∈ Arrρ(r, l) and B ∈ Arrρ(r, l
′) are two arbitrary matrices, we can use this block

coding to form a block matrix with r blocks; each block will have l rows and l′ columns,

so that it may serve as a “comparison table” between (positions of) elements of A and

B in their respective row; we understand b(i, j, j′) as “the position (j, j′) in the i-th

block”.

In particular we need such comparison tables to test consistency and entailment

between elements of the two matrices in the same row. For an arbitrary acis ρ define

the mappings
?
≍ρ ,

?
≻ρ : Arrρ(r, l)×Arrρ(r, l

′)→ ArrB(rl, l′) by

A
?
≍ρ B(i′, j′)≔

{

tt , A(u01(i
′, j′))≍ρ B(u02(i

′, j′)) ,

∗B , otherwise ,

A
?
≻ρ B(i′, j′)≔

{

tt , A(u01(i
′, j′))≻ρ B(u02(i

′, j′)) ,

∗B , otherwise ,

where u01 ≔ (u0,u1) and u02 ≔ (u0,u2). We call A
?
≍ρ B and A

?
≻ρ B the consistency

and entailment test matrix respectively of A and B.

Proposition 2.5. Let A ∈ Arrρ(r, l), B ∈ Arrρ(r, l
′), C ∈ Arrρ(r, l

′′), and let i = 1, . . . ,r,

j = 1, . . . , l, j′ = 1, . . . , l′, j′′ = 1, . . . , l′′.

1. It is A≍ρ B if and only if their consistency test matrix is the true matrix, that is,

∀
i
∀
j
∀
j′

A
?
≍ρ B(b(i, j, j′)) = tt .

2. It is A
?
≍ρ A(b(i, j, j)) = tt, for all i, j.

3. It is A
?
≍ρ B(b(i, j, j′)) = B

?
≍ρ A(b(i, j′, j)), for all i, j, j′.

4. It is A ≻ρ B if and only if their entailment test matrix consists of blocks with

non-blank columns, that is,

∀
i
∀
j′
∃
j

A
?
≻ρ B(b(i, j, j′)) = tt .

5. It is A
?
≻ρ A(b(i, j, j)) = tt, for all i, j.

2.1 A formal matrix theory 59

6. If A
?
≻ρ B(b(i, j, j′))= tt and B

?
≻ρ C(b(i, j′, j′′))= tt, then A

?
≻ρ C(b(i, j, j′′))= tt,

for all i, j, j′, j′′.

7. If A
?
≍ρ B(b(i, j, j′))= tt and B

?
≻ρ C(b(i, j′, j′′))= tt, then A

?
≍ρ C(b(i, j, j′′))= tt,

for all i, j, j′, j′′.

Proof. For 1:

A≍ρ B⇔ ∀
i
∀
j
∀
j′

A(i, j)≍ρ B(i, j′)⇔ ∀
i
∀
j
∀
j′

A
?
≍ρ B(b(i, j, j′)) = tt .

Statement 2 is easy to see. For 3:

A
?
≍ρ B(b(i, j, j′)) = tt⇔ A(i, j)≍ρ B(i, j′)

⇔ B(i, j′)≍ρ A(i, j)

⇔ B
?
≍ρ A

(

(i−1)l + j′, j
)

= tt

⇔ A
?
≍ρ B(b(i, j, j′)) = tt .

For 4:

A≻ρ B⇔ ∀
i
∀
j′
∃
j

A(i, j)≻ρ B(i, j′)⇔ ∀
i
∀
j′
∃
j

A
?
≻ρ B(b(i, j, j′)) = tt .

Statement 5 is again easy to see, while for 6 we have

A
?
≻ρ B(b(i, j, j′)) = tt∧B

?
≻ρ C(b(i, j′, j′′)) = tt

⇔ A(i, j)≻ρ B(i, j′)∧B(i, j′)≻ρ C(i, j′′)

⇔ A(i, j)≻ρ C(i, j′′)

⇔ A
?
≻ρ C(b(i, j, j′′)) = tt .

Finally, for the propagation statement 7 we have

A
?
≍ρ B(b(i, j, j′)) = tt∧B

?
≻ρ C(b(i, j′, j′′)) = tt

⇔ A(i, j)≍ρ B(i, j′)∧B(i, j′)≻ρ C(i, j′′)

⇔ A(i, j)≍ρ C(i, j′′)

⇔ A
?
≍ρ C(b(i, j, j′′)) = tt . �

Overlapping and inclusion

We introduce two relations between matrices of the same dimension. Let A,B ∈
Arrρ(r, l). Define

A ≬ B≔
r

∀
i=1

l

∃
j=1

(

A(i, j) = B(i, j) , ∗ρ

)

,

A⊂ B≔
r

∀
i=1

l

∀
j=1

(

A(i, j) = ∗ρ ∨A(i, j) = B(i, j)
)

.

In the first case A and B overlap; in the second case A is included in B.

60 2. Matrices and coherent information systems

Proposition 2.6 (nbr-acis). The following hold.

1. Matrix overlapping is reflexive on matrices with non-blank rows, and symmetric.

2. Matrix inclusion is reflexive and transitive.

3. If B is a matrix with non-blank rows, then

A ≬ B∧B⊂C→ A ≬C .

That is, overlapping (with a non-blank-row-matrix) propagates through inclu-

sion.

Proof. For reflexivity of overlapping, if A is a non-blank row matrix, that is, if

∀i∃ j A(i, j) , ∗ρ , then the statement follows immediately. For the symmetry of over-

lapping:

A ≬ B⇔ ∀
i
∃
j

A(i, j) = B(i, j) , ∗ρ ⇔ ∀
i
∃
j

B(i, j) = A(i, j) , ∗ρ ⇔ B ≬ A .

Reflexivity of inclusion again is immediate, since for any A and all its i’s, j’s, it is

A(i, j) = ∗ρ or A(i, j) = A(i, j), so A⊂ A. We show transitivity of inclusion: let A⊂ B

and B⊂C, that is,

∀
i
∀
j

((

A(i, j) = ∗ρ ∨A(i, j) = B(i, j)
)

∧
(

B(i, j) = ∗ρ ∨B(i, j) =C(i, j)
))

;

in case A(i, j) = ∗ρ , then A(i, j) = ∗ρ ∨A(i, j) = C(i, j) holds; on the other hand, in

the case that A(i, j) , ∗ρ and A(i, j) = B(i, j) and B(i, j) = ∗ρ ∨B(i, j) = C(i, j), then

A(i, j) = B(i, j) =C(i, j) , ∗ρ holds; in both cases we get A⊂C.

Finally, for the propagation of overlapping through inclusion, let B be a non-blank

row matrix; then

A ≬ B∧B⊂C

⇔ ∀
i
∃
j

A(i, j) = B(i, j) , ∗ρ

∧∀
i
∀
j

(

B(i, j) = ∗ρ ∨B(i, j) =C(i, j)
)

⇒ ∀
i
∃
j

(

A(i, j) = B(i, j) , ∗ρ ∧
(

B(i, j) = ∗ρ ∨B(i, j) =C(i, j)
))

⇒ ∀
i
∃
j

A(i, j) = B(i, j) =C(i, j) , ∗ρ

⇔ A ≬C ,

as we wanted. �

Atomic function spaces II

We will make use of a generalization of the transpose operation on block matrices,

where all blocks have the same dimension. Let A ∈ Arr(r, l), with r = Mr0, l = Nl0.

Define its (inner) (M,N)-transpose by

At(M,N)
≔

N

∑
n=1

M

∏
m=1

(A(m,n))t ,

2.1 A formal matrix theory 61

where A(m,n) is the (m,n)-th block of A:

A(m,n)(i, j)≔ A((m−1)r0 + i,(n−1)l0 + j) ,

for m = 1, . . . ,M, n = 1, . . . ,N, i = 1, . . . ,r0, j = 1, . . . , l0.

Proposition 2.7. Let A ∈ Arr(r, l). The following hold:

1. At = At(1,1) = At(r,l).

2. If r = Mr0 and l = Nl0, then (At(M,N))t(M,N) = A.

Proof. The properties are direct to show. For the first one we have

At(1,1) =
1

∑
n=1

1

∏
m=1

(A(m,n))t = (A(1,1))t = At ,

as well as

At(r,l) =
l

∑
n=1

r

∏
m=1

(A(m,n))t =
l

∑
n=1

r

∏
m=1

(
1

∑
j=1

1

∏
i=1

A((m−1)+ i,(n−1)+ j)

)t

=
l

∑
n=1

r

∏
m=1

At(m,n) =
l

∑
n=1

r

∏
m=1

A(n,m) = At .

For the second statement, let r = Mr0 and l = Nl0. Then:

(At(M,N))t(M,N) =

(
N

∑
n=1

M

∏
m=1

A(m,n)

)t(M,N)

t(M,N)

=

(
N

∑
n=1

M

∏
m=1

(A(m,n))t

)t(M,N)

=
N

∑
n=1

M

∏
m=1

(

(A(m,n))t
)t

=
N

∑
n=1

M

∏
m=1

A(m,n) = A .

We’re done. �

Let us now return to the situation where we had to figure out consistency and en-

tailment between functional matrices. Let ρ and σ be acises. In section 1.1 we defined

what ρ → σ is. Here we will define M(ρ → σ).
For a functional matrix A ∈Matρ→σ (r, l) with

A =

〈U11,a11〉 · · · 〈U1l ,a1l〉
...

. . .
...

〈Ur1,ar1〉 · · · 〈Url ,arl〉

,

define its argument part argA ∈ ArrNρ(r, l) and value part valA ∈ Arrσ (r, l) by

argA≔

U11 · · · U1l

...
. . .

...
Ur1 · · · Url

and valA≔

a11 · · · a1l

...
. . .

...
ar1 · · · arl

respectively.

62 2. Matrices and coherent information systems

Theorem 2.8 (Matrix characterization of functional consistency and entailment). Let

A,B ∈Matρ→σ (r). Consistency and entailment between A and B are characterized by

inclusion and overlapping respectively of the test matrices of their parts:

1. A≍ρ→σ B if and only if argA
?
≍Nρ argB⊂ valA

?
≍σ valB.

2. A≻ρ→σ B if and only if argB
?
≻Nρ argA ≬

(

valA
?
≻σ valB

)t(r,1)

.

Proof. For consistency:

argA
?
≍Nρ argB⊂ valA

?
≍σ valB

⇔
rl

∀
i′=1

l′

∀
j′=1

(

argA
?
≍ρ argB(i′, j′) = ∗

∨ argA
?
≍ρ argB(i′, j′) = valA

?
≍ρ valB(i′, j′) = tt

)

⇔
rl

∀
i′=1

l′

∀
j′=1

(

Uu01(i′, j′) 6≍ρ Vu02(i′, j′)∨au01(i′, j′) ≍σ bu02(i′, j′)

)

⇔
rl

∀
i′=1

l′

∀
j′=1

(

Uu01(i′, j′) ≍ρ Vu02(i′, j′)→ au01(i′, j′) ≍σ bu02(i′, j′)

)

⇔
r

∀
i=1

l

∀
j=1

l′

∀
j′=1

(

U(i, j) ≍ρ V(i, j′)→ a(i, j) ≍σ b(i, j′)
)

⇔A≍ρ→σ B .

For entailment:

argB
?
≻Nρ argA ≬

(

valA
?
≻σ valB

)t(r,1)

⇔
rl′

∀
i′=1

l

∃
j=1

(

argB
?
≻ρ argA(i′, j) =

(

valA
?
≻σ valB

)t(r,1)

(i′, j) = tt

)

⇔
rl′

∀
i′=1

l

∃
j=1

(

Vu02(i′, j) ≻ρ Uu01(i′, j)∧au01(i′, j) ≻σ bu02(i′, j)

)

⇔
r

∀
i=1

l′

∀
j′=1

l

∃
j=1

(

V(i, j′) ≻ρ U(i, j)∧a(i, j) ≻σ b(i, j′)
)

⇔A≻ρ→σ B . �

2.2 Algebraic matrices

From now on we abandon the generality of abstract information systems and focus

on matrices over basic algebraic acises (see page 29). We have already used such

matrices, namely overB on page 58. A further example of a coherently consistent 4×3-

matrix over a basic algebraic acis α with constructors 0 : α , S : α →α , B : α →α →α ,

2.2 Algebraic matrices 63

C : α → α → α → α , and Ω : (B→ α)→ α is the following:

C(B00)∗α(S∗α) ∗α C∗α∗α(S0)
SB∗α 0 SB∗α∗α SB(Ω〈[tt],Ω〈[ff],B∗α∗α〉〉)∗α

B∗α∗α B(C(S0)∗α∗α)∗α B∗α(B∗α 0)
Ω〈[∗B],SB∗α 0〉 Ω〈[tt],SB0∗α〉 Ω〈[ff],SB(S0)∗α〉

.

A matrix over a basic algebraic acis is called basic if it consists solely of ∗α ’s or nullary

constructors; it is called blank if it is basic without any nullary constructors (so it

consists solely of ∗’s); write ∗r,l for the blank r× l-matrix.

Remark. Note that a blank matrix expresses “least information”, and is definitely not an

empty matrix. However, we have ∗r,l
α ≻ ∅α and ∅α ≻ ∗

r,l
α for all matching dimensions.

These are redundancies that can prove quite helpful, as for example in the convention

of page 86. �

Non-atomic entailment

As we saw in the beginning of the chapter, the concept of a matrix is motivated by the

way entailment behaves in algebraic coherent information systems. In order to make

this behavior explicit, we introduce the concept of the matrix operators induced by the

constructors of an algebra.

For the most part we will be interested in finitary algebras, unless we clearly state

otherwise. Every constructor C of α with arity r > 0 (so, not a nullary one) induces a

constructor operator Ċ : Matα(r)→Matα(1) by

Ċ

a11 · · · a1l

...
. . .

...
ar1 · · · arl

≔

[
Ca11 · · ·ar1 · · · Ca1l · · ·arl

]
,

or, in sigma-pi notation:

Ċ

(
l

∑
j=1

r

∏
i=1

ai j

)

≔

l

∑
j=1

Ca1 j · · ·ar j .

Proposition 2.9. The respective constructor operator of any constructor is well-

defined.

Proof. That the operation is single-valued is clear. One has to show further that the

result of an application of a constructor operator to a coherently consistent matrix yields

a coherently consistent matrix as well.

Let [ai j]i, j ∈ Matα(r, l) and C an r-ary constructor of α; then ai j ≍α ai j′ for all

j, j′ = 1, . . . , l, so, by definition, Ca1 j · · ·ar j ≍α Ca1 j′ · · ·ar j′ , that is,

l

∑
j=1

Ca1 j · · ·ar j = Ċ

(
l

∑
j=1

r

∏
i=1

ai j

)

= [ai j]i, j

is indeed an element of Matα(1, l). �

Define the blank inclusion of a list U to a list V , and write U ⊆∗ V if a∈U → a∈V

and a ∈ V ∧ a <U → a = ∗; so a list is blankly included in another list if they either

contain exactly the same tokens or else the second contains a surplus of ∗’s. For an

algebra α , we define entailment as follows.

64 2. Matrices and coherent information systems

• It is U ⊢α ∗α , for all U ∈ Conα .

• If 0 is a nullary constructor, then 0+ · · ·+ 0 ⊢ 0; if U1 ⊢α a1, . . . ,Ur ⊢α ar then

Ċ(U1 · · ·Ur) ⊢α Ca1 · · ·ar, for every r-ary constructor C, r > 0.

• If U ⊇∗ U ′ and U ′ ⊢α a then U ⊢α a.

We will write U ⊢ a1 + · · ·+al for ∀l
j=1 U ⊢ a j, as usual, and also

r

∏
i=1

Ui ⊢
r

∏
i=1

Vi ≔

r

∀
i=1

Ui ⊢Vi

for matrices.

We show that we have indeed defined a proper entailment relation.

Theorem 2.10 (Entailment). Entailment is reflexive, transitive, and propagates con-

sistency, that is,

1. a ∈U →U ⊢ a,

2. U ⊢V →V ⊢ a→U ⊢ a,

3. U ⊢ a→U ≍ a.

Proof by induction. For a = ∗ all statements follow directly from the definition, so we

assume that a , ∗.
Reflexivity. In case ∗ <U , we have

a ∈U ⇒Ca1 · · ·ar ∈ Ċ(U1 · · ·Ur)

⇒ a1 ∈U1∧·· ·∧ar ∈Ur

IH
⇒U1 ⊢ a1∧·· ·∧Ur ⊢ ar

⇒ Ċ(U1 · · ·Ur) ⊢Ca1 · · ·ar

⇒U ⊢ a .

In case ∗ ∈U , let U ′ ⊆∗ U be such that ∗ <U ′; since a , ∗, a ∈U yields a ∈U ′; by the

induction hypothesis, U ′ ⊢ a, so U ⊢ a.

Transitivity. In case U and V have no ∗’s, we have

U ⊢V ∧V ⊢ a⇒ Ċ(U1 · · ·Ur) ⊢ Ċ(V1 · · ·Vr)∧Ċ(V1 · · ·Vr) ⊢Ca1 · · ·ar

⇒ (U1 ⊢V1∧V1 ⊢ a1)∧ . . .∧ (Ur ⊢Vr ∧Vr ⊢ ar)
IH
⇒U1 ⊢ a1∧·· ·∧Ur ⊢ ar

⇒ Ċ(U1 · · ·Ur) ⊢Ca1 · · ·ar

⇒U ⊢ a .

In case ∗ ∈U , let U ′ ⊆∗ U and V ′ ⊆∗ V such that ∗ <U ′,V ′; since a , ∗, U ′ and V ′

are nonempty, and U ⊢V ∧V ⊢ a yields U ′ ⊢V ′∧V ′ ⊢ a; by the induction hypothesis,

U ′ ⊢ a, so U ⊢ a.

Propagation. In case ∗ <U , we have

U ⊢ a⇒ Ċ(U1 · · ·Ur) ⊢Ca1 · · ·ar

⇒U1 ⊢ a1∧·· ·∧Ur ⊢ ar

IH
⇒U1 ≍ a1∧·· ·∧Ur ≍ ar

⇒ Ċ(U1 · · ·Ur)≍Ca1 · · ·ar

⇒U ≍ a .

2.2 Algebraic matrices 65

In case ∗ ∈U , let U ′ ⊆∗ U be such that ∗ <U ′; since a , ∗, U ⊢ a yields U ′ ⊢ a; by the

induction hypothesis, U ′ ≍ a, so U ≍ a, since ∗ ≍ a. �

The two entailments have indeed the relationship that we would expect.

Proposition 2.11. The following hold.

1. U ≻ b↔ ∃a∈U [a] ⊢ b,

2. U ≻ b→U ⊢ b.

Proof. Let U = a1 + · · ·+al . For the statement 1: If U ≻ b, that is, a1 + · · ·+al ≻ b,

then by the definition of entailment in Mα it is ∃l
j=1 a j ≻ b; by the definition of atomic

entailment in α it is

l

∃
j=1

(

b = ∗∨ (a j = 0∧b = 0)∨ (a j =Ca1 j · · ·ar j ∧b =Cb1 · · ·br ∧
r

∀
i=1

ai j ≻ bi)

)

;

but this, by the definition of (non-atomic) entailment, is ∃l
j=1[a j] ⊢ b.

For the statement 2: If U ≻ b, that is, a1 + · · ·+al ≻ b, then by 1 it is ∃l
j=1[a j] ⊢ b;

by Proposition 2.10, this implies that ∃l
j=1 ([a j] ⊢ b∧U ⊢ a j), which in turn implies

that U ⊢ b. �

Constructor contexts

As we saw, the application of a single constructor operator to a matrix results in a

consistent list, that is, a neighborhood. Put conversely, a neighborhood is nothing but a

matrix with a coefficient consisting of one constructor3. As matrices are generalizations

of neighborhoods, we may accordingly generalize this application to the case where

the coefficient is a whole vector of constructors (C1, . . . ,Ck), with respective arities

r1, . . . ,rk. This vector induces a constructor operator vector
(

Ċ1, . . . ,Ċk

)

: Matα(r1 +
· · ·+ rk)→Matα(k) in the following way:

(

Ċ1, . . . ,Ċk

)

a11 · · · a1l

...
. . .

...
ar11 · · · ar1l

...
ar1+···+rk−1+1,1 · · · ar1+···+rk−1+1,l

...
. . .

...
ar1+···+rk,1 · · · ar1+···+rk,l

≔

C1a11 · · ·ar11 · · · C1a1l · · ·ar1l

...
. . .

...
Ckar1+···+rk−1+1,1 · · ·ar1+···+rk,1 · · · Ckar1+···+rk−1+1,l · · ·ar1+···+rk,l

—in sigma-pi notation:

(Ċ1, . . . ,Ċk)

(

l

∑
j=1

r1

∏
i=1

ai j · · ·
r1+···+rk

∏
i=r1+···+rk−1+1

ai j

)

=
l

∑
j=1

k

∏
i=1

Ciar1+···+ri−1+1, j · · ·ar1+···+ri, j.

3This is not strictly true when we consider lists where some of their elements are ∗; but we will later

see that this is not an essential problem, as every list can be “homogenized” without altering its information

content (see from page 69 on).

66 2. Matrices and coherent information systems

Finally in practice we will also need blank or identity operators ∗̇α : Matα(1, l)→
Matα(1, l), defined by

∗̇α(U)≔U ,

for every list U ∈Matα(1, l).
Actually, in view of the following factorization properties and the resulting nor-

mal form of matrices, we will have to deal with even more general “coefficients” than

simple operators or vectors of operators. We generalize and formalize the above by

introducing the notion of a constructor context K; these, in contrast to the token terms,

can be visualized as trees that may in general be “leafless”, since nullary constructors

are kept out of the factorization we have in mind, as well as “rootless”, as we allow for

vectors of operators.

We define the terms K mutually with their left arity lar(K) and right arity rar(K),
and we write K ∈ Konα(lar(K), rar(K)), as follows:

• if C is a supernullary constructor of α , then Ċ ∈ Konα(1,ar(C)); moreover, ∗̇α ∈
Konα(1,1);

• if K1 ∈Konα(s1,s
′
1), . . . , Kr ∈Konα(sr,s

′
r), then (K1, . . . ,Kr)∈Konα(r,s

′
1+ · · ·+

s′r);

• if K1 ∈ Konα(s1,s), K2 ∈ Konα(s,s2), then K1K2 ∈ Konα(s1,s2).

Notice that it is lar(K) ≤ rar(K) for every constructor context K. Write

(K1, . . . ,Km,K
′
1, . . . ,K

′
n) for ((K1, . . . ,Km),(K

′
1, . . . ,K

′
n)).

Define the application of a constructor context K with right arity rar(K) = r to a

matrix A ∈Matα(r) inductively, as expected.

• If K = Ċ then K(A)≔ Ċ(A) as above; if K = ∗̇, then ∗̇(A)≔ A.

• If K = (K1, . . . ,Km) and A = A1 · · ·Am, with Ai ∈ Matα(rar(Ki)), then K(A) ≔
K1(A1) · · ·Km(Am).

• If K = K1K2, then K(A) = K1(K2(A)).

Proposition 2.12. Application of constructor contexts preserves matrix consistency

and entailment, that is, for A,B ∈Matα(r) and K ∈ Konα , with rar(K) = r, the follow-

ing hold.

1. A≍ B→ K(A)≍ K(B),

2. A ⊢ B→ K(A) ⊢ K(B).

Proof by induction on K. For (1). Let A ≍ B. If K = (∗̇, . . . , ∗̇) (r times), then there is

nothing to show. If K = Ċ with ar(C) = r, then

Ċ(A) = Ċ(A1 · · ·Ar)
≍α
≍ Ċ(B1 · · ·Br) = Ċ(B) ,

where Ai,Bi ∈Matα(1), for all i = 1, . . . ,r. If K = (K1, . . . ,Ks), s≤ r, then

(K1, . . . ,Ks)(A) = K1(A1) · · ·Ks(As)
IH

≍ K1(B1) · · ·Ks(Bs) = (K1, . . . ,Ks)(B) ,

where Ai,Bi ∈Matα(rar(Ki)), for all i = 1, . . . ,s. If K = K1K2, then

(K1K2)(A) = K1(K2(A))
IH

≍ K1(K2(B)) = (K1K2)(B) .

2.2 Algebraic matrices 67

For (2). Let A ⊢ B. If K = (∗̇, . . . , ∗̇) (r times), then there is nothing to show. If

K = Ċ with ar(C) = r, then

Ċ(A) = Ċ(A1 · · ·Ar)
⊢α

⊢ Ċ(B1 · · ·Br) = Ċ(B) ,

where Ai,Bi ∈Matα(1), for all i = 1, . . . ,r. If K = (K1, . . . ,Ks), s≤ r, then

(K1, . . . ,Ks)(A) = K1(A1) · · ·Ks(As)
IH

⊢ K1(B1) · · ·Ks(Bs) = (K1, . . . ,Ks)(B) ,

where Ai,Bi ∈Matα(rar(Ki)), for all i = 1, . . . ,s. If K = K1K2, then

(K1K2)(A) = K1(K2(A))
IH

⊢ K1(K2(B)) = (K1K2)(B) . �

Remark. Notice that application of a constructor context to a matrix is not compatible

with matrix entailment ≻α as it is with matrix consistency:

A≻α B 6→ K(A)≻α K(B) .

A Coquand counterexample (page 47) helps here again:

[
0 ∗
∗ 0

]

≻

[
0

0

]

∧ Ḃ

[
0 ∗
∗ 0

]

6≻ Ḃ

[
0

0

]

.

This comes as no surprise, since we used application exactly in order to define the more

intricate non-atomic entailment (see page 63).

On the other hand of course, it is

A≻α B
Pr. 2.11 (2)
⇒ A ⊢α B⇒ K(A) ⊢α K(B) . �

The next proposition gathers some simple but quite important properties concerning

the application of a constructor context to a matrix.

Proposition 2.13 (Factorization). Let K, K′, K1, . . . ,Kr be constructor contexts of

α , with rar(K) = r, and A,A′,A1, . . .Ar ∈ Matα . The following hold whenever well-

defined:

1. K(A)+K(A′) = K(A+A′).

2. K(A) ·K′(A′) = (K,K′)(A ·A′).

3. K (K1(A1) · · · · ·Kr(Ar)) = K(K1, . . . ,Kr)(A1 · · · · ·Ar).

4. (. . . ,K, . . .)(. . . ,K1, . . . ,Kr, . . .)(A) = (. . . ,K(K1, . . . ,Kr), . . .)(A).

An easy consequence of this proposition (in particular, of the fourth statement) is

that any constructor context attains a normal form, which can be stated as follows.

• Every Ċ is in normal form; (∗̇, . . . , ∗̇) is also in normal form.

• If K,K1, . . . ,Kr are in normal form, with K and at least one Ki proper (that is, not

∗̇), then K(K1, . . . ,Kr) is in normal form.

• If K1, . . . ,Kr are in normal form, with at least one Ki proper, then (K1, . . . ,Kr) is

in normal form.

68 2. Matrices and coherent information systems

So, (Ḃ, Ṡ)(∗̇, Ḃ, ∗̇) is not in normal form, but (Ḃ(∗̇, Ḃ), Ṡ) is. Note also, that the only

case where we allow for a blank constructor context in a normal form, is when it is the

only constructor context present.

It turns out that constructor contexts of an acis may be organized themselves into

an acis when regarded as tokens. Write Konα for the set of all constructor contexts of

α; define consistency between them by the following inductive clauses (we drop the

subscripts):

• for all K ∈ Kon, it is K ≍̇ K; moreover, it is K ≍̇ ∗̇ and ∗̇ ≍̇ K;

• if K1 ≍̇ K′1, . . . ,Kr ≍̇ K′r, then (K1, . . . ,Kr) ≍̇ (K1, . . . ,Kr);

• if K1 ≍̇ K′1 and K2 ≍̇ K′2, then K1K2 ≍̇ K′1K′2;

• if K1 ≍̇ K′1, then K1K ≍̇ K′1 and K1 ≍̇ K′1K, for all K with appropriate left arity,

that is, lar(K) = rar(K1) = rar(K′1);

define their entailment by the following ones:

• for all K ∈ Kon, it is K ≻̇ K; moreover, it is K ≻̇ ∗̇;

• if K1 ≻̇ K′1, . . . ,Kr ≻̇ K′r, then (K1, . . . ,Kr) ≻̇ (K1, . . . ,Kr);

• if K1 ≻̇ K′1 and K2 ≻̇ K′2, then K1K2 ≻̇ K′1K′2;

• if K1 ≻̇ K′1, then K1K ≻̇ K′1, for all K with appropriate left arity, that is, lar(K) =
rar(K1).

Proposition 2.14. The triple K(α) = (Konα ,≍̇,≻̇) is an acis.

Proof by induction. Reflexivity of consistency. It is ∗̇ ≍̇ ∗̇ and Ċ ≍̇ Ċ for every con-

structor C. If K1 ≍̇ K1, . . . ,Kr ≍̇ Kr then (K1, . . . ,Kr) ≍̇ (K1, . . . ,Kr). If K1 ≍̇ K1 and

K2 ≍̇ K2 then K1K2 ≍̇ K1K2.

Symmetry of consistency. It is ∗̇ ≍̇ K and K ≍̇ ∗ for every K, and if Ċ1 ≍̇ Ċ2 then

C1 =C2, so Ċ2 ≍̇ Ċ1 as well. Let (K1, . . . ,Kr) ≍̇ (K′1, . . . ,K
′
r); then K1 ≍̇K′1, . . . ,Kr ≍̇K′r;

by the induction hypothesis, K′1 ≍̇ K1, . . . ,K
′
r ≍̇ Kr; then (K′1, . . . ,K

′
r) ≍̇ (K1, . . . ,Kr).

Let K1K2 ≍̇ K′1K′2; then K1 ≍̇ K′1 and K2 ≍̇ K′2; by the induction hypothesis, K′1 ≍̇ K1

and K′2 ≍̇ K2, so K′1K′2 ≍̇ K1K2. For the unequal length cases, let K1K ≍̇ K′1; then

K1 ≍̇ K′1; by the induction hypothesis, K′1 ≍̇ K1, so K′1 ≍̇ K1K (similarly for the other

case).

Reflexivity of entailment is shown just like the reflexivity of consistency.

Transitivity of entailment. The cases involving ∗̇’s are easy; if Ċ1 ≻̇ Ċ2 and Ċ2 ≻̇ Ċ3,

then C1 = C2 = C3, so Ċ1 ≻̇ Ċ3. Let (K1, . . . ,Kr) ≻̇ (K′1, . . . ,K
′
r) and (K′1, . . . ,K

′
r) ≻̇

(K′′1 , . . . ,K
′′
r); then K1 ≻̇ K′1 ∧K′1 ≻̇ K′′1 , . . . ,Kr ≻̇ K′r ∧K′r ≻̇ K′′r ; by the induction hy-

pothesis, K1 ≻̇ K′′1 . . . ,Kr ≻̇ K′′r , so (K1, . . . ,Kr) ≻̇ (K′′1 , . . . ,K
′′
r). Let K1K2 ≻̇ K′1K′2 and

K′1K′2 ≻̇ K′′1 K′′2 ; then K1 ≻̇ K′1∧K′1 ≻̇ K′′1 and K2 ≻̇ K′2∧K′2 ≻̇ K′′2 ; by the induction hy-

pothesis, K1 ≻̇ K′′1 and K2 ≻̇ K′′2 , so K1K2 ≻̇ K′′1 K′′2 . The only unequal length case that

makes sense is K1K ≻̇ K′1 and K′1 ≻̇ K′′1 ; then K1 ≻̇ K′1, and by the induction hypothesis

K1 ≻̇ K′′1 , so K1K ≻̇ K′′1 .

Propagation of consistency. Again, the ∗̇ cases are easy; if Ċ1 ≍̇ Ċ2 and Ċ2 ≻̇ Ċ3,

then C1 = C2 = C3, so Ċ1 ≍̇ Ċ3. Let (K1, . . . ,Kr) ≍̇ (K′1, . . . ,K
′
r) and (K′1, . . . ,K

′
r) ≻̇

(K′′1 , . . . ,K
′′
r); then K1 ≍̇ K′1 ∧K′1 ≻̇ K′′1 , . . . ,Kr ≍̇ K′r ∧K′r ≻̇ K′′r ; by the induction hy-

pothesis, K1 ≍̇ K′′1 . . . ,Kr ≍̇ K′′r , so (K1, . . . ,Kr) ≍̇ (K′′1 , . . . ,K
′′
r). Let K1K2 ≍̇ K′1K′2 and

K′1K′2 ≻̇ K′′1 K′′2 ; then K1 ≍̇ K′1 ∧K′1 ≻̇ K′′1 and K2 ≍̇ K′2 ∧K′2 ≻̇ K′′2 ; by the induction

2.2 Algebraic matrices 69

hypothesis, K1 ≍̇ K′′1 and K2 ≍̇ K′′2 , so K1K2 ≍̇ K′′1 K′′2 . The only unequal length case

that makes sense here is K1 ≍̇ K′1K and K′1K ≻̇ K′′1 ; then K1 ≍̇ K′1 and K′1 ≻̇ K′′1 ; by the

induction hypothesis K1 ≍̇ K′′1 . �

Homogeneous form of algebraic neighborhoods

We will employ a notion of “homogenization” of a token a with respect to a token b,

the intuitive meaning being that a may rise up to the “structure” of b without acquiring

more information content than the latter has; as we will eventually understand, the

“structure” of a token is essentially determined by the constructor context serving as

its “coefficient”.

Define the homogenization hb(a) of a with respect to b by the following:

• if b is a nullary token, that is, either ∗ or some nullary constructor, then hb(a)≔ a;

• if b =Cbb1 · · ·brb
and a =Caa1 · · ·ara , rb,ra > 0, with Cb ,Ca, then hb(a)≔ a;

• if b =Cb1 · · ·br, r > 0, and a = ∗, then hb(∗)≔Chb1
(∗) · · ·hbr

(∗);

• if b = Cb1 · · ·br and a = Ca1 · · ·ar, r > 0, then hb(Ca1 · · ·ar) ≔
Chb1

(a1) · · ·hbr
(ar).

The crucial clauses of the definition are the middle two. The second one expresses that

at each step of the procedure we check the head of the tokens in question, and proceed

only if consistency still holds. Call a and b head-consistent if they start with the same

constructor; two consistent tokens that are different than ∗, are always head-consistent,

while the converse doesn’t hold for supernullary constructors:

B∗0 6≍ B(S∗)(S∗) , S(S0) 6≍ S0 .

The third clause is the drastic one: if a happens to be uninformative, we “lift” it to

the “structure” of b in the least informative way and we proceed; notice also that the

“lifting” takes place only when we encounter supernullary constructors.

Proposition 2.15. For the token-mapping h : Tα ×Tα → Tα the following hold.

hb(a)≻ a (2.1)

b≍ a→ b≍ hb(a) , (2.2)

b≻ a→ b≻ hb(a) , (2.3)

b≍ b′→ hb(hb′(a)) = hb′(hb(a)) , (2.4)

b≻ b′→ hb(a) = hb(hb′(a)) , (2.5)

a≍ b→ a′ ≍ b→ a≍ a′→ hb(a)≍ hb(a
′) , (2.6)

a≍ b→ a≍ b′→ b≍ b′→ hb(a)≍ hb′(a) , (2.7)

a≍ b→ a≻ a′→ hb(a)≻ hb(a
′) , (2.8)

a≍ b→ b≻ b′→ hb(a)≻ hb′(a) , (2.9)

a≻ b→ a≻ c→ a≻ hb(c) . (2.10)

Proof. For (2.1). For b and a head-inconsistent or b nullary, there is nothing to show.

Let b =Cb1 · · ·br; for a = ∗ it is again immediate; for a =Ca1 · · ·ar, it is:

hb(a) = hCb1···br
(Ca1 · · ·ar) =Chb1

(a1) · · ·hbr
(ar)

IH

≻Ca1 · · ·ar = a .

70 2. Matrices and coherent information systems

For (2.2). Let b ≍ a. If b is nullary, then it is immediate. Let b = Cb1 · · ·br; for

a = ∗ it is

hb(a) = hCb1···br
(∗) =Chb1

(∗) · · ·hbr
(∗)

IH

≍Cb1 · · ·br = b ;

for a =Ca1 · · ·ar it is

hb(a) = hCb1···br
(Ca1 · · ·ar) =Chb1

(a1) · · ·hbr
(ar)

IH

≍Cb1 · · ·br = b .

For (2.3). Let b ≻ a; then, by the propagation, b ≍ a. If b is nullary, then it is

immediate. Let b =Cb1 · · ·br; for a = ∗ it is

hb(a) = hCb1···br
(∗) =Chb1

(∗) · · ·hbr
(∗)

IH

≺Cb1 · · ·br = b ;

for a =Ca1 · · ·ar it is

hb(a) = hCb1···br
(Ca1 · · ·ar) =Chb1

(a1) · · ·hbr
(ar)

IH

≺Cb1 · · ·br = b .

For (2.4). Let b≍ b′. If one of them has no information, say b′ = ∗, then

hb(hb′(a)) = hb(a) = hb′(hb(a)) .

Let b =Cb1 · · ·br and b′ =Cb′1 · · ·b
′
r. If b′ and a are head-inconsistent, then b and a are

also head-inconsistent, and it is

hb(hb′(a)) = hb(a) = a = hb′(a) = hb′(hb(a)) .

For a = ∗ it is

hb(hb′(a)) = hb(hCb′1···b
′
r
(∗))

= hCb1···br
(Chb′1

(∗) · · ·hb′r
(∗))

=Chb1
(hb′1

)(∗) · · ·hbr
(hb′r

)(∗)

IH
=Chb′1

(hb1
(∗)) · · ·hb′r

(hbr
(∗))

= hb′(hb(a)) ,

and for a =Ca1 · · ·ar it is

hb(hb′(a)) = hb(hCb′1···b
′
r
(Ca1 · · ·ar))

= hCb1···br
(Chb′1

(a1) · · ·hb′r
(ar))

=Chb1
(hb′1

)(a1) · · ·hbr
(hb′r

)(ar)

IH
=Chb′1

(hb1
)(a1) · · ·hb′r

(hbr
)(ar)

= hb′(hb(a)) .

For (2.5). For b′ and a head-inconsistent or b′ nullary, it is hb(hb′(a)) = hb(a). Let

b′ =Cb′1 · · ·b
′
r. For a = ∗ it is

hb(hb′(a)) = hb(hCb′1···b
′
r
(∗))

= hCb1···br
(Chb′1

(∗) · · ·hb′r
(∗))

=Chb1
(hb′1

)(∗) · · ·hbr
(hb′r

)(∗)

IH
=Chb1

(∗) · · ·hbr
(∗)

= hb(a) ;

2.2 Algebraic matrices 71

for a =Ca1 · · ·ar it is

hb(hb′(a)) = hb(hCb′1···b
′
r
(Ca1 · · ·ar))

= hCb1···br
(Chb′1

(a1) · · ·hb′r
(ar))

=Chb1
(hb′1

)(a1) · · ·hbr
(hb′r

)(ar)

IH
=Chb1

(a1) · · ·hbr
(ar)

= hb(a) .

For (2.6). If b is nullary then it is immediately hb(a) = a ≍ a′ = hb(a
′). Let b =

Cb1 · · ·br; for a = a′ = ∗, there is nothing to show; let a =Ca1 · · ·ar; if a′ = ∗, then

hb(a) = hCb1···br
(Ca1 · · ·ar)

=Chb1
(a1) · · ·hbr

(ar)
IH

≍Chb1
(∗) · · ·hbr

(∗)

= hCb1···br
(∗)

= hb(a
′) ;

if a′ =Ca′1 · · ·a
′
r, then

hb(a) = hCb1···br
(Ca1 · · ·ar)

=Chb1
(a1) · · ·hbr

(ar)
IH

≍Chb1
(a′1) · · ·hbr

(a′r)

= hCb1···br
(Ca′1 · · ·a

′
r)

= hb(a
′) .

For (2.7). If b and b′ are nullary, then hb(a) = a = hb′(a). Let b′ =Cb′1 · · ·b
′
r. If b

is nullary, then for a = ∗ it is immediately hb(a) = ∗ ≍ hb′(a), and for a =Ca1 · · ·ar, it

is

hb(a) = a =Ca1 · · ·ar
(2.1)

≍ Chb′1
(a1) · · ·hb′r

(ar) = hCb′1···b
′
r
(Ca1 · · ·ar) = hb′(a) .

Further, let b =Cb1 · · ·br; if a = ∗, then

hb(a) = hCb1···br
(∗)

=Chb1
(∗) · · ·hbr

(∗)
IH

≍Chb′1
(∗) · · ·hb′r

(∗)

= hCb′1···b
′
r
(∗)

= hb′(a) ,

whereas, if a =Ca1 · · ·ar, it is

hb(a) = hCb1···br
(a1 · · ·ar)

=Chb1
(a1) · · ·hbr

(ar)
IH

≍Chb′1
(a1) · · ·hb′r

(ar)

= hCb′1···b
′
r
(Ca1 · · ·ar)

= hb′(a) .

72 2. Matrices and coherent information systems

For (2.8). Let a ≻ a′ and b ≍ a; by the propagation, it is also b ≍ a′. Let b =
Cb1 · · ·Cbr. If a = ∗, then necessarily a′ = ∗, and hb(a) = hb(a

′). Let further a =
Ca1 · · ·ar; for a′ = ∗, it is

hb(a) = hCb1···br
(Ca1 · · ·ar)

=Chb1
(a1) · · ·hbr

(ar)
IH

≻Chb1
(∗) · · ·hbr

(∗)

= hCb1···br
(∗)

= hb(a
′) ,

whereas, if a′ =Ca′1 · · ·a
′
r, it is

hb(a) = hCb1···br
(Ca1 · · ·ar)

=Chb1
(a1) · · ·hbr

(ar)
IH

≻Chb1
(a′1) · · ·hbr

(a′r)

= hCb1···br
(Ca′1 · · ·a

′
r)

= hb(a
′) .

For (2.9). Let b≻ b′ and b≍ a; by the propagation, it is also b′ ≍ a. If b is nullary,

then b′ must also be nullary, and hb(a) = a = hb′(a). Let b =Cb1 · · ·br. For b′ nullary,

it is hb(a)
(2.1)

≻ a = hb′(a). Let then b′ =Cb′1 · · ·b
′
r as well. If a = ∗ then

hb(a) = hCb1···br
(∗)

=Chb1
(∗) · · ·hbr

(∗)
IH

≻Chb′1
(∗) · · ·hb′r

(∗)

= hCb′1···b
′
r
(∗)

= hb′(a) ;

if a =Ca1 · · ·ar, it is

hb(a) = hCb1···br
(Ca1 · · ·ar)

=Chb1
(a1) · · ·hbr

(ar)
IH

≻Chb′1
(a1) · · ·hb′r

(ar)

= hCb′1···b
′
r
(Ca1 · · ·ar)

= hb′(a) .

For (2.10). Let a≻ b and a≻ c; then it is b≍ c. If a is nullary then b, c must also

be nullary, so we don’t have anything to do. Let a = Ca1 · · ·ar. For b nullary, there is

again nothing to show, so let also b =Cb1 · · ·br. Now if c is nullary we have

hb(c) = hCb1···br
(∗) =Chb1

(∗) · · ·hbr
(∗)

IH

≺Ca1 · · ·ar = a ,

where if c =Cc1 · · ·cr, we have

hb(c) = hCb1···br
(Cc1 · · ·cr) =Chb1

(c1) · · ·hbr
(cr)

IH

≺Ca1 · · ·ar = a . �

2.2 Algebraic matrices 73

Now we gradually extend the notion of homogenization to matrices, in the follow-

ing way:

hb1+···+bl′
(a)≔ hbl′

· · ·hb1
(a) ,

hV (a1 + · · ·+al)≔ hV (a1)+ · · ·+hV (al) ,

hV1···Vr(U1 · · ·Ur)≔ hV1
(U1) · · ·hVr(Ur) ,

where Ui’s and Vi’s, i = 1, . . . ,r, are lists of equal length, and we write h1 · · ·hl for

h1 ◦ · · · ◦hl to save space. Put more bluntly, the homogenization hB(A) of A ∈ Arrα(r, l)
with respect to B ∈ Arrα(r, l

′) is defined by

h
∏

r
i=1 ∑

l′

j′=1
bi j′

(
r

∏
i=1

l

∑
j=1

ai j

)

≔

r

∏
i=1

l

∑
j=1

hbil′
· · ·hbi1

(ai j) ;

it is obviously well-defined.4 We will just write h(A) for hA(A); call A homogeneous if

it is already A = h(A).

Proposition 2.16. The mapping h : Arrα(r, l
′)×Arrα(r, l)→ Arrα(r, l) is well-defined

and satisfies the following.

hB(A)≻ A , (2.11)

B≍ B′→ hB(hB′(A)) = hB′(hB(A)) , (2.12)

B≻ B′→ hB(A) = hB(hB′(A)) , (2.13)

A≍ B→ (A′ ≍ B∨A≍ B′)→ A′ ≍ B′

→ A≍ A′→ B≍ B′→ hB(A)≍ hB′(A
′) , (2.14)

A≍ B→ A≻ A′→ B≻ B′→ hB(A)≻ hB′(A
′) , (2.15)

A≍ B→ A ⊢ A′→ hB(A) ⊢ hB(A
′) , (2.16)

A≍ B→ B ⊢ B′→ hB(A) ⊢ hB′(A) , (2.17)

A ⊢ h(A) , (2.18)

h(K(A)) = K(h(A)) , (2.19)

A = K(B)→ (A = h(A)↔ B = h(B)) , (2.20)

(2.21)

Proof. That the mapping is well-defined is clear. For the following, let A ∈Mat(r, lA),
B ∈Mat(r, lB), A′ ∈Mat(r, lA′), and B′ ∈Mat(r, lB′).

For (2.11). It is

hB(A) =
r

∏
i=1

lA

∑
jA=1

hbilB
· · ·hbi1

(ai jA)
(2.1)

≻
r

∏
i=1

lA

∑
jA=1

ai jA = A .

4Notice though that the value in general depends on the order of the elements in the list; for example,

hS∗+B∗∗(∗) = S∗ , B∗∗= hB∗∗+S∗(∗) .

This is not the case though when the list is consistent, that is, a neighborhood, as we will readily see.

74 2. Matrices and coherent information systems

For (2.12). It is

hB(hB′(A)) =
r

∏
i=1

lA

∑
jA=1

hbilB
· · ·hbi1

hb′
il

B′
· · ·hb′i1

(ai jA)

(2.4)
=

r

∏
i=1

lA

∑
jA=1

hb′
il

B′
· · ·hb′i1

hbilB
· · ·hbi1

(ai jA)

= hB′(hB(A)) .

For (2.13). It is

hB(hB′(A)) =
r

∏
i=1

lA

∑
jA=1

hbilB
· · ·hbi1

hb′
il

B′
· · ·hb′i1

(ai jA)

(2.4), (2.5)
=

r

∏
i=1

lA

∑
jA=1

hbilB
· · ·hbi1

(ai jA)

= hB(A) .

For (2.14). Let A≍ B, A′ ≍ B, and then A≍ A′, and B≍ B′. It is

hB(A) =
r

∏
i=1

lA

∑
jA=1

hbilB
· · ·hbi1

(ai jA)

(2.6)

≍
r

∏
i=1

lA′

∑
jA′=1

hbilB
· · ·hbi1

(a′i jA′
)

(2.7), (2.4), (2.5)

≍
r

∏
i=1

lA′

∑
jA′=1

hb′
il

B′
· · ·hb′i1

(a′i jA′
)

= hB′(A
′) .

The assumption that A′ ≍ B enabled us to take the second step; we would need the

alternative assumption A≍ B′ if we wanted to use (2.7) first, and then (2.6).

For (2.15). Let A≍ B, A≻ A′, and B≻ B′. It is

hB(A) =
r

∏
i=1

lA

∑
jA=1

hbilB
· · ·hbi1

(ai jA)

(2.8)

≻
r

∏
i=1

lA′

∑
jA′=1

hbilB
· · ·hbi1

(a′i jA′
)

(2.9), (2.4), (2.5)

≻
r

∏
i=1

lA′

∑
jA′=1

hb′
il

B′
· · ·hb′i1

(a′i jA′
)

= hB′(A
′) .

For the following statements, since entailment between matrices works row-wise,

we restrict our arguments to lists with no loss of generality. Furthermore, because of

(2.5), we may safely assume that the lists V , V ′, with respect to which we homogenize,

will consist of tokens where none entails some other (we make this assumption in the

2.2 Algebraic matrices 75

proofs of (2.16) and (2.17)). In this case, for a non-blank list V of length l′ and a list U

of length l, such that U ≍V , we either have U non-blank as well, in which case

hV (U) = hb1+···+bl′
(a1 + · · ·+al)

= hb1+···+bl′
(a1)+ · · ·+hb1+···+bl′

(al)

= hb1
· · ·hbl′

(a1)+ · · ·+hb1
· · ·hbl′

(al)

= hCb11···br1
· · ·hCb1l′ ···brl′

(Ca11 · · ·ar1)

+ · · ·+hCb11···br1
· · ·hCb1l′ ···brl′

(Ca1l · · ·arl)

=C(hb11
· · ·hb1l′

(a11)) · · ·(hbr1
· · ·hbrl′

(ar1))

+ · · ·+C(hb11
· · ·hb1l′

(a1l)) · · ·(hbr1
· · ·hbrl′

(arl))

= Ċ

hb11
· · ·hb1l′

(a11) · · · hb11
· · ·hb1l′

(a1l)
...

. . .
...

hbr1
· · ·hbrl′

(ar1) · · · hbr1
· · ·hbrl′

(arl)

 ,

that is,

hĊ(V1···Vr)
(Ċ(U1 · · ·Ur)) = Ċ(hV1

(U1) · · ·hVr(Ur)) , (2.22)

or U is a blank list, U = ∗1,l , in which case we similarly obtain

hĊ(V1···Vr)
(∗1,l) = Ċ(hV1

(∗1,l) · · ·hVr(∗
1,l)) . (2.23)

For (2.16). We show that

U ≍V →U ⊢U ′→ hV (U) ⊢ hV (U
′) ,

for U,U ′,V lists. Let U ≍ V and U ⊢U ′. We proceed by induction on V (under our

assumption above). If V is a nullary (more precisely, it consists of a single nullary

token), then hV (U) = U ⊢U ′ = hV (U
′), so let V = b1 + · · ·+ blV = Ċ(V1 · · ·Vr). For

U = ∗1,lU , it must also be that U ′ = ∗1,lU ′ , so

hV (U) = hV (∗)+ · · ·+hV (∗)
︸ ︷︷ ︸

lU times

≻ hV (∗)+ · · ·+hV (∗)
︸ ︷︷ ︸

l
U ′ times

= hV (U
′) .

For U = Ċ(U1 · · ·Ur), if U ′ = ∗1,lU ′ , it is

hV (U) = hĊ(V1···Vr)
(Ċ(U1 · · ·Ur))

(2.22)
= Ċ(hV1

(U1) · · ·hVr(Ur))
IH

⊢ Ċ(hV1
(∗1,lU ′) · · ·hVr(∗

1,lU ′))
(2.23)
= hĊ(V1···Vr)

(∗1,lU ′)

= hV (U
′) ,

whereas if U ′ = Ċ(U ′
1 · · ·U

′
r) it is

hV (U) = hĊ(V1···Vr)
(Ċ(U1 · · ·Ur))

(2.22)
= Ċ(hV1

(U1) · · ·hVr(Ur))
IH

⊢ Ċ(hV1
(U ′

1) · · ·hVr(U
′
r))

(2.22)
= hĊ(V1···Vr)

(U ′)

= hV (U
′) .

76 2. Matrices and coherent information systems

Finally, if U∗ ⊇∗ U , then

hV (U
∗) = hV (~∗+a1 +~∗+ · · ·+~∗+alU +~∗)

= hV (~∗)+hV (a1)+hV (~∗)+ · · ·+hV (~∗)+hV (alU)+hV (~∗)

≻ hV (a1)+ · · ·+hV (alU)

= hV (a1 + · · ·+alU)

= hV (U)
IH

⊢ hV (U
′) .

For (2.17). We show that

U ≍V →V ⊢V ′→ hV (U) ⊢ hV ′(U) ,

for U,V,V ′ appropriate lists. Let U ≍ V and V ⊢ V ′. According to our assumption,

let first V be nullary, V ′ must also be nullary; then hV (U) = U = hV ′(U). Then let

V = Ċ(V1 · · ·Vr); if V ′ is still a nullary, then, by (2.11), hV (U) ≻U = hV ′(U); if V ′ =
Ċ(V ′1 · · ·V

′
r), then for U = ∗1,lU it is

hV (U) = hĊ(V1···Vr)
(∗1,lU)

(2.23)
= Ċ(hV1

(∗1,lU) · · ·hVr(∗
1,lU))

IH

⊢ Ċ(hV ′1
(∗1,lU) · · ·hV ′r

(∗1,lU))

(2.23)
= hĊ(V ′1···V

′
r)
(∗1,lU)

= hV ′(U) ,

for U = Ċ(U1 · · ·Ur) it is

hV (U) = hĊ(V1···Vr)
(Ċ(U1 · · ·Ur))

(2.22)
= Ċ(hV1

(U1) · · ·hVr(Ur))
IH

⊢ Ċ(hV ′1
(U1) · · ·hV ′r

(Ur))

(2.22)
= hĊ(V ′1···V

′
r)
(Ċ(U1 · · ·Ur))

= hV ′(U) ,

and for U∗ ⊇∗ U it is

hV (U
∗)

(2.16)

⊢ hV (U)
IH

⊢ hV ′(U)
(2.16)

⊢ hV ′(U
∗) .

For (2.18). We show that

U ⊢ h(U) ,

for any list U . If U is a nullary, then immediately h(U) =U . If U = Ċ(U1 · · ·Ur); then

h(U) = h(Ċ(U1 · · ·Ur))
(2.22)
= Ċ(h(U1) · · ·h(Ur))

IH

⊣ Ċ(U1 · · ·Ur) =U .

Finally, if U∗ ⊇∗ U , then

U∗ ≻U
IH

⊢ h(U) = hU (U)
(2.17)

⊢ hU∗(U)
(2.16)

⊢ hU∗(U
∗) = h(U∗) .

2.2 Algebraic matrices 77

For (2.19). By induction on the constructor context K. For K = ∗̇, it is immediately

h(∗̇(A)) = h(A) = ∗̇(A). For K = Ċ, it is

h(Ċ(A)) = h(Ċ(U1 · · ·Ur))
(2.22)
= Ċ(h(U1) · · ·h(Ur)) = Ċ(h(A)) .

For K = (K1, . . . ,Km), it is

h(K(A)) = h((K1, . . . ,Km)(A1 · · ·Am))

= h(K1(A1) · · ·Km(Am))

= h(K1(A1)) · · ·h(Km(Am))
IH
= K1(h(A1)) · · ·Km(h(Am))

= (K1, . . . ,Km)(h(A1) · · ·h(Am))

= K(h(A)) .

Finally, for K = K1K2, it is

h(K(A)) = h(K1K2(A))

= h(K1(K2(A1)))
IH
= K1(h(K2(A1)))
IH
= K1(K2(h(A1)))

= K1K2(h(A))

= K(h(A)) .

For (2.20). Let A = K(B). We have

A = h(A)⇔ K(B) = h(K(B))
(2.19)
⇔ K(B) = K(h(B))⇔ B = h(B) . �

Now we have the necessary means to state and prove the matrix form theorem.

Theorem 2.17 (Finitary matrix form). Let α be a finitary algebra. For every homoge-

neous matrix A ∈Matα(r, l), there exist a unique constructor context KA ∈ Konα(r,r
′)

in normal form, r′ ≥ r, and a unique basic matrix MA ∈Matα(r
′, l), such that

A = KA(MA) .

Call KA(MA) the matrix form of A, KA the basic coefficient of A, and MA the basis

of A.

Proof by induction on the complexity of A. Let A ∈ Matα(r, l). If A is already basic,

then simply KA = (∗̇, . . . , ∗̇) (r times) and MA = A.

If A = K(A′), for some K ∈ Konα(r,r
′) and A′ ∈ Matα(r

′, l), then, by (2.20), A′ is

also homogeneous, so by the induction hypothesis it has a matrix form KA′(MA′), with

KA′ ∈ Konα(r
′,r′′) and MA′ ∈Matα(r

′′, l) (it is r ≤ r′ ≤ r′′); then

A = K(A′) = K(KA′(MA′)) = (KKA′)(MA′) ;

now if KA′ = (∗̇, . . . , ∗̇) then r′ = r′′ and KA = K ∈ Konα(r,r
′′), otherwise KA = KKA′ ∈

Konα(r,r
′′); for the basis, it is MA = MA′ ∈Matα(r

′′, l). �

78 2. Matrices and coherent information systems

The matrix form, the basic coefficient, and the basis of an arbitrary matrix A are

defined to be the matrix form, the basic coefficient, and the basis of its homogenization

h(A) respectively, in symbols

KA ≔ Kh(A)∧MA ≔Mh(A) ;

so the theorem in effect says that every matrix has a matrix form, which is unique up

to homogenization.

Example. Let α be given by a nullary constructor 0, a unary S, a binary B, and a ternary

C; we write ∗ for ∗α . Consider the list

U =C(B0∗)∗∗+C(B∗0)(B∗0)∗+C∗∗(SS0)+∗ .

Its homogenization h(U) is given by

C(B0∗)(B∗∗)(SS∗)+C(B∗0)(B∗0)(SS∗)+C(B∗∗)(B∗∗)(SS0)+C(B∗∗)(B∗∗)(SS∗) .

Exhaustive factorization proceeds as follows:

C(B0∗)(B∗∗)(SS∗)+C(B∗0)(B∗0)(SS∗)+C(B∗∗)(B∗∗)(SS0)+C(B∗∗)(B∗∗)(SS∗)

= Ċ
(

(B0∗)(B∗∗)(SS∗)+(B∗0)(B∗0)(SS∗)+(B∗∗)(B∗∗)(SS0)+(B∗∗)(B∗∗)(SS∗)
)

= Ċ(Ḃ, ∗̇, ∗̇)
(

0∗(B∗∗)(SS∗)+∗0(B∗0)(SS∗)+∗∗(B∗∗)(SS0)+∗∗(B∗∗)(SS∗)
)

= Ċ(Ḃ, ∗̇, ∗̇)(∗̇, ∗̇, Ḃ, ∗̇)
(

0∗∗∗(SS∗)+∗0∗0(SS∗)+∗∗∗∗(SS0)+∗∗∗∗(SS∗)
)

= Ċ(Ḃ, ∗̇, ∗̇)(∗̇, ∗̇, Ḃ, ∗̇)(∗̇, ∗̇, ∗̇, ∗̇, Ṡ)
(

0∗∗∗(S∗)+∗0∗0(S∗)+∗∗∗∗(S0)+∗∗∗∗(S∗)
)

= Ċ(Ḃ, ∗̇, ∗̇)(∗̇, ∗̇, Ḃ, ∗̇)(∗̇, ∗̇, ∗̇, ∗̇, Ṡ)(∗̇, ∗̇, ∗̇, ∗̇, Ṡ)
(

0∗∗∗∗+∗0∗0∗+∗∗∗∗0+∗∗∗∗∗
)

= Ċ(Ḃ, Ḃ, ṠṠ)
(

0∗∗∗∗+∗0∗0∗+∗∗∗∗0+∗∗∗∗∗
)

so the matrix form of U is

U = Ċ(Ḃ, Ḃ, ṠṠ)

0 ∗ ∗ ∗
∗ 0 ∗ ∗
∗ ∗ ∗ ∗
∗ 0 ∗ ∗
∗ ∗ 0 ∗

. �

Using normal forms

Here we take a break and demonstrate how useful the matrix form can be in practice.

Namely, we show that it readily provides a very clear and insightful characterization of

entailment, which in turn leads rather automatically to a simple atomic characterization.

We will use two natural notions of equivalence for matrices. Call A,B ∈ Matα
atomically equivalent (or atomically equientailing), and write A ∼A B, when A ≻ B∧
B ≻ A; call them just equivalent (or equientailing), and write A ∼ B, if A ⊢ B∧B ⊢ A.

For a consistent list U ∈ Lstα(l), define its induced set set(U) by

a ∈ set(U)≔
l

∃
j=1

U(j) = a .

Proposition 2.18. The following hold whenever well-defined.

2.2 Algebraic matrices 79

1. If A∼A B then A∼ B.

2. It is A∼A B if and only if set(Ai) = set(Bi), for all i = 1, . . . ,r.

3. It is

A∼A B↔ ∀
M
(A≻M ↔ B≻M) ,

A∼ B↔ ∀
M
(A ⊢M ↔ B ⊢M) .

4. It is

A∼ A′→ A≍ B→ A′ ≍ B ,

A∼A A′→ B∼A B′→
(

A+B∼A A′+B′∧A ·B∼A A′ ·B′
)

,

A∼ A′→ B∼ B′→
(

A+B∼ A′+B′∧A ·B∼ A′ ·B′
)

.

Proof. The first two statements are easy to see. As for 3, it is an immediate conse-

quence of transitivity of entailment, atomic as well as not.

For 4. The first clause is an easy consequence of propagation of consistency

through entailment. For the second clause, let A ∼A A′ and B ∼A B′; then for any

matrix M it is

A+B≻M ⇔
r

∀
i=1

lM

∀
jM=1

(
lA

∃
jA=1

ai jA ≻ ci jM ∨
lB

∃
jB=1

bi jB ≻ ci jM

)

⇔
r

∀
i=1

lM

∀
jM=1

(
lA′

∃
jA′=1

a′i jA′
≻ ci jM ∨

lB′

∃
jB′=1

b′i jB′
≻ ci jM

)

⇔ A′+B′ ≻M ,

so A+B∼A A′+B′; similarly we have

A ·B≻M ⇔
r

∀
i=1

lM

∀
jM=1

l

∃
j=1

ai j ≻ ci jM ⇔
r

∀
i=1

lM

∀
jM=1

l′

∃
j′=1

a′i j′ ≻ ci jM ⇔ A′ ·B′ ≻M ,

that is, A ·B ∼A A′ ·B′. For the third clause, more swiftly, from A ∼ A′ and B ∼ B′ we

obtain

A ⊢ A′∧B ⊢ B′
trns
⇒ A+B ⊢ A′∧A+B ⊢ B′⇒ A+B ⊢ A′+B′ ,

and similarly A′+B′ ⊢ A+B; moreover, if A ∼ A′ ∧B ∼ B′, then AB ∼ A′B′ by the

definition of entailment for matrices. �

Characterization of consistency and entailment through homogenization

Some inspection of examples leads us to acknowledge three different cases when

checking if U ⊢ a, with respective normal forms KU (MU) and Ka(Ma). For simplicity

(which does not harm generality, as we will show) we assume that both basic matrices

have the same row dimension.

• It is U ≍ a and U ⊢ a; in this case it is necessarily both KU ≻̇ Ka and MU ≻Ma.

80 2. Matrices and coherent information systems

• It is U ≍ a but U 6⊢ a; in this case a holds more information in some positions,

either concerning some supernullary constructors or nullary ones, hence it is

either KU 6≻̇ Ka or MU 6≻Ma (or both, of course).

• It is U 6≍ a; in this tricky case it is possible to have both KU ≻̇ Ka and MU ≻Ma,

as the following example illustrates: if U = B(C00∗)(S0) +B(C00(S0))∗ and

a = B(C000)(S∗), then the normal form of U is

Ḃ(Ċ(∗̇, ∗̇, Ṡ), Ṡ)

0 0

0 0

∗ 0

0 ∗

and the normal form of a is

Ḃ(Ċ, Ṡ)

0

0

0

∗

;

it is KU ≻̇ Ka and MU ≻Ma, but U 6≍ a, which we can see easily if we factorize

just Ḃ(Ċ, Ṡ) out of U :

U = Ḃ(Ċ, Ṡ)

0 0

0 0

S∗ S0

0 ∗

6≍ Ḃ(Ċ, Ṡ)

0

0

0

∗

.

This case indicates that we should be interested in the consistency of the aug-

mented matrix U +a.

Proposition 2.19. The following hold.

1. It is A∼ h(A). Consequently, it is A∼ B if and only if h(A)∼ h(B).

2. If A = A1 · · ·As ∈Matα , then KA = (KA1
, . . . ,KAs) and MA = MA1

· · ·MAs .

Proof. For 1. By (2.11) and (2.18). The homogeneous characterization follows from

transitivity of entailment.

For 2. It is

A1 · · ·As = KA1
(MA1

) · · ·KAs(MAs)
P.2.13 (3)
= (KA1

, . . . ,KAs)(MA1
· · ·MAs) . �

Theorem 2.20 (Calculus of homogeneous forms). Let U,V ∈ Conα . The following

hold.

1. It is U ≍V if and only if

KhU+V (U) = KhU+V (V)∧MhU+V (U) ≍MhU+V (V) .

2. It is U ⊢V if and only if

KU = KhU (V)∧MU ≻MhU (V) .

2.2 Algebraic matrices 81

Proof. By Proposition 2.19. 1, it is U ≍ V and U ⊢ V if and only if h(U) ≍ h(V) and

h(U) ⊢ h(V) respectively. Based on this observation, we may assume that the lists we

consider are homogeneous, with no loss of generality.

For 1. If both lists are nullary, then, for W ≔U +V = ∗1,l+l′ ,

KhW (U) = KU = ∗̇= KV = KhW (V)

and

U ≍V ⇔MhW (U) = MU =U ≍V = MV = MhW (V) .

If U = Ċ(U1 · · ·Ur) and V = ∗1,l′ , for W ≔U +V we have

hW (U)
(2.13)
= h(U)

hW (V)
(2.13)
= hU (V) = hĊ(U1···Ur)

(∗1,l′)
(2.23)
= Ċ

(

hU1
(∗1,l′) · · ·hUr(∗

1,l′)
)

;

by the induction hypothesis, for Wi ≔Ui +∗
1,l′ , i = 1, . . . ,r, it is

r

∀
i=1

Ui ≍ ∗
1,l′ ⇔

r

∀
i=1

(

KhWi
(Ui) = K

hWi
(∗1,l′)

∧MhWi
(Ui) ≍M

hWi
(∗1,l′)

)

⇔
(

KhW1
(U1), . . . ,KhWr (Ur)

)

=
(

K
hW1

(∗1,l′)
, . . . ,K

hWr (∗
1,l′)

)

∧MhW1
(U1) · · ·MhWr (Ur) ≍M

hW1
(∗1,l′)

· · ·M
hWr (∗

1,l′)

⇔Ċ
(

KhW1
(U1), . . . ,KhWr (Ur)

)

= Ċ
(

K
hW1

(∗1,l′)
, . . . ,K

hWr (∗
1,l′)

)

∧MhW1
(U1) · · ·MhWr (Ur) ≍M

hW1
(∗1,l′)

· · ·M
hWr (∗

1,l′)

P.2.19
⇔KhW (U) = KhW (V)∧MhW (U) ≍MhW (V) .

If U = Ċ(U1 · · ·Ur) and V = Ċ(V1 · · ·Vr), for W ≔U +V and Wi ≔Ui +Vi, i = 1, . . . ,r,

we have

U ≍V ⇔
r

∀
i=1

Ui ≍Vi

IH
⇔

r

∀
i=1

(

KhWi
(Ui) = KhWi

(Vi)∧MhWi
(Ui) ≍MhWi

(Vi)

)

⇔
(

KhW1
(U1), . . . ,KhWr (Ur)

)

=
(

KhW1
(V1), . . . ,KhWr (Vr)

)

∧MhW1
(U1) · · ·MhWr (Ur) ≍MhW1

(V1) · · ·MhWr (Vr)

⇔Ċ
(

KhW1
(U1), . . . ,KhWr (Ur)

)

= Ċ
(

KhW1
(V1), . . . ,KhWr (Vr)

)

∧MhW1
(U1) · · ·MhWr (Ur) ≍MhW1

(V1) · · ·MhWr (Vr)

P.2.19
⇔KhW (U) = KhW (V)∧MhW (U) ≍MhW (V) .

For 2. If both lists are nullary, then

KU = ∗̇= KV = KhU (V)

and

U ⊢V ⇔MU =U ≻V = MV = MhU (V) .

82 2. Matrices and coherent information systems

If U = Ċ(U1 · · ·Ur) and V = ∗1,l′ , we have

hU (V) = hĊ(U1···Ur)
(∗1,l′)

(2.23)
= Ċ

(

hU1
(∗1,l′) · · ·hUr(∗

1,l′)
)

;

by the induction hypothesis, it is

r

∀
i=1

Ui ⊢ ∗
1,l′ ⇔

r

∀
i=1

(

KUi
= K

hUi
(∗1,l′)

∧MUi
≻M

hUi
(∗1,l′)

)

⇔(KU1
, . . . ,KUr) =

(

K
hU1

(∗1,l′)
, . . . ,K

hUr (∗
1,l′)

)

∧MU1
· · ·MUr ≻M

hU1
(∗1,l′)

· · ·M
hUr (∗

1,l′)

⇔Ċ (KU1
, . . . ,KUr) = Ċ

(

K
hU1

(∗1,l′)
, . . . ,K

hUr (∗
1,l′)

)

∧MU1
· · ·MUr ≻M

hU1
(∗1,l′)

· · ·M
hUr (∗

1,l′)

P.2.19
⇔KU = KhU (V)∧MU ≻MhU (V) .

If U = Ċ(U1 · · ·Ur) and V = Ċ(V1 · · ·Vr), we have

U ⊢V ⇔
r

∀
i=1

Ui ⊢Vi

IH
⇔

r

∀
i=1

(

KUi
= KhUi

(Vi)∧MUi
≻MhUi

(Vi)

)

⇔(KU1
, . . . ,KUr) =

(

KhU1
(V1), . . . ,KhUr (Vr)

)

∧MU1
· · ·MUr ≻MhU1

(V1) · · ·MhUr (Vr)

⇔Ċ (KU1
, . . . ,KUr) = Ċ

(

KhU1
(V1), . . . ,KhUr (Vr)

)

∧MU1
· · ·MUr ≻MhU1

(V1) · · ·MhUr (Vr)

P.2.19
⇔KU = KhU (V)∧MU ≻MhU (V) . �

Characterization of consistency and entailment through eigentokens

Let U ∈ Lstα(l); a token e ∈ Tα is an eigentoken (or a characteristic token) of U , if it

is equivalent to U , that is, if

U ∼ e⇔ ∀
b∈Tα

(U ⊢ b↔ e ⊢ b) .

An eigenvector (or a characteristic vector) of a matrix A = U1 · · ·Ur ∈ Matα(r, l) is a

vector E = e1 · · ·er ∈ Vecα(r,1) where ei is an eigenvector of Ui, for i = 1, . . . ,r.

Proposition 2.21. Let α be a finitary algebra.

1. For every A ∈Matα(r) there exists a unique eigenvector e(A) ∈ Vecα(r).

2. If A = K(B) then e(A) = K (e(B)).

3. The eigenvector of any A ∈Matα is given by KA(e(MA)).

2.2 Algebraic matrices 83

Proof. For 1. We show it first for a list U ∈ Lst(l): if U is blank or U = 0+ · · ·+0, for

some nullary 0, then obviously e(U) = ∗ or e(U) = 0 respectively; if U = Ċ(U1 · · ·Ur),
then

U ⊢ b⇔Ċ(U1 · · ·Ur) ⊢Cb1 · · ·br

⇔
r

∀
i=1

Ui ⊢ bi

IH
⇔

r

∀
i=1

e(Ui) ⊢ bi

⇔Ce(U1) · · ·e(Ur) ⊢Cb1 · · ·br ,

so e(U)=Ce(U1) · · ·e(Ur); finally, if U ⊇∗U ′, then clearly e(U ′)⊢U , so e(U)= e(U ′).
For a matrix A =U1 · · ·Ur, it is

A ⊢ B⇔U1 · · ·Ur ⊢V1 · · ·Vr

⇔
r

∀
i=1

Ui ⊢Vi

⇔
r

∀
i=1

e(Ui) ⊢Vi

⇔e(U1) · · ·e(Ur) ⊢V1 · · ·Vr ,

for all B =V1 · · ·Vr ∈Mat(r), so e(A) = e(U1) · · ·e(Ur).
For 2. Let A = K(B). By (1), A and B have eigenvectors, say eA and eB respectively.

Then

B∼ eB
P.2.12 (2)
⇒ K(B)∼ K(eB)

H
⇒ eA ∼ K(eB)

L.1.37
⇒ eA = K(eB) .

The statement 3 is a direct consequence of 2 and the homogeneous form theorem 2.17.

�

Example (continued). Consider the 3×4 matrix

A = (B0∗)∗∗+(B∗0)(B∗0)∗+∗∗(SS0)+∗∗∗ ,

given in sigma-pi form, which is obviously coherently consistent. Its rows are the lists

A1 = B0∗+B∗0+∗+∗ ,

A2 = ∗+B∗0+∗+∗ ,

A3 = ∗+∗+SS0+∗ ,

with respective eigentokens B00, B∗0, and SS0. It is

e(A) =

B00

B∗0
SS0

 . �

A further use of the eigentokens is the following characterization of consistency

and entailment, which is a simple yet important application, since, in the second case,

it turns non-atomic comparisons of entailment to atomic ones.

Theorem 2.22 (Implicit atomicity at base types). Let α be a finitary algebra, and

A,B ∈Matα . The following hold.

84 2. Matrices and coherent information systems

1. It is A≍ B if and only if e(A)≍ e(B).

2. It is A ⊢ B if and only if e(A)≻ e(B).

3. It is A∼ B if and only if e(A) = e(B).

Proof. For 1, one uses propagation twice in each direction. For 2, similarly, one uses

transitivity of entailment twice in each direction, as well as Proposition 2.11. Finally,

the eigentoken characterization 3 further needs Proposition 1.37. �

Normal forms combined

In section 1.3 we saw that neighborhoods in basic atomic coherent information systems

afford a normal form which consists of the maximal elements of the neighborhood: if

U = a1 + · · ·+al , then U is in (atomic) maximal form if

∀
1≤ j, j′≤l

(

a j ≻ a j′ → j = j′
)

.

We write m(U) for the maximal form of U ∈ Con; U is in maximal normal form if

U = m(U). A natural question is how the maximal and the homogeneous form, and

also the eigentokens combine. Notice that, in general, they may all differ: for the list

U = B∗(S∗)+B(S0)∗+B(S∗)∗ ,

we have

h(U) = B(S∗)(S∗)+B(S0)(S∗)+B(S∗)(S∗) ,

m(U) = B∗(S∗)+B(S0)∗ ,

e(U) = B(S0)(S∗) .

Call a matrix A = A1 + · · ·+Al ∈ Matα(r, l) atomically maximal if no column is

(atomically) entailed by some other, that is, if

∀
1≤ j, j′≤l

(

A j ≻ A j′ → j = j′
)

.

Proposition 2.23. Let U be a neighborhood. The following hold.

1. If MU is atomically maximal then U is in maximal normal form.

2. If m(U) is homogeneous, then Mm(U) is atomically maximal.

Proof. For 1. Let U = a1 + · · ·+ al , with MU atomically maximal. Suppose that, for

j, j′ = 1, . . . , l, it is a j ≻ a j′ ; by 2.15, it is hU (a j) ≻ hU (a j′), which is the same as

KU (M j)≻ KU (M j′), for M j the j-th column of MU ; this in turn yields M j ≻M j′ , which

by hypothesis gives j = j′.

For 2. Let m(U) = a1 + · · ·+al be homogeneous, with homogeneous form K(M).
Suppose that, in its basis M, it is M j ≻ M j′ for two columns; then K(M j) ≻ K(M j′),
which means a j ≻ a j′ ; this, by hypothesis, yields j = j′. �

Remark. A further natural question would be to examine non-atomic maximal normal

forms, and their connection to the homogeneous ones—in this chapter, after all, we are

2.2 Algebraic matrices 85

concerned with non-atomic coherent systems in general. But here a problem of well-

definedness arises which muddles thing up, and seems to disallow for an intuitively

clear course of action.

The natural notion of a non-atomic maximal form, would require a neighborhood

U to satisfy the following:

∀
V⊆U

∀
a∈U

(V ⊢ a→ a ∈V) .

This does not always define a single neighborhood though: consider the list

U =C∗00+C0∗0+C00∗ ;

all three of the following neighborhoods satisfy the above condition, being equivalent

to U :

U1 =C∗00+C0∗0 , U2 =C∗00+C00∗ , U3 =C0∗0+C00∗ .

Notice that, at the same time, U’s atomic maximal form exists uniquely (and here

coincides with U). �

The lesson to be learned from this short study seems to be that the best working

normal form of a list in a basic algebraic coherent information system that we can

have, is really its eigentoken, which, as Theorem 2.22 portrays, is determined uniquely

up to equality. As it turns out, this situation can not hold for more general cases of

algebras, as we will see in the following section; still, in type systems that build on

finitary algebras—as is the case with Chapter 4, and plenty of other natural models—

this should certainly prove instrumental when breaking higher-type statements down to

base-type ones.

Infinitary algebras

To cover algebras α that feature constructors with functional recursive arguments, we

need to employ mixed matrices (see page 55). A constructor C of type (~ρ1 → α)→
·· · → (~ρr → α)→ α induces an operator Ċ : Mat(~ρ1 → α, . . . ,~ρr → α)→ Matα(1),
where r > 1, exactly as in the finitary case (page 63). The definition is also well-

defined, as is the generalization to vectors of constructor operators and constructor

contexts, with the difference that arities are now taken on the type level (compare to

page 66):

• ∗̇α ∈ Konα(α;α) and if C is a supernullary constructor of α , then Ċ ∈
Konα(α,ar(C));

• if K1 ∈ Konα(~σ1;~σ ′1), . . . , Kr ∈ Konα(~σr;~σ
′
r), then (K1, . . . ,Kr) ∈

Konα(~σ1, . . . ,~σr;~σ
′
1, . . . ,~σ

′
r);

• if K1 ∈ Konα(~σ1;~σ), K2 ∈ Konα(~σ ;~σ2), then K1K2 ∈ Konα(~σ1;~σ2);

notice that the vectors ~σ cannot be empty. It is also direct to see that the factorization

rules of Proposition 2.13 hold.

Essential difficulties appear when we ponder the existence of homogeneous forms

and eigenvectors of mixed algebraic matrices. We will readily see that we cannot hope

for the latter, though we can have a reasonably straightforward notion of the former.

86 2. Matrices and coherent information systems

We will make use of the following convention. Let C be a constructor of arity

(~ρ1 → α, . . . ,~ρr → α). We will write [∗~ρi→α] ≔ ∅~ρi→α ∈ Mat~ρi→α(1,0), for every

i = 1, . . . ,r, and consequently (in multiplicative notation)

C(∅~ρ1→α · · ·∅~ρr→α) =C([∗~ρ1→α] · · · [∗~ρr→α]) = [C∗~ρ1→α · · ·∗~ρr→α]≔ [∗α] .

Using this trick we can stretch the concept of homogenization between tokens (see

page 69) as follows:

• if b is either a nullary token, or an alien token, that is, a token from another

algebra, then h[b]([a]) = [a];

• if b = Cbb1 · · ·brb
and a = Caa1 · · ·ara , rb,ra > 0, with Cb ,Ca, then h[b]([a]) =

[a];

• if b =Cb1 · · ·br, r > 0, and a = ∗, then

h[b]([∗α]) =
[
Ch[b1](∗~ρ1→α) · · ·h[br](∗~ρr→α)

]
;

• if b =Cb1 · · ·br and a =Ca1 · · ·ar, r > 0, then

h[b]([Ca1 · · ·ar]) =Ch[b1]([a1]) · · ·h[br]([ar]) ,

where C is a constructor of α with the above arity. It is direct to see that, for finitary

algebras, we get

h[b]([a]) = [hb(a)] .

We extend the notion to matrices by

h
∏r

i=1 ∑
l′

j′=1
bi j′

(
r

∏
i=1

l

∑
j=1

ai j

)

≔

r

∏
i=1

l

∑
j=1

hbil′
· · ·hbi1

(ai j) .

The matrix A is homogeneous if it is already A = h(A). Adopting the above generalized

notions, it is direct to see that the normal form theorem 2.17 holds for matrices over

infinitary algebras as well, with one crucial difference: the basis is no longer neces-

sarily a basic matrix, but a pseudo-basic one: a matrix is called pseudo-basic (for α)

if it consists solely of ∗α ’s, nullary constructors, or alien tokens (in which case, it is a

mixed matrix).

Theorem 2.24 (Infinitary matrix form). Let α be an infinitary algebra. For every

homogeneous matrix A ∈ Mat(~σ , l), there exist a unique constructor context KA ∈
Konα(~σ ;~σ ′) in normal form, and a unique pseudo-basic matrix MA ∈Mat(~σ ′, l), such

that

A = KA(MA) .

Again, call KA(MA) the matrix form of A, KA the basic coefficient of A, and MA the

basis of A; the normal form, the basic coefficient, and the basis of an arbitrary matrix A

over an infinitary algebra are defined to be the normal form, the basic coefficient, and

the basis of its homogenization h(A) respectively.

2.3 Algebraic function spaces 87

Example. Recall the matrix on page 63 (we write ∗ for ∗α , but keep the subscript for

∗B→α):

C(B00)∗(S∗) ∗ C∗∗(S0)
SB∗0 SB∗∗ SB(Ω〈[tt],Ω〈[ff],B∗∗〉〉)∗
B∗∗ B(C(S0)∗∗)∗ B∗(B∗0)

Ω〈[∗B],SB∗0〉 Ω〈[tt],SB0∗〉 Ω〈[ff],SB(S0)∗〉

.

Its homogenization is given by

C(B00)∗(S∗) C(B∗∗)∗(S∗) C(B∗∗)∗(S0)
SB(Ω∗B→α)0 SB(Ω∗B→α)∗ SB(Ω〈[tt],Ω〈[ff],B∗∗〉〉)∗

B(C(S∗)∗∗)(B∗∗) B(C(S0)∗∗)(B∗∗) B(C(S∗)∗∗)(B∗0)
Ω〈[∗B],SB∗0〉 Ω〈[tt],SB0∗〉 Ω〈[ff],SB(S0)∗〉

;

exhaustive factorization yields the basic coefficient

(Ċ(Ḃ, ∗̇, Ṡ), ṠḂ(Ω̇, ∗̇), Ḃ(Ċ(Ṡ, ∗̇, ∗̇), Ḃ),Ω̇)

and the basis

0 ∗ ∗
0 ∗ ∗
∗ ∗ ∗
∗ ∗ 0

∗B→α ∗B→α 〈[tt],Ω〈[ff],B∗∗〉〉
0 ∗ ∗
∗ 0 ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ 0

〈[∗B],SB∗0〉 〈[tt],SB0∗〉 〈[ff],SB(S0)∗〉

. �

As the matrix form theorem claims and the example illustrates, due to the deliberate

relativization of homogenization, the procedure halts whenever it encounters alien to-

kens, tokens that do not belong to the carrier of α—in particular, functional tokens that

serve as arguments of the constructor Ω. Consequently, the normal form may (as in this

example) contain alien tokens; homogenization, so to speak, is a procedure restricted

to the algebra at hand.

2.3 Algebraic function spaces

We examined earlier atomic function spaces (see page 56) which do not suffice for the

the study of the (not necessarily atomic) algebraic higher-type entailment. We further

need a notion of non-atomic “application”, tailored-made for lists, as we already saw

in the beginning of the chapter. Here we will express application through boolean tests,

in a pretty similar way as with the test matrices for the atomic function spaces.

We first define the boolean application or (boolean) switch ⊙ : MatB(1, l) →
Matρ(1,1)→Matρ(1, l), l ≤ 1, by

p⊙a≔

{

a p = [tt]

∅ρ otherwise ,

88 2. Matrices and coherent information systems

for any type ρ , basic or otherwise. Then we define the (non-atomic) entailment test

matrix ?⊢: Matρ(1, l)→Matρ(1,1)→MatB(1,1), inductively on the height of ρ:

• for a basic α define

U ?⊢α [a]≔

{

[tt] U ⊢α a

∅B otherwise;

• for a function space ρ → σ define

∑
j

〈U j,b j〉 ?⊢ρ→σ 〈U,b〉≔∑
j

(U ?⊢ρ U j)⊙b j
?⊢σ b ,

where the entailment test between two neighborhoods is understood as follows:

U ?⊢ρ

l

∑
j=1

a j ≔

l⊙

j=1

(U ?⊢ρ a j) = (U ?⊢ρ a1)⊙·· ·⊙ (U ?⊢ρ al) ,

associated to the left.

With these, we may now simply define the higher-type non-atomic entailment by

U ⊢ρ→σ b≔U ?⊢ρ→σ b = [tt] .

It is easy to see that the list application we appealed to in the beginning of the chapter

can be expressed in our terms as follows:

(

∑
j

〈U j,b j〉

)

U = ∑
j

(U ?⊢U j)⊙b j .

This concludes what we set out to demonstrate: all entailments eventually break down

to entailments in basic acises, which, in turn, are determined by atomic entailments on

the level of the corresponding matrices.

Proposition 2.25. Let ρ and σ be types built upon finitary algebras.

1. The relation ⊢ρ→σ is a proper entailment relation, that is, it is reflexive, transi-

tive, and propagates consistency at ρ → σ :

〈U,b〉 ∈W →W ⊢ρ→σ 〈U,b〉 ,

W1 ⊢ρ→σ W2∧W2 ⊢ρ→σ 〈U,b〉 →W1 ⊢ρ→σ 〈U,b〉 ,

W ∈ Conρ→σ ∧W ⊢ρ→σ 〈U,b〉 →W + 〈U,b〉 ∈ Conρ→σ .

2. Application of neighborhoods is monotonic in both arguments:

U ⊢ρ U ′→WU ⊢σ WU ′ ,

W ⊢ρ→σ W ′→WU ⊢σ W ′U ,

as well as consistency-preserving in both arguments:

U ≍ρ U ′→WU ≍σ WU ′ ,

W ≍ρ→σ W ′→WU ≍σ W ′U .

2.3 Algebraic function spaces 89

3. Application distributes over left appending, that is,

(W +W ′)U =WU +W ′U .

Proof. We show the third statement. Let W1 = ∑ j1
〈U1

j1
,b1

j1
〉 and W2 = ∑ j2

〈U2
j2
,b2

j2
〉,

with W1 ≍ρ→σ W2, and U ∈ Conρ ; it is

(W1 +W2)U =

(
l1

∑
j1=1

〈U1
j1
,b1

j1
〉+

l2

∑
j2=1

〈U2
j2
,b2

j2
〉

)

U

(⋆)
=

(
l1+l2

∑
j=1

〈U j,b j〉

)

U

=
l1+l2

∑
j=1

(U ?⊢U j)⊙b j

(⋆)
=

l1

∑
j1=1

(

U ?⊢U1
j1

)

⊙b1
j1
+

l2

∑
j2=1

(

U ?⊢U2
j2

)

⊙b2
j2

=

(
l1

∑
j1=1

〈U1
j1
,b1

j1
〉

)

U +

(
l2

∑
j2=1

〈U2
j2
,b2

j2
〉

)

U

=W1U +W2U ,

where for (⋆) we naturally let U j ≔U1
j for j ≤ l1 and U j ≔U2

j−l1
for j > l1. �

Remark. Note that in general we don’t have right distributivity, that is,

¬ ∀
W∈Conρ→σ

∀
U,U ′∈Conρ

(

U ≍ρ U ′→W (U +U ′) =WU +WU ′
)

.

A Coquand counterexample (page 47) can show this already for type level 1: it is

〈B00,0〉(B0∗+B∗0) = 0 but 〈B00,0〉B0∗+ 〈B00,0〉B∗0 = ∅. This is a situation that

easily extends to higher types: at type level 2 for example, we have

〈〈S0,B00〉,0〉(〈S∗,B0∗〉+ 〈S∗,B∗0〉) = 0

but

〈〈S0,B00〉,0〉〈S∗,B0∗〉+ 〈〈S0,B00〉,0〉〈S∗,B∗0〉= ∅ .

Consider though the following situation where right distributivity works:

(

〈〈S0,∗〉,B0∗〉+ 〈〈B00,∗〉,B∗0〉
)(

〈S∗,0〉+ 〈B∗∗,1〉
)

= B0∗+B∗0

and

(

〈〈S0,∗〉,B0∗〉+ 〈〈B00,∗〉,B∗0〉
)

〈S∗,0〉= B0∗ ,
(

〈〈S0,∗〉,B0∗〉+ 〈〈B00,∗〉,B∗0〉
)

〈B∗∗,1〉= B∗0 .

More generally, this indicates that we can hope for right distributivity when the two

appendices U and U ′ are trivially consistent, meaning, when their respective arguments

are inconsistent; apparently, this is something to discuss only at type levels higher than

1. �

90 2. Matrices and coherent information systems

Example. For clarity’s sake, let’s see in some detail how a higher type non-atomic

entailment unfolds, and eventually breaks down to basic entailments. We consider four

finitary algebras (basic acises) α , β , γ , and δ , and form the function space ((α → β)→
γ)→ δ ; in order to save space, we also write αβ for α → β , so the higher space is

written ((αβ)γ)δ . We consider the general case of an entailment in ((αβ)γ)δ :

∑
i

〈∑
j

〈∑
k

〈Ui jk,bi jk〉,ci j〉,di〉 ⊢((αβ)γ)δ 〈∑
j′

〈∑
k′

〈U ′
j′k′ ,b

′
j′k′〉,c

′
j′〉,d

′〉 ,

which, by definition, is equivalent to

∑
i

〈∑
j

〈∑
k

〈Ui jk,bi jk〉,ci j〉,di〉 ?⊢((αβ)γ)δ 〈∑
j′

〈∑
k′

〈U ′
j′k′ ,b

′
j′k′〉,c

′
j′〉,d

′〉= [tt] .

The term on the left unfolds as follows:

∑
i

〈∑
j

〈∑
k

〈Ui jk,bi jk〉,ci j〉,di〉 ?⊢((αβ)γ)δ 〈∑
j′

〈∑
k′

〈U ′
j′k′ ,b

′
j′k′〉,c

′
j′〉,d

′〉

= ∑
i

(

∑
j′

〈∑
k′

〈U ′
j′k′ ,b

′
j′k′〉,c

′
j′〉

?⊢(αβ)γ ∑
j

〈∑
k

〈Ui jk,bi jk〉,ci j〉

)

⊙di
?⊢δ d′

= ∑
i

(
⊙

j

∑
j′

〈∑
k′

〈U ′
j′k′ ,b

′
j′k′〉,c

′
j′〉

?⊢(αβ)γ 〈∑
k

〈Ui jk,bi jk〉,ci j〉

)

⊙di
?⊢δ d′

= ∑
i

(
⊙

j

∑
j′

(

∑
k

〈Ui jk,bi jk〉
?⊢αβ ∑

k′

〈U ′
j′k′ ,b

′
j′k′〉

)

⊙ c′j′
?⊢γ ci j

)

⊙di
?⊢δ d′

= ∑
i

(
⊙

j

∑
j′

(
⊙

k′
∑
k

〈Ui jk,bi jk〉
?⊢αβ 〈U

′
j′k′ ,b

′
j′k′〉

)

⊙ c′j′
?⊢γ ci j

)

⊙di
?⊢δ d′

= ∑
i

(
⊙

j

∑
j′

(
⊙

k′
∑
k

(

U ′
j′k′

?⊢α Ui jk

)

⊙bi jk
?⊢β b′j′k′

)

⊙ c′j′
?⊢γ ci j

)

⊙di
?⊢δ d′

One can see that, in order to decide the entailment in the space ((αβ)γ)δ , one has to

successively decide entailments in α , then β , then γ , and finally δ (one should also

notice how contravariance of entailment expresses itself in the zig-zag succession of

non-primed and primed indices); since all four are basic finitary acises, these entail-

ments are conducted by means of atomic entailments, as we previously saw. �

Lists and maximal neighborhoods

It is very natural that higher-type considerations may heavily rely on considerations

about lists of tokens which are not necessarily consistent: such lists may appear every

time we regard the arguments in a given neighborhood. This necessitates a careful

examination of Arrρ in its own right—in the following we just write Arrρ for Arrρ(1, l).
As we will see, this examination unavoidably leads us to purely combinatorial grounds.

Let Γ ∈ Arrρ be a list, not necessarily consistent, and denote its consistent sublists

by ConΓ ; for example, it is a∈ConΓ (seen as a neighborhood), for every a∈Γ , as well

as ∅ ∈ ConΓ for every Γ ∈ Arrρ . Clearly, if Γ ∈ Conρ already, then ConΓ = P(Γ),
while in general it is ConΓ ⊆P(Γ).

2.3 Algebraic function spaces 91

Call M ∈ ConΓ a maximal neighborhood in Γ , and write M ∈MaxΓ , if

∀
a∈Γ

(

a≍ρ M → a ∈M
)

.

An easy observation is that for all V ∈ Conρ , it is U ⊢ρ V for some U ∈ ConΓ if

and only if M ⊢ρ V for some M ∈ MaxΓ (leftwards let U ≔ M and rightwards use

transitivity of entailment at type ρ).

Moreover, the consistency of a list is characterized easily through maximal neigh-

borhoods: at base types, clearly, a list is consistent if and only if it is its own sole

maximal neighborhood, while for higher types we have the following (recall the defi-

nitions of argA and valA on page 61).

Proposition 2.26. A list Θ ∈ Arrρ→σ is a neighborhood if and only if for each left

maximal M ∈Max(argΘ) there is a right maximal N ∈Max(valΘ) with ΘM ⊆ N.

Proof. Write Γ and ∆ for argΘ and valΘ respectively.

From left to right, let Θ ∈ Conρ→σ and M ∈ MaxΓ . If U,U ′ ∈ M, it will be

U ≍ρ U ′, and then WU ≍σ WU ′; so there must be a maximal N ∈Max∆ with WU ⊆N

for every U ∈Max.

From right to left, let Θ ∈ Arrρ→σ with the property that for each left maximal M ∈
MaxΓ there is a right maximal N ∈Max∆ such that ΘM ⊆ N; let 〈U,b〉,〈U ′,b′〉 ∈Θ
with U ≍ρ U ′; there will be a maximal M ∈ MaxΓ with U,U ′ ∈ Γ ; by hypothesis,

there will be an N ∈Max∆ such that

b+b′ ⊆WU +WU ′ ⊆ΘW ⊆ N ,

so Θ is consistent. �

Write c jΓ (“converging” in Γ) and d jΓ (“diverging” in Γ) for the tokens in Γ
which are consistent and inconsistent with its j’th element respectively, that is,

c jΓ ≔ {a j′ ∈ Γ | a j ≍ρ a j′} ,

d jΓ ≔ {a j′ ∈ Γ | a j 6≍ρ a j′} .

It is obviously Γ = c jΓ +d jΓ , for all j’s.

Proposition 2.27. Let Γ ∈ Arrρ and M ⊆ Γ . It is M ∈MaxΓ if and only if

M =
⋂

j∈I(M)

c jΓ .

Proof. From left to right, let M ∈MaxΓ ; it is

ai ∈
⋂

j∈I(M)

c jΓ ⇔ ∀
j∈I(M)

ai ∈ c jΓ ⇔ ∀
j∈I(M)

ai ≍ρ a j
(⋆)
⇔ ai ∈M ,

where (⋆) holds by the maximality of M.

For the other direction, let M =
⋂

j∈I(M) c jΓ ; for the consistency, let ai,a j ∈M, that

is, ai ≍ρ ak and a j ≍ρ ak, for all k ∈ I(M); since i, j ∈ I(M) already, we have ai ≍ρ a j;

for maximality, let ai ≍ρ M, for some i ∈ I(Γ); then ai ≍ρ a j, for all j ∈ I(M), that is,

ai ∈ c jΓ , for all j ∈ I(M), so ai ∈
⋂

j∈I(M) c jΓ , hence ai ∈M by the hypothesis. �

92 2. Matrices and coherent information systems

By the graph-theoretic intuition we appealed to in the previous remark, Proposi-

tion 2.27 expresses that a maximal clique is characterized by the intersection of the

stars induced by its nodes.

We are interested in the way maximal neighborhoods form as we move to a higher

type, so that we may in principle argue about lists in a type-inductive fashion. Introduce

the following shorthands for the sake of readability. Given a list Θ ∈ Arrρ→σ , and

M ∈ Conρ , N ∈ Conσ , write 〈M,N〉Θ for all 〈U,b〉 ∈Θ with M ⊢ρ U and N ⊢σ b. If

Γ ∈ Arrρ , and ∆ ∈ Arrσ , then write 〈Γ ,∆〉 for ∑M∈MaxΓ ∑b∈∆ 〈M,b〉.

Proposition 2.28. Let Θ ∈ Arrρ→σ . The following hold.

1. c jΘ = 〈d jargΘ ,valΘ〉Θ ∪〈argΘ ,c jvalΘ〉Θ ,

2. d jΘ = 〈c jargΘ ,valΘ〉Θ ∩〈argΘ ,d jvalΘ〉Θ .

Proof. For 1:

〈U j′ ,b j′〉 ∈ c jΘ ⇔U j 6≍ρ U j′ ∨b j ≍σ b j′

⇔U j′ ∈ d jargΘ ∨b j′ ∈ c jvalΘ

⇔ 〈U j,b j〉 ∈ 〈d jargΘ ,valΘ〉Θ ∪〈argΘ ,c jvalΘ〉Θ .

Statement 2 is shown similarly:

〈U j′ ,b j′〉 ∈ d jΘ ⇔U j ≍ρ U j′ ∧b j 6≍σ b j′

⇔U j′ ∈ c jargΘ ∧b j′ ∈ d jvalΘ

⇔ 〈U j,b j〉 ∈ 〈c jargΘ ,valΘ〉Θ ∩〈argΘ ,d jvalΘ〉Θ . �

The following is a characterization of higher-type maximal neighborhoods.

Proposition 2.29. Let Θ ∈ Arrρ→σ and P⊆Θ . It is P ∈MaxΘ if and only if

P =
⋃

K⊆I(P)

⋂

k∈K

〈dkargΘ ,valΘ〉Θ ∩
⋂

k∈I(P)rK

〈argΘ ,ckvalΘ〉Θ

 .

Proof. Let Θ ∈ Arrρ→σ , and write Γ ≔ argΘ , ∆ ≔ valΘ . By Proposition 2.27 we

know that P ∈MaxΘ if and only if

P =
⋂

j∈I(P)

c jΘ
P. 2.28
=

⋂

j∈I(P)

(〈d jΓ ,∆〉Θ ∪〈Γ ,c j∆〉Θ) ,

so we want to show that the following equation holds:

⋂

j∈I(P)

(〈d jΓ ,∆〉Θ ∪〈Γ ,c j∆〉Θ)

=
⋃

K⊆I(P)

⋂

k∈K

〈dkΓ ,∆〉Θ ∩
⋂

k∈I(P)rK

〈Γ ,ck∆〉Θ

 .

(2.24)

We relax the notation even more by writing d j for 〈d jΓ ,∆〉Θ and c j for 〈Γ ,c j∆〉Θ , so

the equation (2.24) becomes

⋂

j∈I(P)

(d j ∪ c j) =
⋃

K⊆I(P)

⋂

k∈K

dk ∩
⋂

k∈I(P)rK

ck

 .

2.3 Algebraic function spaces 93

We show that the equation holds by induction on n = |I(P)|> 0. The base case is direct

to see. Let I(P) = {1, . . . ,n,n+1}; then

n+1⋂

j=1

(d j ∪ c j) =
n⋂

j=1

(d j ∪ c j)∩ (dn+1∪ cn+1)

(IH)
=

⋃

K⊆{1,...,n}

(
⋂

k∈K

dk ∩
⋂

k<K

ck

)

∩ (dn+1∪ cn+1)

=
⋃

K⊆{1,...,n}

(
⋂

k∈K

dk ∩
⋂

k<K

ck ∩dn+1

)

∪
⋃

K⊆{1,...,n}

(
⋂

k∈K

dk ∩
⋂

k<K

ck ∩ cn+1

)

=
⋃

K⊆{1,...,n+1}

(
⋂

k∈K

dk ∩
⋂

k<K

ck

)

,

where the last steps require careful but elementary set theory. �

Remark. Note that in the proof we have used the following convention: if Θ ∈ Arrρ→σ

and Q ⊆Θ , indexed by I(Q), then
⋂

k∈∅Q(k) = Θ (“an intersection over the empty

index set yields the universe”). �

We need to be a bit careful with the way we use the lists of arguments in given

neighborhoods: do we mean them as lists of neighborhoods, that is, lists of type Nρ , or

as lists of the neighborhoods’ tokens, that is, lists of type ρ? For our purposes, it turns

out that, given a list in Nρ , we can work with its underlying “flat” list in ρ , and then

draw safe conclusions about it in Nρ again.

Define a flattening mapping fl : ArrNρ → Arrρ in the usual way:

fl(Γ)≔ ∑
U∈Γ

∑
a∈U

a ;

in set-theoretical notation we may as well write fl(Γ) = ∪Γ (we return to this in Chap-

ter 3, on page 108).

Proposition 2.30. Let Γ ∈ ArrNρ . Then

∀
M∈MaxΓ

∃!
M f∈Maxfl(Γ)

M f ⊢Nρ M ∧ ∀
M f∈Maxfl(Γ)

∃!
M∈MaxΓ

M f ⊢Nρ M .

Proof. Let Γ ∈ ArrNρ . For the first conjunct, let M ∈MaxΓ ; it is consistent, so U ≍Nρ

U ′, for all U ∈ M, which means that a ≍ρ a′, for all a ∈U , a′ ∈U ′; then there must

exist a maximal neighborhood M f in fl(Γ), which will contain all a∈U , for any U ∈M,

so M f ⊢Nρ M. Suppose that M′
f is yet another maximal neighborhood in fl(Γ), with

M′
f ⊢Nρ M; then, since entailment preserves consistency, for all a ∈ fl(Γ) it is

[a]≍Nρ M → a≍ρ M f ∧a≍ρ M′
f ,

which yields M f = M′
f due to their maximality with respect to consistency.

For the second conjunct, let M f ∈Maxfl(Γ); since the situation is finite, we may

argue indirectly; let M1, . . . ,MT be all maximals in Γ , and suppose that M f 0Nρ Mt

for any t = 1, . . . ,T ; by the first conjunct, there is an Mt
f ∈Maxfl(Γ), with Mt

f ⊢Mt ,

for every t, and since Mt ’s together cover Γ , their corresponding Mt
f ’s together must

cover fl(Γ); on the other hand, the supposition yields M f 6≍ρ Mt
f , for all t, which would

mean that there are a ∈M f rfl(Γ), a contradiction. Assume now that M f ⊢Nρ M and

M f ⊢Nρ M′, for M,M′ ∈MaxΓ ; then M ≍Nρ M′, so M = M′ by maximality. �

94 2. Matrices and coherent information systems

Eigen-neighborhoods

Let Γ ∈ Arrρ be an arbitrary list. In the following we drop the maximality requirement

of the previous section and consider arbitrary neighborhoods U ⊆ Γ which are still

“closed under entailment relatively to Γ ”, in a way that we describe below.

Let W ∈ Conρ→σ be some neighborhood, and consider a sublist E ⊆W which has

the property

U1 ≍ρ U2∧b1 ≍σ b2 ,

for all 〈Ui,bi〉 ∈ E, i = 1,2. Suppose further that all these arguments U in E are part of

an ideal x ∈ Ideρ ; then b ∈W (x), for all the corresponding values b in E. Conversely,

if such an ideal x entails exactly argE out of all arguments of W—in which case, due to

closure of x, argE would already contain all of argW that it entails—then the elicited

value should be exactly valE; in other words, this sub-neighborhood would serve as a

pointer to all ideals like x extending its argument exclusively in W , while simultane-

ously providing the exact value that W would give out as a result by application. Let’s

try and flesh out this intuition.

Call a sublist E ⊆W an eigen-neighborhood of W , and write E ∈ EigW , if it is

left-consistent, that is,

∀
U1,U2∈argE

U1 ≍ρ U2

(so consequently b1 ≍σ b2 for the corresponding arguments as well), and left-closed

under entailment relatively to W , that is,

∀
〈U,b〉∈W

(

argE ⊢Nρ U → 〈U,b〉 ∈ E
)

,

where Nρ is the corresponding information system of the neighborhoods of ρ5. Every

U ∈ argW generates an eigen-neighborhood EU of W , by

〈U ′,b〉 ∈ EU ≔ 〈U
′,b〉 ∈W ∧U ⊢ρ U ′ .

Furthermore, it is clear that W ∼ρ→σ ∑E∈EigW E.

This is not an inductively defined concept, but merely focuses on the arguments of

the higher-type neighborhood at hand. Still, we can conventionally define the eigen-

neighborhoods of a base-type neighborhood U ∈ Conα to be U itself and ∅α .

Remark. For some intuition on this convention one can think of every base type α as

being isomorphic to the function space U→ α , where U is the unit type. Otherwise,

one can quite easily see that the set of eigen-neighborhoods of a given neighborhood

can indeed be defined inductively. This leads to a method of inductive proof that we

implicitly use in section 2.4. �

The eigen-neighborhoods behave as generalized tokens to some extent, enough to

reveal a quite unexpected atomic behavior that underlies the otherwise non-atomic al-

gebraic entailment.

5The neighborhood information system of ρ is the triple Nρ = (Conρ ,ConNρ ,⊢Nρ), where ∑
l
j=1 U j ∈

ConNρ if and only if ∪l
j=1U j ∈Conρ and ∑

l
j=1 U j ⊢Nρ U if and only if ∪l

j=1U j ⊢ρ U . This is an information

system which is coherent if ρ is coherent and moreover the two have isomorphic domains of ideals (see

Chapter 3, page 108).

2.3 Algebraic function spaces 95

Theorem 2.31 (Implicit atomicity at higher types). Let W1,W2 ∈Conρ→σ . The follow-

ing hold:

W1 ≍ρ→σ W2 ↔ ∀
E1∈EigW1

∀
E2∈EigW2

(

argE1 ≍Nρ argE2 → valE1 ≍σ valE2

)

,

W1 ⊢ρ→σ W2 ↔ ∀
E2∈EigW2

∃
E1∈EigW1

(

argE2 ⊢Nρ argE1∧valE1 ⊢σ valE2

)

.

Proof. Let W1,W2 ∈ Conρ→σ . For consistency, let first W1 ≍ρ→σ W2 and Ei ∈ EigWi,

i = 1,2, with argE1 ≍Nρ argE2; the latter means U1 ≍ρ U2, for any Ui ∈ argEi, which

by the consistency of W yields b1 ≍σ b2, for any bi ∈ valEi. Conversely, let

argE1 ≍Nρ argE2 → valE1 ≍σ valE2 ,

for all Ei ∈ EigWi, i = 1,2, and 〈Ui,bi〉 ∈ Wi with U1 ≍ρ U2; let EUi
be the

eigen-neighborhood in Wi generated by Ui; by the propagation of consistency, it is

argEU1
≍Nρ argEU2

, so the assumption yields b1 ∈ valEU1
≍σ valEU1

∋ b2.

For entailment, it is:

W1 ⊢ρ→σ W2 ⇔ ∀
E2∈EigW2

W1 ⊢ρ→σ E2

⇔ ∀
E2∈EigW2

W1argE2 ⊢σ valE2

⇔ ∀
E2∈EigW2

∃
〈U1,b1〉,...,〈Ul ,bl〉∈W1

(
l

∀
j=1

argE2 ⊢ρ Ul ∧
l

∑
j=1

b j ⊢σ valE2

)

(⋆)
⇔ ∀

E2∈EigW2

∃
E1∈EigW1

(

argE2 ⊢Nρ argE1∧valE1 ⊢σ valE2

)

,

where (⋆) holds by setting 〈U,b〉 ∈ E1 for some 〈U,b〉 ∈W1, whenever ∑
l
j=1 U j ⊢ρ U ;

that this is indeed an eigen-neighborhood of W1 follows directly by the propagation of

consistency and transitivity of entailment at ρ . �

Write 〈U,V 〉 for ∑b∈V 〈U,b〉 and U ∼ρ U ′ for U ⊢ρ U ′ ∧U ′ ⊢ρ U (equientailment

is clearly an equivalence on neighborhoods). With the use of eigen-neighborhoods we

can achieve manageable conservative extensions of a neighborhood.

Proposition 2.32. Let W ∈ Conρ→σ , and E1, . . . ,Em ∈ EigW. For any choice of

U1, . . . ,Um ∈ Conρ and V1, . . . ,Vm ∈ Conσ with the property that Ui ⊢ρ argEi and

valEi ⊢σ Vi, for i = 1, . . . ,m, it is

W ∼ρ→σ W +
m

∑
i=1

〈Ui,Vi〉 .

Proof. For the consistency of the extension W +∑
m
i=1〈Ui,Vi〉, let i, j = 1, . . . ,m; then

Ui ≍ρ U j ⇒ argEi ≍ρ argE j ⇒ valEi ≍σ valE j ⇒Vi ≍σ Vj ,

by the propagation of consistency and consistency of W ; this suffices.

For the equientailment, let i = 1, . . . ,m; it is

Ui ⊢Nρ argEi∧valEi ⊢σ Vi ⇒ Ei ⊢ρ→σ 〈Ui,Vi〉 ,

so W ⊢ρ→σ W +∑
m
i=1〈Ui,Vi〉. The converse is trivial. �

96 2. Matrices and coherent information systems

For every E ∈ EigW there is exactly one UE ∈ Conρ (up to equientailment) and

exactly one V E ∈ Conσ (up to equientailment), such that E ∼ρ→σ 〈U
E ,V E〉; just set

UE
≔ fl(argE) and V E

≔ valE

(for the definition of the flattening mapping see page 93). Say that W is in eigenform,

if for every E ∈ EigW it is 〈UE ,V E〉 ⊆W . Furthermore call W monotone, if for all

〈U1,V1〉,〈U2,V2〉 ⊆W it is

U1 ⊢ρ U2 →V1 ⊢σ V2 .

For example, 〈S0,B01〉+ 〈S∗,B∗1〉 is monotone whereas 〈S0,B∗1〉+ 〈S∗,B01〉 isn’t.

Proposition 2.33. Let ρ , σ be types. For all W ∈ Conρ→σ , there is a monotone W ′ ∈
Conρ→σ in eigenform, such that W ∼ρ→σ W ′.

Proof. Let W ∈ Conρ→σ . Set Γ ≔ fl(argW), and

W ′
≔ ∑

U∈ConΓ

〈U,WU〉 .

It is easy to see that this list is finite and consistent; that it is monotone follows from

the monotonicity of application; that it is in eigenform is obvious by construction.

We show the equientailment. Let 〈U,b〉 ∈W ; since obviously U ∈ ConΓ and b ∈
WU , it is immediate that W ′ ⊢ρ→σ W . For the other direction, let 〈U,V 〉 ⊆W ′, for

some U ∈ConΓ ; since obviously WU ⊢σ WU , the definition of higher-type entailment

immediately yields W ⊢ρ→σ 〈U,WU〉. �

So the non-monotone neighborhood 〈S0,B∗1〉+〈S∗,B01〉 has the equivalent mono-

tone eigenform

〈∅,∅〉+ 〈S0,B∗1+B01〉+ 〈S∗,B01〉+ 〈S0+S∗,B∗1+B01〉 ,

or, written in tokens,

〈S0,B∗1〉+ 〈S0,B01〉+ 〈S∗,B01〉+ 〈S0+S∗,B∗1〉+ 〈S0+S∗,B01〉 .

Now let Θ ∈ Arrρ→σ . We can use eigen-neighborhoods to define an eigensplitting

mapping sp : Arrρ→σ → Arrρ→σ by

spΘ ≔ ∑
〈U,b〉∈Θ

∑
E∈EigU

〈E,b〉 ,

such that it commutes with the flattening mapping.

Proposition 2.34. Let W1 +N · · ·+N WJ ∈ ArrN(ρ→σ). Then

sp(fl(W1 +N · · ·+N WJ)) = fl(spW1 +N · · ·+N spWJ) .

Proof. It is

sp(fl(W1 +N · · ·+N WJ)) = sp(W1 + · · ·+WJ)
(⋆)
= sp(W1)+ · · ·+ sp(WJ)

= fl(sp(W1)+N · · ·+N sp(WJ)) ,

where (⋆) is direct to see from the definition of eigensplitting. �

2.4 Totality and density 97

2.4 Totality and density

In a finitary basic algebraic coherent information system a token is total when it in-

volves no stars, and a neighborhood is total when it entails a total token; write GT and

GCon for total tokens and total neighborhoods respectively. Define the total ideals at

type ρ , and write Gρ , by the following: at base type α , x is total if it contains a total

token; at type ρ → σ , f is total when, applied to a total ideal, it yields a total ideal, that

is, when

∀
x∈ρ

(

x ∈ Gρ → f (x) ∈ Gσ

)

,

where b∈ f (x) if and only if 〈U,b〉 ∈ f , for some U ⊆ x. A type ρ is called dense when

every neighborhood U ∈ Conρ can be extended to a total ideal x ∈ Gρ . The last main

result of this chapter is the density theorem (Theorem 2.37), which states that every

type is dense.

At every base type α we demand the existence of a distinguished nullary construc-

tor 0α . Noting that every type ρ has the form ρ1 → ·· · → ρp → α , for some base type

α and some non-negative number p, write ρ− for the (possibly empty) finite sequence

(ρ1, . . . ,ρp) of the argument types, and Conρ− for Conρ1
× ·· ·×Conρp ; elements of

Conρ− are (possibly empty) finite sequences of neighborhoods of the corresponding

types.

Lemma 2.35 (Separation). Let ρ be a type. For every U1,U2 ∈Conρ , if U1 6≍ρ U2 then

there exists a separator U− ∈ Conρ− such that U1U− 6≍α U2U−.

Proof by induction on types. At a base type there is nothing to show. Let W1,W2 ∈
Conρ→σ , with W1 6≍ρ→σ W2. There will be 〈Ui,bi〉 ∈Wi, i = 1,2, with 〈U1,b1〉 6≍ρ→σ

〈U2,b2〉, that is, with U1 ≍ρ U2 ∧ b1 6≍σ b2. By the induction hypothesis, there is a

separator of b1, b2, that is, a finite sequence V− ∈ Conσ− such that b1V− 6≍α b2V−.

Set U−
≔ (U1+U2,V

−); this is obviously a finite sequence in Con(ρ→σ)− and satisfies

what we need. �

Remark. Notice that the choice of U− in the proof is not unique, since there may be

more than one inconsistency between W1 and W2. �

Now we state another useful lemma without proof (see [49, §6.5]).

Lemma 2.36 (Extension). Let ρ be a type and f ,g ∈ Ideρ . If f ∈ Gρ and f ⊆ g then

g ∈ Gρ .

Theorem 2.37 (Density). Let ρ be a type. For every U ∈ Conρ there is an x ∈ Ideρ ,

such that U ⊆ x and x ∈ Gρ .

Proof by induction on types. At base type α , let U ∈Conα , and b≔ e(U) be its eigen-

token. Clearly, it suffices to find a total token a ∈ GTα with a ⊢α b, and then set

x≔ a. If b = 0, for some nullary constructor 0, then set a≔ b; if b = ∗α , set a≔ 0α .

If b = Cb1 · · ·br, then the induction hypothesis gives ai ∈ GTα , with ai ⊢α bi, for

i = 1, . . . ,r, so setting a≔Ca1 · · ·ar ∈ GTα gives a ⊢α b.

At type ρ → σ , assume that σ and all types in ρ− are dense. Let W = ∑
n
k=1〈Uk,bk〉

be a neighborhood. Observe first that, if there are indices i, j = 1, . . . ,n such that bi 6≍σ

b j, then it is also Ui 6≍ρ U j, by the consistency of W . Then by Lemma 2.35 there is a

separator U−
i j ∈ Conρ− of Ui, U j. In the following we assume that U−

i j =U−
ji .

98 2. Matrices and coherent information systems

For an arbitrary neighborhood U ∈ Conρ gather its fitting values in W , if any, by

VU ≔ {bk |
n

∀
i=1

(

bi 6≍σ bk →UU−
ik ⊢α UkU

−
ik

)

} ;

notice that bk ∈VUk
. This is a neighborhood: let bi,b j ∈VU , and suppose that bi 6≍σ b j;

by the definition of VU it is

UU−
i j ⊢α UiU

−
i j ∧ UU−

i j ⊢α U jU
−
i j ⇒UiU

−
i j ≍α U jU

−
i j ,

which contradicts that U−
i j is a separator. Moreover, it is monotone in U : let U,U ′ ∈

Conρ , with U ⊢ρ U ′; by monotonicity of application it is UU−
ik ⊢α U ′U−

ik ; by the defi-

nition of VU , it is direct to check that, if bk ∈ VU ′ , then bk ∈ VU as well, so the desired

monotonicity follows trivially by inclusion.

By the induction hypothesis we have density at type σ , so VU will have a total

extension vU . Set

f ≔ {〈U,b〉 |

(

∀
1≤i, j≤n

(

bi 6≍σ b j →UU−
i j ∈ GConα

)

∧b ∈ vU

)

∨VU ⊢σ b} . (2.25)

Since bk ∈ VUk
, it is clear that f contains W . We show that f is an ideal, by showing

that it is an approximable mapping.

First, it is consistently defined: Let 〈U,V 〉 ⊆ f ; we show that V ∈ Conσ . For

arbitrary b,b′ ∈V , by the definition of f , it is either b,b′ ∈ vU , or b ∈ vU ∧VU ⊢ b′, or

VU ⊢ b,b′, so b≍σ b′ in all three cases.

Then, it is deductively closed on the right: Let 〈U,V 〉 ⊆ f and V ⊢σ b; we show

that 〈U,b〉 ∈ f . There are two cases: either b′ ∈ vU , for some b′ ∈ V , or VU ⊢σ b′, for

all b′ ∈V . In the first case, we have V ⊆ vU , and since vU is deductively closed, b∈ vU .

In the second case, we have VU ⊢σ b by transitivity at σ .

Finally, it is deductively closed on the left: Let U ⊢ρ U ′ and 〈U ′,b〉 ∈ f ; we show

that 〈U,b〉 ∈ f . In case U ′U−
i j ∈ GConα , for bi 6≍σ b j, by monotonicity of application

it is also UU−
i j ∈ GConα . Moreover, since U ⊢ρ U ′, both U ′U−

i j and U ′U−
i j will entail

the same total token, so VU =VU ′ , and then b ∈ vU . In case VU ′ ⊢σ b, monotonicity of

VU in U yields VU ⊢ b.

It remains to show totality. Let x ∈ Gρ . We show that f (x) ∈ Gσ . By the definition

of application we have

b ∈ f (x)⇔ ∃
U⊆x
〈U,b〉 ∈ f .

For all i, j = 1, . . . ,n with bi 6≍σ b j we have separators U−
i j ∈ Conρ− ; by the induction

hypotheses at types in ρ−, for every such separator there exists a finite sequence u−i j

of corresponding total extensions. By totality of x we have x(u−i j) ∈ Gα . Let U be

the union of all Ui j ⊆ x with Ui ju
−
i j ∈ GConα ; it is also Uu−i j ∈ GConα . Then, for all

b ∈ vU , it is 〈U,b〉 ∈ f , which means that vU ⊆ f (x). By Lemma 2.36 we have that

f (x) ∈ Gσ . �

Now let us examine what it means for our setting that the density statement holds.

Write x≍ρ U if Ux ≍ρ U for all Ux ⊆ x.

Proposition 2.38. For all x ∈ Gρ and U ∈ Conρ it is effectively either x ≍ρ U or

x 6≍ρ U.

2.4 Totality and density 99

Proof by induction on types. At base type α , let x ∈ Gα and U ∈ Conα ; let a ∈ x be

the total token of x; then either a≍α U or a 6≍α U , so either x≍α U or x 6≍α U .

At type ρ → σ , let f ∈ Gρ→σ and W ∈ Conρ→σ ; let 〈U,V 〉 ∈ Eig(W); by The-

orem 2.37 there exists an x ∈ Gρ with U ⊆ x; f is total, so f (x) ∈ Gσ , and it is ei-

ther f (x) ≍σ V or f (x) 6≍σ V by the induction hypothesis at σ ; so we can decide if

f ≍ρ→σ 〈U,V 〉 holds for all eigen-neighborhoods of W or if f 6≍ρ→σ 〈U,V 〉 for some

of them; in the first case we have f ≍ρ→σ W , and in the second we have f 6≍ρ→σ W . �

Note that there is a neighborhood at each type ρ , which is consistent with all total

ideals, namely ∅ρ , the empty one. Now suppose that we are given the list of argu-

ments of some higher-type neighborhood, and that it contains two inconsistent neigh-

borhoods; the following implies that we can witness their inconsistency in a minimal

way.

Proposition 2.39. For all x ∈ Gρ and U1,U2 ∈ Conρ in eigenform, if x ≍ρ U1 and

U1 6≍ρ U2 then

1. x 6≍ρ U2, and furthermore,

2. there is a Ux,1 ∈ Conρ , such that U1 ⊢ρ Ux,1 ⊆ x and Ux,1 6≍ρ U2.

Proof by induction on types. At type α , let x ∈ Gα and U1,U2 ∈ Conα , with x ≍α U1

and U1 6≍α U2; then U1⊆ x, and the second assumption yields x 6≍α U2, so the property 1

holds. The property 2 holds as well, for Ux,1
≔U1.

At type ρ → σ , let f ∈ Gρ→σ and W1,W2 ∈ Conρ→σ , with f ≍ρ→σ W1 and

W1 6≍ρ→σ W2; by Theorem 2.31 and the fact that the neighborhoods are in eigenform,

there will be 〈Ui,Vi〉 ⊆Wi, i = 1,2, such that

〈U1,V1〉 6≍ρ→σ 〈U2,V2〉 ,

which means

U1 ≍ρ U2∧V1 6≍σ V2 ;

by Theorem 2.37 there is an x ∈ Gρ with U1 +U2 ⊆ x, and by the totality of f we have

f (x) ∈ Gσ , for which

f (x)≍σ V1∧V1 6≍σ V2 .

The induction hypothesis that 1 holds at σ yields f (x) 6≍σ V2, so f 6≍ρ→σ 〈U2,V2〉, and

consequently f 6≍ρ→σ W2, so the property 1 holds at ρ → σ as well.

The induction hypothesis that 2 holds at σ yields a V f (x),1 ∈ Conσ , with

V1 ⊢σ V f (x),1 ⊆ f (x) ∧ V f (x),1 6≍σ V2 ;

by the definition of application of ideals, let U f (x),1 ∈ Conρ be an argument for V f (x),1

in f , that is, be such that

〈U f (x),1,V f (x),1〉 ⊆ f ∧ U f (x),1 ⊆ x ;

then 〈U f (x),1 +U1 +U2,V
f (x),1〉 ⊆ f , by the deductive closure of f ; it is

〈U1,V1〉 ⊢ρ→σ 〈U
f (x),1 +U1 +U2,V

f (x),1〉 ⊆ f ,

and

〈U f (x),1 +U1 +U2,V
f (x),1〉 6≍ρ→σ 〈U2,V2〉 ;

100 2. Matrices and coherent information systems

so it suffices to set

W f ,1
≔ ∑

U1∈Confl(argW1)

〈U f (x),1 +U1 +U2,V
f (x),1〉 ,

and the property 2 holds at ρ → σ as well. �

2.5 Notes

Non-blank-row matrices

Proposition 2.6 interestingly implies that matrices with non-blank rows together with

matrix overlapping and matrix inclusion form an acis; let us call this nbr-acis and

denote it by (Arrnbr,≬,⊂). This acis is different from the (Mat,≍,≻), since the carriers

are clearly distinct: blank arrays belong to Mat but not to Arrnbr and the former contains

only coherently consistent matrices. However, one can easily show that if A ⊂ B then

B≻ A, though no similar remark can be made for ≬ and ≍.

This last remark is nevertheless misleading as far as the nature of this structure

is concerned. The nbr-acis essentially mimics the conjunction-implication systems of

page 51: given two (decidable) formulas, suppose we induce corresponding matrices

(like the test matrices we used for the function spaces); then overlapping of the latter

mimics the conjunction of the former while inclusion of the latter mimics implication

of the former, as is portrayed by Theorem 2.8.

On normal forms

The notion of a “normal form”, as is well known, is a prime player in the context of

rewriting systems (see for example [54]). A rewriting system is just a set A with a

binary relation→, its rewrite relation. We say that an element a ∈ A is in normal form

if it is not further rewritable, that is, if there is no b ∈ A for which a→ b. The rewriting

system is uniquely normalizing if for every a ∈ A there is a unique normal form a′ ∈ A

such that a→⋆ a′ (→⋆ being the reflexive-transitive closure of→); we say that a′ is the

normal form of a.

Under this terminology, there are three different notions of normal forms of a

given neighborhood U that we have encountered: the maximal form m(U) (pages 33

and 84), the homogeneous form h(U) (page 69) and the eigentoken, or eigenform,

e(U) (page 82). As we have seen, the only ubiquitous one is the homogeneous form,

as it makes sense for all finitary and infinitary algebras alike. On the other hand, the

eigenform exists only for finitary algebras, while the maximal form is unique only for

finitary algebras with at most unary constructors.

In the preceding sections we have studied these normal forms rather algebraically,

as functions h, e, and m—even, the “matrix form” KU (MU) of U is strictly speaking

not a normal form, since the analysis to an application of a constructor context to a

basic matrix is just a (unique) representation of the homogeneous form. An approach

to these notions as normal forms of explicit rewrite relations→h,→e, and→m, should

shed appropriate light on the equational logic of any logical system that would attempt

to formalize our model for higher-type computability, like the system TCF+ of [18].

2.5 Notes 101

On general formal matrix theories

Except of course for the fully developed linear algebraic matrix theory and its wide ap-

plications and generalizations in mathematics and science in general, it seems that little

or no work has been done on matrices over non-field-like structures. Given their com-

bined intuitiveness and practicability as mathematical objects, it could be expected that

a treatment of matrices over an arbitrary mathematical structure (in the sense of mathe-

matical logic), or maybe over graphs and hypergraphs (in the sense of graph theory and

theoretical computer science) should be direct and easily attainable to a considerable

extent; still, in view of the lack of relevant literature, it seems that something like that

has hardly ever been considered worthwhile to pursue until now.

To the best knowledge of the author, this is the first time that a non-numerical,

relational structure (here, information systems) motivates a study of matrices; one can

wonder what a more general approach to a formal matrix theory could bring about.

Implicit atomicity formally

It is interesting to notice that there is a flavor of uniformity about atomic entailment.

Let U = K(A) and b = K(B) be the matrix forms of a neighborhood and a token at a

finitary base type, where A ∈Mat(r, l) and B ∈Mat(r,1); then

U ⊢ b↔
r

∀
i=1

l

∃
j=1

A(i, j)≻ B(i) ,

whereas

U ≻ b↔
l

∃
j=1

r

∀
i=1

A(i, j)≻ B(i) .

Furthermore, in the light of our study of eigen-neighborhoods, we may state the

implicit atomicity of non-atomic systems in a strict formal way. Say that an information

system ρ features implicit atomicity when for each neighborhood, there is an equivalent

atomic one, that is,

∀
U∈Conρ

∃
UE∈Conρ

(

UE ∼U ∧ ∀
b∈Tρ

(

UE ⊢ b→ ∃
a∈UE

{a} ⊢ b

))

.

Acises are implicitly atomic in a trivial way, since every neighborhood there is defined

to be atomic. Using Theorems 2.22 and 2.31 (in conjunction with Proposition 2.33)

one may show that all algebraic coherent information systems are implicitly atomic: at

each type, each U has an atomic eigenform UE .

The maximal clique problem

In page 90 we start a short study of maximal neighborhoods in arbitrary lists. We

should note that the notion of a maximal neighborhood has a clear graph-theoretic

nature, which can give us a good intuition about its behavior. A list Γ ∈Arrρ(n) induces

an undirected graph GΓ with all loops, where the nodes are (the indices of) its elements

and an edge appears whenever two nodes are consistent. A maximal neighborhood in

Γ corresponds then simply to a maximal clique in GΓ .

The problem of determining all maximal cliques in a given graph is a well-known

subject in the related literature (see for example in [19]). An algorithm which solves

the problem is the following:

102 2. Matrices and coherent information systems

1. set MaxΓ ≔ {Γ };

2. for all pairs (i, j) < GΓ do the following:

(a) let INC be the set of the current M ∈MaxΓ , for which i, j ∈M; reset

MaxΓ ≔
⋃

M∈INC

(MaxΓ rM)∪{Mr i,Mr j}) ,

so that the inconsistency between ai and a j is lifted by separating M into

two subsets, one including the former, the other the latter;

(b) reset

MaxΓ ≔ {M ∈MaxΓ | ∀
M′∈MaxΓ

(

M ⊆M′→M = M′
)

} ,

so that only the (set-theoretically) maximal sets are kept.

It is not hard to see that the algorithm in the end yields the maximal cliques: the

for-loop (2a) ensures that all inconsistencies are raised from each possible maximal

neighborhoods, while maximality is ensured by step (2b); that no element is forgotten

in the process is ensured by the initial value at step (1).

As an example, consider a list Γ ∈ Arrρ(8), with inconsistency pairs (1,4), (2,6),
(4,6), and (5,6). The algorithm proceeds as follows:

Γ = (1+2+3+4+5+6+7+8)
(1,4)
= (1+2+3+5+6+7+8)+(2+3+4+5+6+7+8)
(2,6)
= (1+2+3+5+7+8)+(1+3+5+6+7+8)

+(2+3+4+5+7+8)+(3+4+5+6+7+8)
(4,6)
= (1+2+3+5+7+8)+(1+3+5+6+7+8)+(2+3+4+5+7+8)

+
✭

✭
✭
✭

✭
✭

✭
✭

(3+4+5+7+8)+
✭

✭
✭
✭

✭
✭
✭
✭

(3+5+6+7+8)
(5,6)
= (1+2+3+5+7+8)+

✭
✭

✭
✭
✭

✭
✭
✭

(1+3+5+7+8)+

+(1+3+6+7+8)+(2+3+4+5+7+8) ,

where the canceled lists are proper subsets of preexisting lists each time; the resulting

maximal cliques are the remaining three.

Complexity lies beyond our current scope, but we should notice that in the worst-

case scenario, where Γ consists of pairwise inconsistent elements, thus inducing a

so-called totally disconnected graph—to be precise, “totally” up to the loops—the

algorithm terminates in 2
1
2 n(n−1) steps (taking both symmetry and reflexivity into

account)—in which case, naturally, the maximal neighborhoods would consist of one

element of Γ each.6 What is particular in the above algorithm to our approach, is that

it employs a recurring idea: “an inconsistency may serve as a pivot”.

On density

The density theorem was first proved by Stephen Kleene in [21] and Georg Kreisel

in [24], and since the development of domain theory, and after Yuri Ershov’s [10], it

6Thanks to Mihalis Yannakakis for the enlightening private correspondence on this issue.

2.5 Notes 103

has been studied a number of times, notably in Ulrich Berger’s [4] and [5]—see [52],

[45], [25], and also [32].

The proof of our density theorem (page 97) follows closely the corresponding proof

in [18] (where it was also formalized in TCF+). It differs in the following points: (a) it

is “linear”, in that it does not employ a mutual induction anymore, where each type was

shown to be both dense and separating, but breaks down to a lemma for separation and

a single induction for density; (b) the separators are not infinite objects (total ideals)

any more, but mere finite lists (neighborhoods). A third difference is that we restrict

here attention to types over finitary algebras, but it is easy to see that this does not really

harm generality.

Outlook

There are at least two directions to pursue. On the one hand, the matrix theory which

we developed in the first half of the chapter could afford a lot of streamlining, in partic-

ular on such a proof assistant as MINLOG (see http://www.math.lmu.de/˜logik/

minlog/index.php as well as [3], [48], and [6]). On the other hand, the higher-type

notion of an eigen-neighborhood suggests novel techniques that we could use to obtain

native proofs of definability, density, and other deep results which up to now could have

been available only as adaptations of much more general arguments.

Chapter 3

Connections to point-free

structures

In this chapter we seek to establish direct connections between information systems

and well-known point-free topological structures. This should be viewed as a step in

the spirit of Giovanni Sambin’s abstract of [38]:

[. . .] how much of domain theory can be generalized to formal topology?

My impression is that some open problems in one of the two fields could

already have a solution in the other, and that is why an intensification of

contact should be rewarding.

Preview

In contrast to the previous chapters, we adopt here a traditional and general view, where

no algebras are considered. In section 3.1 we state basic facts and observations con-

cerning Scott information systems, and in section 3.2 we introduce the notions of atom-

icity and coherence in the traditional top-down way, where among other things we point

to the fact that atomic and coherent versions of Scott information systems feature more

ideals than the generic version (Theorem 3.7).

In section 3.3 we consider well-known point-free structures, like domains and for-

mal topologies, and impose appropriate coherence properties on them to show that they

correspond to coherent information systems.

3.1 Scott information systems

A (Scott) information system is a triple ρ = (T,Con,⊢) where T is a countable set of

tokens, Con ⊆P f (T) is a collection of (formal) neighborhoods and ⊢ ⊆ Con×T is

an entailment relation, which obey the following:

1. consistency is reflexive, in the sense that a token suffices to form a formal neigh-

borhood:

{a} ∈ Con ;

2. consistency is closed under subsets:

U ∈ Con∧V ⊆U →V ∈ Con ;

106 3. Connections to point-free structures

3. entailment is reflexive, in the sense that a neighborhood entails its elements:

a ∈U →U ⊢ a ;

4. entailment is transitive:

U ⊢V ∧V ⊢ c→U ⊢ c ;

5. consistency propagates through entailment:

U ∈ Con∧U ⊢ b→U ∪{b} ∈ Con ,

where U ⊢V is a shorthand for ∀b∈V U ⊢ b.

The following follow directly from the definition of an information system.

Proposition 3.1. In every information system the following hold:

1. ∅ ∈ Con,

2. U ⊢V →U ∪V ∈ Con,

3. U ⊢U,

4. U ⊢V ∧V ⊢W →U ⊢W,

5. U ′ ⊇U ∧U ⊢V ∧V ⊇V ′→U ′ ⊢V ′,

6. U ⊢V ∧U ⊢V ′→U ⊢V ∪V ′.

An ideal in ρ is a set u⊆ T which is consistent and closed under entailment in the

following sense:

∀
U⊆ f u

U ∈ Con∧ ∀
U⊆ f u

(U ⊢ a→ a ∈ u) .

Denote the empty ideal by ⊥ and the collection of all ideals of ρ by Ideρ . Define the

deductive closure of a neighborhood U ∈ Con by

clρ(U)≔ {a ∈ T |U ⊢ a} .

When ρ is clear from the context we just write U . Write Conρ for the collection of all

such closures.

Proposition 3.2. If U ∈ Con then U ∈ Ideρ .

Proof. Let U ∈ Con, and V ⊆ f U ; it is U ⊢ V , so U ∪V ∈ Con and so V ∈ Con. If,

further, V ⊆ f U ∧V ⊢ a, then U ⊢V ⊢ a, so a ∈U by definition. �

Two examples

We give two examples of finite information systems that we will use later. Consider

the alphabet Ω = {l,r,m}, and denote the empty word of Ω⋆ by ε . The first one, the

Coquand information system C , offers a formal version of Coquand’s counterexample

to atomicity (see page 47), and is defined by

TC ≔ {ε, l,r} ,

ConC ≔P f (TC) ,

3.1 Scott information systems 107

{l} {ε} {r}

{l,ε} {l,r} {ε,r}

{l,ε,r}
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ε

l m r

lm lr mr

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 3.1: Entailments in ConC r∅ and TL .

and its entailment by (see Figure 3.1)

{l} ⊢C l , {r} ⊢C r , {ε} ⊢C ε ,

{l,r} ⊢C l,r,ε , {r,ε} ⊢C r,ε , {l,ε} ⊢C l,ε ,

{l,r,ε} ⊢C l,r,ε .

It is easy to check that C indeed satisfies the axioms of an information system. Fur-

thermore, understanding that {l,r} ⊢C ε is the only nontrivial entailment at hand, it is

easy to see that

IdeC = P f (TC)r{l,r} .

The Plotkin information system L is defined by

TL ≔ {ε, l,m,r, lm, lr,mr} ,

U ∈ ConL ≔ ∃
a∈TL

∀
b∈U

a superword of b ,

U ⊢L b≔ ∃
a∈U

a superword of b .

Again, it is easy to check that L satisfies the axioms of an information system. Its

ideals, IdeL , are the following:

⊥ , {ε} ,

{l,ε} , {m,ε} , {r,ε} ,

{l,m,ε} , {l,r,ε} , {m,r,ε} ,

{lm, l,m,ε} , {lr, l,r,ε} , {mr,m,r,ε} .

Approximable maps

Let ρ and σ be two information systems. A relation r ⊆ Conρ ×Tσ is called an ap-

proximable map from ρ to σ if

• it is consistently defined, that is,

∀
b∈V

(U,b) ∈ r→V ∈ Conσ ,

for U ∈ Conρ , V ⊆ f Tσ , and

108 3. Connections to point-free structures

• it is deductively closed, that is,

U ′ ⊢ρ U ∧ ∀
b∈V

(U,b) ∈ r∧V ⊢σ b′→ (U ′,b′) ∈ r ,

for U,U ′ ∈ Conα , V ∈ Conσ and b′ ∈ Tσ .

Let us stress the fact that an approximable map need not be a single-valued mapping in

general. Write Apxρ→σ for all approximable maps from ρ to σ . One can easily gener-

alize Proposition 1.16 and show that the ideals of ρ → σ are exactly the approximable

maps from ρ to σ , that is, that Ideρ→σ = Apxρ→σ .

As already remarked in Scott’s seminal paper [51, §5] (where actually the converse

route was taken), any approximable map r from ρ to σ induces a relation r̂ ⊆ Conρ ×
Conσ by letting

(U,V) ∈ r̂≔ ∀
b∈V

(U,b) ∈ r .

Proposition 3.3. Let r be an approximable map from ρ to σ . For the relation r̂ the

following hold:

1. (∅,∅) ∈ r̂,

2. (U,V) ∈ r̂∧ (U,V ′) ∈ r̂→ (U,V ∪V ′) ∈ r̂,

3. U ′ ⊢ρ U ∧ (U,V) ∈ r̂∧V ⊢σ V ′→ (U ′,V ′) ∈ r̂.

Conversely, if R ⊆ Conρ ×Conσ satisfies the above, then the relation Ř ⊆ Conρ ×Tσ

defined by

(U,b) ∈ Ř≔ ∃
V∈Conσ

(b ∈V ∧ (U,V) ∈ R)

is an approximable map from ρ to σ .

In what follows we will identify r with r̂ and R with Ř.

Ideal-wise equality

Call two information systems ρ and σ ideal-wise equal or just equal, and write ρ ≃ σ ,

if they give rise to the same ideals up to isomorphism, that is, if Ideρ ≃ Ideσ . Ideal-

wise equal information systems define isomorphic domains (see section 3.3), hence the

overload on the isomorphism symbol “≃”. Call ρ ideal-wise smaller or just smaller

than σ , and write ρ � σ , if the ideals of the former can be embedded into the ideals of

the latter, that is, if Ideρ ֒→ Ideσ . Notice that, in general, it is ρ � σ ∧σ � ρ 6→ ρ ≃ σ .

Let ρ = (T,Con,⊢) be an information system. Its neighborhood information sys-

tem Nρ = (NT,NCon,⊢N) is defined by

NT ≔ Con ,

U ∈ NCon≔
⋃

U ∈ Con ,

U ⊢N V ≔
⋃

U ⊢V .

Proposition 3.4. If ρ is an information system then Nρ is an information system, and

it is ρ ≃ Nρ .

3.1 Scott information systems 109

Proof. For reflexivity of consistency: Let U ∈ Con; then obviously {U} ∈ NCon by

definition. For closure under subsets: Let U ,V ∈P f (Con); then

U ∈ NCon∧V ⊆U

⇒
⋃

U ∈ Con∧
⋃

V ⊆
⋃

U

clsr
⇒
⋃

V ∈ Con

⇔ V ∈ NCon .

For reflexivity of entailment: Let U ∈P f (Con) and U ∈ Con; then

U ∈U ⇒U ⊆
⋃

U
refl. in ρ
⇒

⋃

U ⊢U ⇔U ⊢N U .

For transitivity of entailment: Let U ,V ∈P f (Con) and W ∈ Con; then

U ⊢N
V ∧V ⊢N W

⇔ ∀
V∈V

U ⊢N V ∧V ⊢N W

⇔ ∀
V∈V

⋃

U ⊢V ∧
⋃

V ⊢W

⇔
⋃

U ⊢
⋃

V ∧
⋃

V ⊢W

trns
⇒
⋃

U ⊢W

⇔U ⊢N W .

For propagation of consistency through entailment: Let U ∈P f (Con) and V ∈ Con;

then

U ∈ NCon∧U ⊢N V

⇔
⋃

U ∈ Con∧
⋃

U ⊢V

prpg

⇒
⋃

U ∪V ∈ Con

⇔U ∪{V} ∈ NCon .

To show that the classes of ideals in the two information systems are isomorphic,

take the correspondence defined by the two mappings P f : Ideρ → IdeNρ and
⋃

:

IdeNρ → Ideρ . It is direct to see that both of them are well-defined injections, as well

as that they are mutually inverse. �

Consider now the quotient information system Qρ =
(

QT,QCon,⊢Q
)

, defined by

QT ≔ Con/∼ ,

{[Ui]}i<n ∈ QCon≔
⋃

i<n

Ui ∈ Con ,

{[Ui]}i<n ⊢
Q [V]≔

⋃

i<n

Ui ⊢V ,

where

U ∼V ≔U ⊢V ∧V ⊢U

is the equientailment or equivalence of formal neighborhoods. An easy characteriza-

tion of equientailment in terms of closures is given by the following.

110 3. Connections to point-free structures

Proposition 3.5. It is U ∼V if and only if U =V .

Proof. The right direction follows from transitivity and the left one from reflexivity

and transitivity of entailment. �

Proposition 3.6. Equientailment is compatible with QCon and ⊢Q. Furthermore, if ρ
is an information system then Qρ is an information system, and it is ρ ≃ Qρ .

Proof. For compatibility with QCon: Let {U1, . . . ,Un} ∈QCon and Ui ∼Vi, for all i =
1, . . . ,n; by definition

⋃n
i=1 Ui ∈ Con and Ui ⊢Vi∧Vi ⊢Ui, for all i’s; then

⋃n
i=1 Ui ⊢Vi,

for all i’s, so
⋃n

i=1 Vi ∈ Con, and by definition {V1, . . . ,Vn} ∈ QCon.

For compatibility with ⊢Q: Let {U1, . . . ,Un} ⊢
Q U and Ui ∼ Vi, for i = 1, . . . ,n,

as well as U ∼ V ; by definition
⋃n

i=1 Ui ⊢U and Ui ⊢ Vi ∧Vi ⊢Ui, for all i’s, as well

as U ⊢ V ∧V ⊢ U ; then
⋃n

i=1 Vi ⊢
⋃n

i=1 Ui ⊢ U ⊢ V , so by transitivity and definition

{V1, . . . ,Vn} ⊢
Q V .

For reflexivity of consistency: Let [U] ∈QT , that is, [U] ∈Con/∼; from U ∈Con,

we immediately have {[U]} ∈ QCon by definition. For closure under subsets: Let

{[Ui]}i<n,{[Vj]} j<m ∈P f (QT); then

{[Ui]}i<n ∈ QCon∧{[Vj]} j<m ⊆ {[Ui]}i<n

⇔
⋃

i<n

Ui ∈ Con∧
⋃

j<m

Vj ⊆
⋃

i<n

Ui

clsr
⇒

⋃

j<m

Vj ∈ Con

⇔{[Vj]} j<m ∈ QCon .

For reflexivity of entailment: Let {[Ui]}i<n ∈P f (QT) and [U] ∈ QT ; then

[U] ∈ {[Ui]}i<n ⇔ ∃
i<n

[U] = [Ui]

⇒ ∃
i<n

Ui ⊢U

(⋆)
⇒
⋃

i<n

Ui ⊢U

⇔{[Ui]}i<n ⊢
Q [U] ,

where at (⋆) we used reflexivity and transitivity at ρ . For transitivity of entailment: Let

{[Ui]}i<n,{[Vj]} j<m ∈P f (QT) and [W] ∈ QT ; then

{[Ui]}i<n ⊢
Q {[Vj]} j<m∧{[Vj]} j<m ⊢

Q [W]

⇔ ∀
j<m
{[Ui]}i<n ⊢

Q [Vj]∧{[Vj]} j<m ⊢
Q [W]

⇔ ∀
j<m

⋃

i<n

Ui ⊢
Q Vj ∧

⋃

j<m

Vj ⊢
Q W

(⋆)
⇒
⋃

i<n

Ui ⊢
Q
⋃

j<m

Vj ∧
⋃

j<m

Vj ⊢
Q W

trns
⇒{Ui}i<n ⊢W

⇔{[Ui]}i<n ⊢
Q [W] ,

3.2 Atomicity and coherence in information systems 111

where the step (⋆) we got by Proposition 3.1(6). For propagation of consistency through

entailment: Let {[Ui]}i<n ∈P f (QT) and [V] ∈ QT ; then

{[Ui]}i<n ∈ QCon∧{[Ui]}i<n ⊢
Q [V]

⇔
⋃

i<n

Ui ∈ Con∧
⋃

i<n

Ui ⊢V

prpg

⇒
⋃

i<n

Ui∪V ∈ Con

⇔{[Ui]}i<n∪{[V]} ∈ QCon .

We show that Qρ ≃ Nρ , so that Qρ ≃ ρ will follow from Proposition 3.4. For

IdeQρ ֒→ IdeNρ take u 7→ {V ∈ NT | ∃U∈Con ([U] ∈ u∧V ∈ [U])}, and for IdeNρ ֒→
IdeQρ take u 7→ {[U] ∈ QT |U ⊆ u}. It is direct to see that these mappings are well-

defined injections, as well as that they are mutually inverse. �

3.2 Atomicity and coherence in information systems

For an arbitrary information system ρ = (T,Con,⊢), define atomic entailment and

coherent neighborhoods respectively by

U ⊢A b≔ ∃
a∈U
{a} ⊢ b ,

U ∈ HCon≔ ∀
a,a′∈U

{a,a′} ∈ Con ,

where U ∈P f (T).

Theorem 3.7. The following hold:

1. It is ⊢A⊆⊢ and Con⊆ HCon.

2. The triples Aρ ≔ (T,Con,⊢A) and Hρ ≔ (T,HCon,⊢H) are both information

systems, where, in Hρ , entailment is extended to coherent neighborhoods U ∈
HCon trivially, that is, by inductively adding all reflections and transitions of

HCon on ⊢:

U ⊢H b≔U ⊢ b∨b ∈U ∨ ∃
V∈HCon

(

U ⊢H V ∧V ⊢H b
)

.

3. It is clAρ(U)⊆ clρ(U) and ∀U∈Con clHρ(U) = clρ(U).

4. It is ρ � Aρ and ρ � Hρ .

5. Atomicity and coherence are idempotent, in the sense that A(Aρ) ≃ Aρ and

H(Hρ)≃ Hρ .

Proof. For the first statement: we have ⊢A⊆⊢ directly by definition, and reflexivity

and transitivity of ⊢, while for every U ∈ Con, by closure under subsets, we have

∀a,a′∈U{a,a
′} ∈ Con, so U ∈ HCon.

For the second statement: For Aρ we have to check the laws of the definition

concerning entailment. For reflexivity, if U ∈ Con then {a} ⊢ a for all a ∈ U , so

112 3. Connections to point-free structures

U ⊢A a for all a ∈U . For transitivity:

U ⊢A V ∧V ⊢A c
def
⇔ ∀

b∈V
∃

ab∈U
{ab} ⊢ b∧ ∃

b∈V
{b} ⊢ c

a≔ ab⇒ ∃
a∈U
{a} ⊢ c

def
⇔U ⊢A c

Finally, consistency propagates through atomic entailment, since it does so through

entailment in general (see previous statement).

For Hρ: Reflexivity for coherent consistency follows from the previous state-

ment, since all singletons are already in Con. For closure of coherent consistency

under subsets, let U ∈ HCon, V ⊆ U ; by closure under subsets for neighborhoods,

it is V ∈ Con, so it is a finite set; for a,a′ ∈ V , since V ⊆ U , it is {a,a′} ∈ Con, so

V ∈HCon. Reflexivity of coherent entailment follows directly from the definition. For

the transitivity of coherent entailment let’s consider the most complicated case, where

U,V ∈ HConrCon with

∀
b∈V

(

∃
WU∈HCon

(

U ⊢H WU ∧WU ⊢
H b

)

)

∧ ∃
WV∈HCon

(

V ⊢H WV ∧WV ⊢
H c

)

.

By applying the induction hypothesis first for WU via V to WV and then for WU via

WV to c, we get WU ⊢
H c, so by definition it is U ⊢H c. For propagation of coherent

consistency through coherent entailment, let U ⊢H b for some U ∈ HCon: if U ⊢ b

then U ∪{b} ∈ Con ⊆ HCon; if b ∈ U , then U ∪{b} = U ∈ HCon; if U ⊢H V and

V ⊢H b for some V ∈HCon, then, by the induction hypothesis, it is U ∪V ∈HCon and

U ∪V ⊢H b; by the induction hypothesis again, U ∪V ∪{b} ∈HCon; by closure under

subsets, U ∪{b} ∈ HCon.

The third statement is direct to show.

For the fourth statement: We show that Ideρ ⊆ IdeAρ ; let u ∈ Ideρ ; if U ⊆ f u, then

U ∈ Con by the consistency in ρ; if further U ⊢A b, then U ⊢ b since ⊢A⊆⊢, so b ∈ u

by deductive closure in ρ .

We now show that Ideρ ⊆ IdeHρ : let u ∈ Ideρ ; if U ⊆ f u, then U ∈ Con ⊆ HCon

by the consistency in ρ; if further U ⊢A b, then U ⊢ b since U ∈ Con again, so b ∈ u by

deductive closure in ρ .

For the fifth statement: For the idempotence of A, the only thing we have to show

is that ⊢AA
=⊢A:

U ⊢AA

b⇔ ∃
a∈U
{a} ⊢A b

⇔ ∃
a∈U

∃
a′∈{a}

{a′} ⊢ b

⇔ ∃
a∈U
{a} ⊢ b .

So it is A(Aρ)≃ Aρ , actually with the trivial isomorphism. For the idempotence of H,

we have ConHρ = HConρ , so:

U ∈ H(HConρ)⇔ ∀
a,a′∈U

{a,a′} ∈ HConρ

(∗)
⇔ ∀

a,a′∈U
{a,a′} ∈ Conρ

⇔U ∈ HConρ ,

3.3 Coherent point-free structures 113

and U ∈ ConHρ ; step (∗) holds since two-element sets that are consistent are also

coherently consistent and vice versa. Finally, let U ⊢HH
b; if it is U ⊢H b or b ∈U ,

then we’re done; if there is a V ∈ H(HCon) such that U ⊢HH
V and V ⊢HH

b, then, as

we just saw, it is V ∈ HCon, which means that U ⊢H V and V ⊢H b, so by transitivity,

U ⊢H b. �

Notice that we cannot do better than Theorem 3.7(4) in general. Indeed, both atom-

icity and coherence may provide “extra” ideals that are absent in the original informa-

tion system. For example, consider the information systems C and L (page 106); it is

direct to check that

IdeC = {l,r} ∈ IdeAC

(follows by the Coquand counterexample) and also that

IdeL = {l,m,r,ε} ∈ IdeHL .

So atomic and coherent information systems are generally ideal-wise richer. Notice,

moreover, that they are the richest we can get in this manner, a fact that is expressed by

Theorem 3.7(5).

3.3 Coherent point-free structures

Formal topology is point-free topology from a predicative and constructive viewpoint

([40], [39], [42], [9]). Links between domain theory and formal topology have been

noticed and studied by several people already (see [41], [38], [30], [33], [52]). The

main objective of this section is to match coherent information systems to respective

“coherent” point-free structures, domains included.

The basic problem that one faces in such an endeavor lies, not surprisingly, in the

very nature of coherence. By its definition (page 111), coherence involves comparisons

between tokens, but tokens are unobservable in any point-free setting; everything there

starts with neighborhoods. Luckily, we have the following easy characterization.

Proposition 3.8. A finite set of tokens is a coherent neighborhood if and only if every

two of its subsets have a coherent union: it is U ∈HCon if and only if U ∈P f (T) and

U1∪U2 ∈ HCon, for any U1,U2 ⊆U.

Notice that we could equivalently say “U0 ∈ HCon for any U0 ⊆U” instead of “U1 ∪
U2 ∈HCon for any U1,U2 ⊆U”; we choose the latter to stress that the issue of validity

of a neighborhood in a coherent system is raised from comparisons of its tokens, to

comparisons of its subsets. The coherence conditions (3.1), (3.2), and (3.4), that we

pose in the following are all modeled after Proposition 3.8.

In this section we restrict ourselves to the case where we have countable carrier

sets.

Domains

We start with the known correspondence of arbitrary Scott information systems and

domains (of countable base), which we quickly recount here without proofs, to set the

mood for what comes next (see Appendix A for relevant basic notions and facts that

we may refer to but omit here).

114 3. Connections to point-free structures

Let D = (D,⊑,⊥, lub) be a domain and define I(D)≔ (T,Con,⊢) by

T ≔ Dc ,

{ui}i∈I ∈ Con≔ {ui}i∈I ⊆
f Dc∧ lub{ui}i∈I ∈ D ,

{ui}i∈I ⊢ u≔ u⊑ lub{ui}i∈I .

Notice that, by Fact A.8.1, if {ui}i∈I ∈ Con then lub{ui}i∈I ∈ Dc. Conversely, for an

information system ρ = (T,Con,⊢), define D(ρ)≔ (Ideρ ,⊆,⊥,
⋃
).

The following comprises Propositions 6.1.6, 6.1.8, and Theorem 6.1.91 of [52].

Proposition 3.9. If D is a domain and ρ an information system, then I(D) is an in-

formation system and D(ρ) a domain, where compact elements are given by deductive

closures, that is, where D(ρ)c = Conρ .

Furthermore, if D is a domain then IdeI(D) ≃ D, through the isomorphism pair

u 7→ lubu and u 7→ apx(u), where apx(u) is the set of the compact approximations of u.

Let now r be an approximable map from ρ to σ . Define a mapping D(r) : D(ρ)→
D(σ) by

D(r)(u)≔
⋃

{V ∈ Conσ |U ⊆ f u∧ (U,V) ∈ r} .

Conversely, let f be a continuous mapping from a domain D to a domain E. Define a

relation I(f)⊆ ConI(D)×ConI(E) by

(U,V) ∈ I(f)≔ lubV ≤ f (lubU) .

These establish a bijective correspondence, as the following statement expresses (The-

orem 6.1.12 of [52]).

Proposition 3.10. If r is an approximable map from ρ to σ then D(r) : D(ρ)→ D(σ)
is a continuous mapping. Conversely, if f : D→ E is a continuous mapping then I(f)
is an approximable map from I(D) to I(E). Furthermore, the collection of continuous

mappings from D to E is in a bijective correspondence with the collection of approx-

imable maps between I(D) and I(E).

Coherent domains

Let D = (D,⊑,⊥) be a domain and {ui}i∈I ⊆
f Dc an arbitrary finite set of compact

elements. Call D a coherent domain if

lub{ui}i∈I ∈ Dc ↔ ∀
i, j∈I

lub{ui,u j} ∈ Dc . (3.1)

Note that the choice of Dc instead of the more modest D is justified by Fact A.8(1).

Theorem 3.11. Let D be a coherent domain and ρ a coherent information system.

Then I(D) is a coherent information system and D(ρ) is a coherent domain.

Proof. Let D be a coherent domain and {ui}i∈I ∈ ConI(D). By the definition of I(D),

{ui}i∈I ⊆
f Dc and lub{ui}i∈I ∈ D. By Fact A.8(1), lub{ui}i∈I ∈ Dc. By the coherence,

∀i, j∈I lub{ui,u j} ∈ Dc and we’re done.

1This is called second representation theorem in [52], besides the first representation theorem (“a domain

is represented by its compact elements”, see Fact A.9) and the third representation theorem (“a domain is

represented by its induced Scott space”).

3.3 Coherent point-free structures 115

Let now ρ be a coherent information system and {Ui}i∈I ⊆
f Conρ . By the coher-

ence and Proposition 3.8, it is

⋃

i∈I

Ui ∈ Conρ ↔ ∀
i, j∈I

Ui∪U j ∈ Conρ ,

so also
⋃

i∈I

Ui ∈ Conρ ↔ ∀
i, j∈I

Ui∪U j ∈ Conρ . �

Precusl’s

A preordered conditional upper semilattice with a distinguished least element, or just

precusl, is a ‘consistently complete preordered set with a distinguished least element’,

that is, a quadruple P = (N,⊑,⊔,⊥) where⊑ is a preorder on N,⊥ is a (distinguished)

least element and ⊔ is a partial binary operation on N which is defined only on con-

sistent pairs, that is, on pairs having an upper bound, and then yields a (distinguished)

least upper bound:

U ⊔V ∈ N ≔ ∃
W∈N

(U ⊑W ∧V ⊑W) ,

U ⊔V ∈ N ⇒U ⊑U ⊔V ∧V ⊑U ⊔V

∧ ∀
W∈N

(U ⊑W ∧V ⊑W →U ⊔V ⊑W) .

We think of N as “a set of formal basic opens”, ⊑ as “formal inclusion”, ⊥ as “a

formal empty set” and ⊔ as “a formal union”. Call a subset u⊆ N a precusl ideal when

it satisfies

⊥ ∈ u ∧ ∀
U,V∈u

U ⊔V ∈ u ∧ ∀
U∈u

(V ⊑U →V ∈ u) .

Write IdeP for the class of all precusl ideas of P. Observe that the second of the three

requirements for a precusl ideal expresses the property of being upward directed, so

it follows that any finite subset in a precusl ideal will have a least upper bound in the

ideal (for details on the relation of precusl’s and information systems that are not given

here, one should consult [52, § 6.3]).

Let now P = (N,⊑,⊔,⊥) be a precusl and define I(P) = (T,Con,⊢) by

T ≔ N ,

U ∈ Con≔U ⊆ f N∧
⊔

U ∈ N ,

U ⊢U ≔U ⊑
⊔

U .

Conversely, let ρ = (T,Con,⊢) be an information system and define P(ρ) =
(N,⊑,⊥,⊔) by

N ≔ Con ,

U ⊑V ≔V ⊢U ,

⊥≔ ∅ ,

U ⊔V ≔U ∪V if U ∪V ∈ Con .

The following is Theorem 6.3.4 of [52].

116 3. Connections to point-free structures

Proposition 3.12. If P is a precusl and ρ an information system, then I(P) is an

information system and P(ρ) is a precusl. Furthermore, it is IdeP = IdeI(P) and

Ideρ ≃ IdeP(ρ).

Proof. We just show the existence of isomorphisms between corresponding informa-

tion system ideals and precusl ideals, as the proof is omitted in the above reference.

For IdeP ⊆ IdeI(P), let u∈ IdeP and U ⊆ f u. Since u is an ideal in P,
⊔

U ∈ u⊆N,

so U ∈ ConI(P) by definition. If further U ⊢I(P) U , it is U ⊑
⊔

U by definition, so

U ∈ u, again because u is an ideal in P.

For IdeI(P)⊆ IdeP, let u∈ IdeI(P). That⊥≔∅∈ u, follows from downward closure

in I(P). Let U,V ∈ u; since u is an ideal in I(P), it is {U,V}∈ConI(P), and then U⊔V ∈
N by definition; since {U,V} ⊢I(P) U ⊔V and u is an ideal in I(P), it is U ⊔V ∈ u. If

now U ∈ u and V ⊑U , then {U} ⊢I(P) V by definition, and V ∈ u follows again because

u is an ideal in I(P).
For Ideρ ≃ IdeP(ρ) take the following isomorphism pair:

Ideρ ∋ u 7→P f (u) ∈ IdeP(ρ) ,

IdeP(ρ) ∋ u 7→
⋃

u ∈ Ideρ .

These mappings are well-defined. For the right embedding, it is obviously ⊥ ≔ ∅ ∈
P f (u); for every U,V ∈ P f (u) it is also U ∪V ⊆ f u, so it is U ⊔V ∈ P f (u) by

definition; if U ∈P f (u) and V ⊑U , then
⋃
{U}=U ⊢V by definition, so since u is an

ideal in ρ , it is V ⊆ f u, that is, V ∈P f (u). For the left embedding, if {ai}i<n ⊆
f
⋃

u,

then ∀i<n∃Ui∈u ai ∈Ui; since u is an ideal in P(ρ), it is
⊔

i<n Ui ∈ u ⊆ f NP(ρ), so, by

definition,
⋃

i<n Ui ∈ Con; by closure of consistency under subsets in ρ , it is {ai}i<n ∈
Con. If now U ⊆ f

⋃
u and U ⊢ a, then {a} ⊑U by definition; since u is an ideal in

P(ρ), we have {a} ∈ u, so a ∈
⋃

u.

It remains to show that the two embeddings are indeed mutually inverse. Let u ∈
Ideρ ; we have

a ∈
⋃

P f (u)⇔ ∃
U⊆ f u

a ∈U
(⋆)
⇔ a ∈ u ,

where (⋆) holds leftwards for U ≔ {a}, and

{ai}i<n ∈P f

(⋃

u
)

⇔{ai}i<n ⊆
f
⋃

u

⇔ ∀
i<n
∃

Ui∈u
ai ∈Ui

(⋆)
⇔ ∀

i<n
∃

Ui∈u
{ai} ⊑Ui

(⋆)
⇔ ∀

i<n
∃

Ui∈u
{ai} ⊑

⊔

i<n

Ui

(⋆)
⇔{ai}i<n ∈ u ,

where (⋆) hold leftwards for Ui ≔ {ai}, i < n. �

A precusl approximable map from P to P′ is a relation R ⊆ N×N′ which satisfies

the following:

• (⊥,⊥′) ∈R,

• (U,V) ∈R ∧ (U,V ′) ∈R → (U,V ⊔V ′) ∈R,

3.3 Coherent point-free structures 117

• U ⊑U ′∧ (U,V) ∈R ∧V ′ ⊑V → (U ′,V ′) ∈R,

where (U,V ⊔V ′) ∈R naturally implies that V ⊔V ′ is defined. Write ApxP→P′ for all

precusl approximable maps from P to P′. For every R ∈ ApxP→P′ define a relation

I(R)⊆ ConI(P)×ConI(P′) by

(U ,V) ∈ I(R)≔
(⊔

U ,
⊔

V

)

∈R .

Conversely, let r be an approximable map from ρ to σ . Define a relation P(r) ⊆
NP(ρ)×NP(σ) by

(U,V) ∈ P(r)≔ (U,V) ∈ r .

One can show (see [52, pp. 151–2]) that these establish a bijective correspondence.

Proposition 3.13. If r is an approximable map from ρ to σ then P(r) is a precusl

approximable map from P(ρ) to P(σ). Conversely, if R is a precusl approximable

map from P to P′ then I(R) is an approximable map from I(P) to I(P′). Furthermore,

it is Apxρ→σ ≃ ApxP(ρ)→P(σ) and ApxP→P′ ≃ ApxI(P)→I(P′).

Coherent precusl’s

Call a precusl coherent if it satisfies the following property for a finite collection U ⊆ f

N:
⊔

U ∈ N ↔ ∀
U,V∈U

U ⊔V ∈ N . (3.2)

Theorem 3.14. If P is a coherent precusl then I(P) is a coherent information system.

Conversely, if ρ is a coherent information system then P(ρ) is a coherent precusl.

Proof. Suppose first that P is coherent, that is, such that (3.2) holds for all U ⊆ f N.

Let U ∈ ConI(P); by the definition,

U ⊆ f N∧
⊔

U ∈ N
(3.2)
⇔U ⊆ f N∧ ∀

U,V∈U

U ⊔V ∈ N

def
⇔U ⊆ f N∧ ∀

U,V∈U

{U,V} ∈ ConI(P) ,

so I(P) is a coherent information system.

Now suppose that ρ is a coherent information system, that is, such that

U ∈ Con↔ ∀
a,b∈U

{a,b} ∈ Con , (3.3)

for all U ⊆ f T . Let U ⊆ f NP(ρ), that is, U ⊆ f Con; we have

⊔

U ∈ NP(ρ)
def
⇔
⋃

U ∈ Con

(⋆)
⇔
⋃

U ⊆ f T ∧ ∀
U,V⊆

⋃
U

U ∪V ∈ Con

def
⇔
⋃

U ⊆ f T ∧ ∀
U,V⊆

⋃
U

U ⊔V ∈ NP(ρ)

⇒ ∀
U,V∈U

U ⊔V ∈ NP(ρ) ,

118 3. Connections to point-free structures

where at (⋆) we used (3.3) and Proposition 3.8. Conversely, we have

U ⊆ f NP(ρ)∧ ∀
U,V∈U

U ⊔V ∈ NP(ρ)
def
⇔U ⊆ f Con∧ ∀

U,V∈U

U ⊔V ∈ Con

(3.3)
⇔U ⊆ f Con∧ ∀

U,V∈U
∀

a,b∈U∪V
{a,b} ∈ Con

⇒U ⊆ f Con∧ ∀
a,b∈

⋃
U

{a,b} ∈ Con

(3.3)
⇔
⋃

U ∈ Con

def
⇔
⊔

U ∈ NP(ρ) ,

so P(ρ) is indeed a coherent precusl. �

Scott–Ershov formal topologies

The structure of a “formal topology” was defined by Giovanni Sambin as early as

1987 in [37], and as the area has developed a number of alternative definitions has

appeared. Suitable for our purposes is a version of the definition in [30], whose main

difference from Sambin’s original is the disposal of the “positivity predicate”—see [30,

§2.4] or [39, Footnote 13] for a justification of this. In fact, we depart a bit from this

definition as well, in that we require the presence of a top element among the formal

basic opens, this is however an inessential difference (see Exercise 6.5.21 of [52]). For

a list of nomenclature discrepancies between our exposition and the literature, see notes

in 3.4.

We will use order-theoretic notions which are dual to notions appearing before,

namely a greatest or top element and greatest lower bounds of sets of elements; all

these are to be understood in the usual order-theoretic way.

Define a formal topology as a triple T = (N,⊑,≺) where N is the collection of

formal basic opens, ⊑ ⊆ N ×N is a preorder with a top element ⊤, which formal-

izes inclusion between basic opens, and ≺ ⊆ N×P(N), called covering, formalizes

inclusion between arbitrary opens, and satisfies the following:

1. it is reflexive,

U ∈U →U ≺U ,

2. it is transitive,

U ≺U ∧U ≺ V →U ≺ V ,

3. it is localizing,

U ≺U ∧U ≺ V →U ≺U ↓ V ,

and

4. it extends formal inclusion between formal basic opens,

V ⊑U ∧U ≺U →V ≺U ,

where U ≺ V ≔ ∀U∈U U ≺ V and

U ↓ V ≔ {W ∈ N | ∃
U∈U

∃
V∈V

(W ⊑U ∧W ⊑V)} .

A formal point in T is a subset u⊆ N such that

3.3 Coherent point-free structures 119

1. ⊤ ∈ u,

2. ∀U,V∈u∃W∈u (W ⊑U ∧W ⊑V),

3. ∀U∈u (U ≺U → ∃V∈U V ∈ u).

Dually to the case of precusl ideals, the second of the three requirements for a formal

point expresses the preperty of being downward directed, so it follows that any finite

subset in a formal point will have a greatest lower bound in the ideal. Denote the

collection of formal points of T by PtT .

Call a formal topology T unary if

U ≺U → ∃
V∈U

U ≺V ,

where we write U ≺V for U ≺ {V}, and consistently complete if

∀
U,V∈N

(

∃
W∈N

(W ⊑U ∧W ⊑V)→ ∃
W∈N

W =U ⊓V

)

,

where
�

U denotes the greatest lower bound of U . Finally, call T a Scott–Ershov

formal topology if it is both unary and consistently complete.

One can prove that every domain can be represented by the collection of formal

points of a certain Scott–Ershov formal topology (see Theorem 4.35 of [30] and Theo-

rem 6.2.15 of [52]). Here we proceed to link formal topologies directly to information

systems.

Let T = (N,⊑,≺) be a Scott–Ershov formal topology. Define I(T) = (T,Con,⊢)
by

T ≔ N ,

U ∈ Con≔U ⊆ f N∧
�

U ∈ N ,

U ⊢U ≔
�

U ⊑U .

Conversely, let ρ =(T,Con,⊢) be an information system. Define F(ρ)= (N,⊑,≺)
by

N ≔ Con ,

U ⊑V ≔U ⊢V ,

U ≺U ≔ ∃
V∈U

U ⊢V .

Note that the definition is independent from the choice of representatives—see Propo-

sition 3.5.

Proposition 3.15. If T is a Scott–Ershov formal topology and ρ an information sys-

tem, then I(T) is an information system and F(ρ) is a Scott–Ershov formal topology.

Furthermore, it is PtT = IdeI(T) and Ideρ ≃ PtF(ρ).

Proof. First let T be a Scott–Ershov formal topology. We check the defining prop-

erties of an information system for I(T). For reflexivity of consistency, let U ∈ N; it

is U ⊑U , so
�

{U} ∈ N and {U} ∈ Con by definition. For closure under subsets, let

U ∈ Con and V ⊆U ; then
�

U ∈ N and ∀V∈V

�

U ⊑V , so
�

V ∈ N and V ∈ Con

120 3. Connections to point-free structures

by definition. For reflexivity of entailment, let U ∈ Con and U ∈U ; then
�

U ⊑U ,

so U ⊢U by definition. For transitivity of entailment, let U ⊢ V and V ⊢W ; then
�

U ⊑
�

V and
�

V ⊑W ; by transitivity we get
�

U ⊑W , so U ⊢W by definition.

Finally, for propagation of consistency through entailment, let U ∈ Con and U ⊢ V ;

by definition,
�

U ∈ N and
�

U ⊑ V , so
�

(U ∪{V}) ∈ N and U ∪{V} ∈ Con by

definition.

Now let ρ be an information system. We check the defining properties of a Scott–

Ershov formal topology for F(ρ). That ⊑ is a preorder with ⊤ ≔ ∅ is direct to see.

For reflexivity of covering, let U ∈ U ; since U ⊢U , it is U ≺ U by definition. For

transitivity of covering, we have

W ≺U ∧U ≺ V ⇔ ∃
U∈U

(

W ⊢U ∧ ∃
V∈V

U ⊢V

)

trns
⇒ ∃

V∈V

W ⊢V

⇔W ≺ V .

For localization, we have

W ≺U ∧W ≺ V ⇔ ∃
U∈U

(

W ⊢U ∧ ∃
V∈V

W ⊢V

)

⇔ ∃
U∈U

(

W ⊑U ∧ ∃
V∈V

W ⊑V

)

⇔W ∈U ↓ V

refl
⇒W ≺U ↓ V .

To show that the covering extends formal inclusion between formal basic opens, we

have:

W ⊑U ∧U ≺ V ⇔W ⊢U ∧ ∃
V∈V

U ⊢V

trns
⇒ ∃

V∈V

W ⊢V

⇔W ≺ V .

So F(ρ) is indeed a formal topology. To show that it is unary is easy: let U ≺U ; by

definition there is a V ∈U , for which U ⊢V , that is, U ⊑V ; by reflexivity and exten-

sion, we get U ≺{V}. To show, finally, that it is consistently complete, let U ,V ,W ∈N,

with W ⊑ U and W ⊑ U , that is, W ⊢ U and W ⊢ V ; by Proposition 3.1(6), we get

W ⊢U ∪V , and so, W ⊑U ∪V ; let U ⊓V ≔U ∪V ; that this does the job is direct to

see.

We now show the bijective correspondence between information system ideals and

formal points. For PtT ⊆ IdeI(T), let u ∈ PtT and U ⊆ f u. Since u is downward

directed in T , it is
�

U ∈, and so U ∈ ConI(T) by definition. If further U ⊢I(T) U ,

it is
�

U ⊑U by definition, and
�

U ≺ {U}; hence U ∈ u by the third formal point

property.

For IdeI(T) ⊆ PtT , let u ∈ IdeI(T). That ⊤ = ∅ ∈ u, follows from downward

closure in I(T). Let U,V ∈ u; by the consistency in I(T), {U,V} ∈ConI(T), and then

U ⊓V ∈ N by definition; since {U,V} ⊢I(T) U ⊓V , it is U ⊓V ∈ u by the deductive

3.3 Coherent point-free structures 121

closure in I(T). If now U ∈ u and U ≺U , then, since T is unary, we have ∃V∈U U ⊑
V , and ∃V∈U {U} ⊢I(T) V by the definition, so that ∃V∈U V ∈ u follows from the

deductive closure in I(P).

For Ideρ ≃ PtF(ρ) take the following isomorphism pair:

Ideρ ∋ u 7→Pc(u) ∈ PtF(ρ)

PtF(ρ) ∋ u 7→
⋃

u ∈ Ideρ

where Pc(u)≔ {U}U⊆ f u contains the closures of subsets of u.

Indeed, for the right embedding, since∅⊆ f u, it is⊤∈Pc(u); for every U,V ⊆ f u,

since U ∪V ⊆ f u, it is also U ⊓V ∈Pc(u); if U ⊆ f u and U ≺U , then ∃V∈U
U ⊑V ,

that is, ∃V∈U
U ⊢V by definition; then ∃V∈U

V ⊆ f u by deductive closure in ρ .

For the left embedding, if {ai}i<n ⊆
f
⋃

u, then ∀i<n∃Ui∈u Ui ⊢ ai; since u is down-

ward directed in F(ρ) we have that ∃W∈u∀i<n W ⊑Ui; by definition, ∃W∈u∀i<n W ⊢
Ui ⊢ ai, so {ai}i<n ∈ Con by transitivity of entailment and Proposition 3.1(6). If now

U ⊆ f
⋃

u and U ⊢ a, then, by definition, U ⊑ a, that is U ≺ {a}; by the third formal

point property in F(ρ), we have a ∈ u, so a ∈
⋃

u.

That the two embeddings are mutually inverse is also quite direct. Indeed, let u ∈
Ideρ . We have

a ∈
⋃

Pc(u)⇔ ∃
U⊆ f u

U ⊢ a
(⋆)
⇔ a ∈ u

where (⋆) holds leftwards for U ≔ {a}, and

{ai}i<n ∈Pc

(⋃

u
)

⇔{ai}i<n ⊆
f
⋃

u

⇔ ∀
i<n
∃

Ui∈u

Ui ⊢ ai

(⋆)
⇔ ∀

i<n
∃

Ui∈u

Ui ⊑ ai

(⋆)
⇔ ∀

i<n
∃

Ui∈u

�

i<n

Ui ⊑ ai

(⋆)
⇔ ∀

i<n
∃

Ui∈u

�

i<n

Ui ≺ {ai}

(⋆)
⇔ ∀

i<n
ai ∈ u

⇔{ai}i<n ∈ u

⇔{ai}i<n ∈ u

where (⋆) hold leftwards for Ui ≔ {ai}, i < n. �

An approximable map of Scott–Ershov formal topologies from T to T ′ is a rela-

tion R ⊆ N×N′ which satisfies the following:

• (⊤,⊤′) ∈R,

• (U,V) ∈R ∧ (U,V ′) ∈R → (U,V ⊓V ′) ∈R,

• U ′ ⊑U ∧ (U,V) ∈R ∧V ⊑V ′→ (U ′,V ′) ∈R.

122 3. Connections to point-free structures

Write ApxT →T ′ for all approximable maps of Scott–Ershov formal topologies from

T to T ′. For every R ∈ ApxT →T ′ define a relation I(R)⊆ ConI(T)×ConI(T ′) by

(U ,V) ∈ I(R)≔
(

�

U ,
�

V

)

∈R .

Conversely, let r be an approximable map from ρ to σ . Define a relation F(r) ⊆
NF(ρ)×NF(σ) by

(U ,V) ∈ F(r)≔ (U,V) ∈ r .

Again, it is easy to see that the definition does not rely on the choice of the representa-

tives, due to deductive closure of r.

We show that these establish a bijective correspondence.

Proposition 3.16. If r is an approximable map from ρ to σ then F(r) is an approx-

imable map of Scott–Ershov formal topologies from F(ρ) to F(σ). Conversely, if R is

an approximable map of Scott–Ershov formal topologies from T to T ′ then I(R) is an

approximable map from I(T) to I(T ′). Furthermore, it is Apxρ→σ ≃ ApxF(ρ)→F(σ)

and ApxT →T ′ ≃ ApxI(T)→I(T ′).

Proof. Let r be an approximable map from ρ to σ . Since, by Proposition 3.3, (∅,∅) ∈
r, it is (⊤,⊤′) ∈ F(r). If (U ,V),(U ,V ′) ∈ F(r), then, by definitions, (U,V ∪V ′) ∈ r,

so (U ,V ∪V ′) ∈ F(r), and (U ,V ⊓V ′) ∈ F(r). If U ′ ⊑U , (U ,V) ∈ F(r) and V ⊑ V ′,

then, by definitions, U ′ ⊢U , (U,V) ∈ r and V ⊢ V ′ respectively, so, (U ′,V ′) ∈ r and

(U ′,V ′) ∈ F(r).

Conversely, let R be an approximable map of Scott–Ershov formal topologies from

T to T ′. Since (⊤,⊤′) ∈R, it is (∅,∅) ∈ I(R). If (U ,V),(U ,V ′) ∈ I(R), then, by

definition, (
�

U ,
�

V) ,(
�

U ,
�

V ′) ∈R; since R is an approximable map of Scott–

Ershov formal topologies, (
�

U ,(
�

V)⊓ (
�

V ′)) ∈R, or, (
�

U ,
�

(V ⊓V ′)) ∈R,

that is, (U ,V ⊓V ′) ∈ I(R). If now U ′ ⊢U , (U ,V) ∈ I(R) and V ⊢ V ′, by defini-

tion we obtain
�

U ′⊑
�

U , (
�

U ,
�

V)∈R and
�

V ⊑
�

V ′; then (
�

U ′,
�

V ′)∈
R, so (U ′,V ′) ∈ I(R).

We show that F : Apxρ→σ → ApxF(ρ)→F(σ) is bijective. To show injectivity, let

F(r) = F(r′); then

(U,V) ∈ r
def.F
⇔ (U ,V) ∈ F(r)⇔ (U ,V) ∈ F(r′)

def.F
⇔ (U,V) ∈ r′ ,

so r = r′. To show surjectivity, let R ∈ ApxF(ρ)→F(σ); set

(U,V) ∈ r≔ (U ,V) ∈R ;

it is straightforward to check that r ∈ Apxρ→σ and F(r) = R.

We show finally that I : ApxT →T ′ → ApxI(T)→I(T ′) is bijective. To show in-

jectivity, let I(R) = I(R ′) and (U,V) ∈ R; then, by the definition of I, there are

U ∈ ConI(T) and V ∈ ConI(T ′), such that U =
�

U , V =
�

V and (U ,V) ∈ I(R);
by the assumption we get equivalently that (U ,V) ∈ I(R), so (U,V) ∈ R, and

R = R ′. To show surjectivity, let r ∈ ApxI(T)→I(T ′); set

(U,V) ∈R ≔ ∃
U ∈ConI(T)

∃
V ∈ConI(T ′)

(

U =
�

U ∧V =
�

V ∧ (U ,V) ∈ r
)

;

3.3 Coherent point-free structures 123

it is R ∈ ApxT →T ′ , since (i) by r ∈ ApxI(T)→I(T ′) we get (∅,∅) ∈ r, which yields

(⊤,⊤′) ∈R, (ii) it is

(U,V1) ∈R ∧ (U,V2) ∈R

⇔ ∃
U1,V1

(

U =
�

U1∧V1 =
�

V1∧ (U1,V1) ∈ r
)

∧ ∃
U2,V2

(

U =
�

U2∧V2 =
�

V2∧ (U2,V2) ∈ r
)

(∗)
⇒ ∃

U ,V1,V2

(

U =
�

U ∧V1 =
�

V1∧V2 =
�

V2

∧ (U ,V1) ∈ r∧ (U ,V2) ∈ r
)

⇒ ∃
U ,V1,V2

(

U =
�

U ∧V1 =
�

V1∧V2 =
�

V2∧ (U ,V1∪V2) ∈ r
)

(∗∗)
⇒ ∃

U ,V

(

U =
�

U ∧V1⊓V2 =
�

V ∧ (U ,V) ∈ r
)

⇔ (U,V1⊓V2) ∈R ,

where (∗) holds for U ≔ {U}, and (∗∗) for V ≔ V1∪V2, and (iii) it is

U ′ ⊑U ∧ (U,V) ∈R ∧V ⊑V ′

⇔U ′ ⊑U ∧ ∃
U ,V

(

U =
�

U ∧V =
�

V ∧ (U ,V) ∈ r
)

∧V ⊑V ′

(∗)
⇒ ∃

U ′

(

U ′ =
�

U
′∧ ∀

U∈U

U
′ ⊢I(T) U

)

∧ ∃
U ,V

(

U =
�

U ∧V =
�

V ∧ (U ,V) ∈ r
)

∧V ⊢I(T ′) V ′

(∗∗)
⇒ ∃

U ′,V ′

(

U ′ =
�

U
′∧V ′ =

�

V
′∧ (U ′,V ′) ∈ r

)

⇔ (U ′,V ′) ∈R ,

where (∗) holds for U ′
≔ {U} and because

V ⊑V ′⇒
�

V ⊑V ′⇒ V ⊢I(T ′) V ′ ,

and (∗∗) holds for V ′
≔ {V} and because r is an approximable map; finally, direct

application of the definitions gives

(U ,V) ∈ I(R)⇔
(

�

U ,
�

V

)

∈R ⇔ (U ,V) ∈ r ,

which means that I(R) = r. �

Coherent Scott–Ershov formal topologies

Call a Scott–Ershov formal topology coherent if it satisfies the following property for

a finite collection U ⊆ f N:
�

U ∈ N ↔ ∀
U,V∈U

U ⊓V ∈ N . (3.4)

124 3. Connections to point-free structures

Theorem 3.17. If T is a coherent Scott–Ershov formal topology then I(T) is a co-

herent information system. Conversely, if ρ is a coherent information system then F(ρ)
is a coherent Scott–Ershov formal topology.

Proof. Suppose first that T is coherent, that is, such that (3.4) holds for all U ⊆ f N.

Let U ∈ ConI(T); by definition,

U ⊆ f N∧
�

U ∈ N
(3.4)
⇔U ⊆ f N∧ ∀

U,V∈U

U ⊓V ∈ N

def
⇔U ⊆ f N∧ ∀

U,V∈U

{U,V} ∈ ConI(T) ,

so I(T) is a coherent information system.

Now suppose that ρ is a coherent information system, that is, such that

U ∈ Con↔ ∀
a,b∈U

{a,b} ∈ Con , (3.3)

for all U ⊆ f T . Let U ⊆ f NF(ρ), that is, U ⊆ f Con; we have

�

U ∈ NF(ρ)
def
⇔
⋃

U ∈ Con

(⋆)
⇔ ∀

U,V⊆ f
⋃

U

U ∪V ∈ Con

def
⇔ ∀

U,V⊆ f
⋃

U

U ⊓V ∈ NF(ρ)

⇒ ∀
U ,V∈U

U ⊓V ∈ NF(ρ) ,

where at (⋆) we used (3.3) and Proposition 3.8. Conversely, we have

U ⊆ f NF(ρ)∧ ∀
U ,V∈U

U ⊓V ∈ NF(ρ)
def
⇔U ⊆ f Con∧ ∀

U ,V∈U

U ⊓V ∈ Con

(3.3)
⇔U ⊆ f Con∧ ∀

U ,V∈U

∀
a,b∈U∪V

{a,b} ∈ Con

⇒U ⊆ f Con∧ ∀
a,b∈

⋃
U

{a,b} ∈ Con

(3.3)
⇔
⋃

U ∈ Con

def
⇔

�

U ∈ NF(ρ) ,

so F(ρ) is indeed a coherent Scott–Ershov formal topology. �

3.4 Notes

On the notion of atomicity

The defining property of a unary formal topology (page 119) looks similar to the atom-

icity property for an information system (page 111)—in fact, unary formal topologies

are called “atomic” by Erik Palmgren in a preliminary version of [33]—but the two are

not essentially related from our viewpoint.

The property of being unary for a formal topology expresses atomicity of compact

covering, whereas in information systems we have atomicity of information flow: in the

3.4 Notes 125

first case, an “atom” would be a formal basic open while in the second case, an atom

(that is, a token) represents a simple piece of data.

In order to avoid confusions, one should notice how the transition from an infor-

mation system to a point-free structure—domains included—involves jumping from

the level of atomic pieces of data to (finitely determined) sets of atomic pieces of data:

atomicity of information appears in the presence of atomic pieces of data, which be-

come indiscernible when one moves to a point-free setting (see however the last note).

On the notion of coherence

Coherence in domain theory is in no way considered here for the first time. Coherent

cpo’s appear already in Gordon Plotkin’s [36], where he attributes the notion to George

Markowsky and Barry Rosen [29]. In the handbook chapter of Samson Abramsky and

Achim Jung [1], coherence is studied in the more general setting of continuous do-

mains. Viggo Stoltenberg-Hansen et al [52] introduce the notion too in an exercise. We

should also mention Jean-Yves Girard’s coherence spaces [14], which he uses alter-

natively to Scott–Ershov domains. On the other hand, coherence has been considered

in point-free topology as well, at least since Peter Johnstone’s [20], where coherent

locales are discussed.

Featuring Coquand and Plotkin

Both of the finite Scott information systems C and L of section 3.1 are elaborations

of existing counterexamples.

The first one, due to Thierry Coquand, was first given as a counterexample to atom-

icity in algebraic information systems (see page 47). In Chapter 2 however, we have

shown that atomicity remains a concept worth exploring, since it lies in the very fun-

daments of the more general algebraic entailment, and at the same time gives rise to

surprising and utilizable notions, namely, matrices on the base-type case, and eigen-

neighborhoods in the higher-type case. And of course, it is a perfectly sufficient prop-

erty for algebras like natural numbers N or boolean numbers B, which have at most

unary constructors (see Chapter 1).

The second Scott information system stems from Plotkin’s [36], where he uses the

entailment graph of L as an example of a “consistently complete” but not “coher-

ent” complete partial order. It is indeed Plotkin’s counterexample to coherence: in the

entailment diagramme of L in Figure 3.1, one has {l,m},{l,r},{m,r} ∈ ConL but

{l,m,r} < ConL .

Notice also that C is non-atomic but coherent, and that L is incoherent but atomic.

Dues and nomenclature discrepancies

The questions answered in sections 3.2 and 3.3 occurred to the author at the 3WFTop

workshop; the results were presented for the first time in a Forschungstutorium held at

LMU during the winter semester of 2007–8 and led by Peter Schuster.

Giovanni Sambin et al [41] call consistently complete ordered sets coherent. Sara

Negri [30] says Scott formal topology for a unary formal topology and consistently

complete Scott formal topology for a Scott–Ershov formal topology (modulo the pres-

ence of a top formal basic open). Viggo Stoltenberg-Hansen et al [52] say formal space

for a consistently complete formal topology and Scott space for a Scott–Ershov formal

topology.

126 3. Connections to point-free structures

Outlook

The issue of linking the theory of information systems and formal topology has many

facets, at least as many as the various point-free structures that are currently studied by

the community. Apart from the ones that we have covered in this chapter, further links

should be attainable in various other settings, from the event structures of [57] to the

apartness spaces of [7], by imposing an appropriate coherence property on the structure

every time, one that would reflect Proposition 3.8; this suggests a rather straightforward

cartographic endeavor, but still quite important, as Sambin described (see page 105).

Moreover, as we now know (see the note on page 101) that atomicity is a notion

that implicitly permeates much more than non-superunary algebras, particularly one

that may leave traces in terms of eigen-neighborhoods, one may expect that it could be

feasible to describe it in point-free topological settings after all. The question would

be to understand if and how it may manifest in point-free structures, and what would

its presence ensue for the latter.

Chapter 4

Elimination of extensionality

The previous chapters focus on coherent information systems as a model for higher-

type computability; the main motivation for this is a desire to devise an appropriate

constructive logical theory of higher-type computability, one that will lend itself as

painlessly as possible to implementation on a proof assistant. The leading idea in such

a theory should be to provide the necessary means to talk not only about objects (ideals,

that is, numbers, functions, and functionals) but also about their finite approximations

(tokens, formal neighborhoods). First steps in this direction were presented in [18]

under the name Theory of Partial Computable Functionals, or TCF+, extending the

Theory of Computable Functionals TCF of [49], which covers just objects.

Pertaining to the objects in TCF and TCF+, partial and total alike, is the notion

of extensionality, which roughly posits that two equal arguments draw equal values

from the same function—a version of Leibniz’ indiscernibility of identicals (for ob-

jects rather than predicates). This is a natural demand that nevertheless presents well

known proof-theoretical problems (see William Howard’s counterexample to Dialec-

tica realizability in [17]). Dealing with the axiom of extensionality has since become a

reasonable first challenge to pose to a proposed logical theory.

Preview

In this chapter we concentrate on the part of TCF+ that will encompass arithmetic. In

the style of [55], we present the generic Heyting arithmetic and its extensional version,

and then show how extensionality can be eliminated.

4.1 Heyting arithmetic in all finite types

We introduce the theories HAω and E-HAω , of Heyting arithmetic and extensional

Heyting arithmetic in finite types respectively. Denote by N the base type, prototypi-

cally denoting natural numbers; if ρ and σ are types then ρ → σ is also a type.

Language of E-HAω

We have the logical symbols ∧, ∨, →, as well as ∀ρ
, ∃ρ

quantifier symbols for every

type (but we just write ∀, ∃); the lambda operator λ· · and application parentheses

(··); object variables x,y,z, . . ., f ,g,h, . . ., for any type (write xρ for an object x of type

128 4. Elimination of extensionality

ρ); an object constant 0N for zero; the function constants SN→N for the successor, and

R
(ρ→N→ρ)→ρ→N→ρ
ρ for recursors, for all types; relation variables; a nullary relation

constant ⊥ for falsum; a relation constant =ρ for a generic equality for all types ρ .

Every object variable xρ is a term; if tρ→σ and sρ are terms, then the application

(ts)σ is a term; if xρ is a variable and tσ is a term, then the λ -abstraction (λx t)ρ→σ is

a term; especially for the constants, if t, s, r are terms of appropriate types, then St and

Rtsr are terms as well.

If tρ and sρ are terms then tρ =ρ sρ is a (prime) formula; if A and B are formulas

then so are A∧B, A∨B, A→ B; if xρ is an object variable and A is a formula then ∀xρ A

and ∃xρ A are formulas.

For negation, classical disjunction and classical existence write ¬A for A → ⊥,

A∨̃B for ¬A → ¬B →⊥, and ∃̃x A for ¬∀x¬A. For reasons of readability we write

f ,g,h for objects that we use as functions and x,y,z for objects that we use as arguments

or values.

Calculus of E-HAω

We require the following inference rules: arbitrary assumptions

u : A ,

arrow introduction and arrow elimination (or modus ponens) rules

[u : A]

|

B →+
u ,

A→ B

|

A→ B

|

A
→− ,

B

as well as forall introduction and forall elimination rules

|

A ∀+x ,
∀x A

|

∀x A r
∀− ,

A[x≔ r]

where for ∀+x , x should be fresh.

Further, we require the following axioms. Disjunction introduction and disjunction

elimination axioms:

∨+
0 : A→ A∨B ,

∨+
1 : B→ A∨B ,

∨− : A∨B→ (A→ P)→ (B→ P)→ P .

Conjunction introduction and conjunction elimination axioms:

∧+ : A→ B→ A∧B ,

∧− : A∧B→ (A→ B→ P)→ P .

Exists introduction and exists elimination axioms:

∃+ : A→ ∃
x

A ,

∃− : ∃
x

A→ (∀
x

A→ P)→ P ,

4.2 Elimination of extensionality in E-HAω 129

for x < FV(P). The falsum elimination axiom:

⊥− :⊥→ A .

Concerning equality, we require the following well-known (generic) axioms of

equality, restricted to the base type:

x =N x ,

x =N y→ y =N x ,

x =N y→ y =N z→ x =N z ,

and define (point-wise) equality for higher types by

f =ρ→σ g≔ ∀
x

f x =σ gx ,

for x of type ρ and f , g of type ρ → σ . Further, take the following defining axioms for

the constants:

Sx ,N 0 ,

Sx =N Sy↔ x =N y ,

Rρ f z0 =ρ z ,

Rρ f z(Sx) =ρ f (Rρ f zx)x ,

where z is of type ρ , f is of type ρ → N→ ρ , and x is of type N. We also require

β -reduction conversion rules:

(λx t)sρ =σ t[x≔ s] ,

where t[x≔ s], or just t(s), means “t, with s substituted for x”; to anticipate a substi-

tution of x by some other term in t, we also write t(x) (not to be confused with the

application parentheses).

Finally, we have an induction axiom scheme:

A(0)∧∀
x
(A(x)→ A(Sx))→ ∀

x
A(x) ,

for arbitrary formulas A and x of type N, and the extensionality axioms:

x1 =ρ x2 → f x1 =σ f x2 ,

for f of type ρ → σ and both xi’s of type ρ .

The resulting system is denoted here by E-HAω . If we drop the extensionality

axioms, we denote it by HAω .

4.2 Elimination of extensionality in E-HAω

Extensionality is quite a natural property to have in a system designed for mathematics,

so intuitively there is plenty of reason to demand it. As it turns out, it is also an axiom

that doesn’t really cumber the theory: with an appropriate translation, one can make

without the axioms of extensionality and just work within HAω .

130 4. Elimination of extensionality

Define the extensionality predicate, or just extensionality, and the extensional

equality by mutual induction:

ENx≔ x =N x ,

x1
e=N x2 ≔ x1 =N x2 ,

Eρ→σ f ≔ ∀
x1,x2

(

x1
e=ρ x2 → f x1

e=σ f x2

)

,

f1
e=ρ→σ f2 ≔ Eρ→σ f1∧Eρ→σ f2∧∀

x

(

Eρ x→ f1x e=σ f2x
)

.

When E f holds, call f extensional. Intuitively, an element is “extensional” when it

is, so to speak, right-compatible, that is, stable under application. Furthermore, to talk

about “extensionality of equality”, is to stress equality’s left-compatibility on stable

elements. It should also be clear that extensional equality is in fact point-wise equality

restricted to extensional elements.

Proposition 4.1. Extensional equality is symmetric and transitive. Furthermore, it is

reflexive on extensional elements, i.e., Eρ x→ x e=ρ x.

Proof. Symmetry and transitivity are direct. For reflexivity on extensional elements,

by induction on the type. The base case is direct. For the step case, let Eρ→σ f and Eρ x;

by the induction hypothesis we have Eρ→σ f and x e=ρ x; by the definition of Eρ→σ

we have f x e=σ f x; since E f and x is arbitrary, by the definition of e=ρ→σ we have

f e=ρ→σ f . �

Proposition 4.2. Extensional equality can is characterized as follows:

f1
e=ρ→σ f2 ↔ ∀

x1,x2

(

x1
e=ρ x2 → f1x1

e=σ f2x2

)

.

Proof. For the right direction: Let f1
e=ρ→σ f2 and x1

e=ρ x2; by the definition of
e=ρ→σ we have Eρ→σ f1 ∧Eρ→σ f2 ∧∀x

(

Eρ x→ f1x e=σ f2x
)

and x1
e=ρ x2; by the

definition of Eρ→σ we get ∀x1,x2

(

x1
e=ρ x2 → fix1

e=σ fix2

)

for i = 1,2 and we still

have ∀x

(

Eρ x→ f1x e=σ f2x
)

and x1
e=ρ x2; by the definition of e=ρ and modus po-

nens we have ∀x1,x2

(

x1
e=ρ x2 → fix1

e=σ fix2

)

and f1xi
e=σ f2xi for i = 1,2 and we

still have x1
e=ρ x2; by modus ponens now we get f1x1

e=σ f1x2 and we still have

f1x2
e=σ f2x2; by transitivity of e=σ (Proposition 4.1) we finally get f1x1

e=σ f2x2.

For the left direction: Let ∀x1,x2

(

x1
e=ρ x2 → f1x1

e=σ f2x2

)

; we have to show

that (i) Eρ→σ fi for i = 1,2 and that (ii) ∀x

(

Eρ x→ f1x e=σ f2x
)

. For (i): Let x1
e=ρ x2

and we still have ∀x1,x2

(

x1
e=ρ x2 → f1x1

e=σ f2x2

)

; by the definition of e=ρ we have

Eρ x1 and Eρ x2, which by Proposition 4.1 yield x1
e=ρ x1 and x2

e=ρ x2, while we still

have x1
e=ρ x2 and ∀x1,x2

(

x1
e=ρ x2 → f1x1

e=σ f2x2

)

; by three different applications

of modus ponens we get f1x1
e=σ f2x2, f1x1

e=σ f2x1, f1x2
e=σ f2x2 and we still have

x1
e=ρ x2; by transitivity and reflexivity of e=σ we get f1x1

e=σ f1x2 and f2x1
e=σ

f2x2 and we still have x1
e=ρ x2; by the definition of Eρ→σ we get Eρ→σ fi, for i =

1,2. For (ii): Let Eρ x, which by Proposition 4.1 yields x e=ρ x and we still have

∀x1,x2

(

x1
e=ρ x2 → f1x1

e=σ f2x2

)

; by modus ponens we immediately get f1x e=σ

f2x. �

Proposition 4.3. Term formation preserves both extensional equality and extensional-

ity, that is, if r(~x) is a well-formed term, with free variables among~x, it is

~x1
e=~x2 → r(~x1)

e= r(~x2)

4.2 Elimination of extensionality in E-HAω 131

and

E~x→ Er(~x)

respectively.

Proof by mutual induction on the term. Base for E. For variables it is clear. For con-

stant 0 we have it by the definition of EN (and forall elimination). For constant S, we

want to know that ∀x1,x2
(x1

e=N x2 → Sx1
e=N Sx2), which is provided by the axioms

for the successor. For constant R: we need to show that

∀
f1, f2

∀
z1,z2

∀
x1,x2

(

f1
e=ρ→N→ρ f2 → z1

e=ρ z2 → x1
e=N x2 → R f1z1x1

e=N R f2z2x2

)

,

so let f1
e= f2, z1

e= z2, x1
e= x2; by the definition of EN, the latter is x1 =N x2 =N x;

we use the axioms for the recursor (that is, we perform a side induction on x); firstly,

since R fizi0 = zi for i = 1,2, and z1
e= z2 by the induction hypothesis, it is R f1z10 e=

R f2z20; secondly, since R fizi(Sx) = fi(R fizix)x and f1(R f1z1x)x e= f2(R f2z2x)x by the

induction and the side induction hypotheses, we obtain R f1z1(Sx) e= R f2z2(Sx).

Base for e=. For variables, it is clear. For constant 0, we have it by the definition

of e=N and the fact that EN0 from above. For constant S, it is clear by the definition of
e=N→N that we just need that EN→NS, which we showed above. For constant R, again

we just need ER which we have from above.

Step for e=. For application: let ~x1
e=~x2; by the induction hypothesis we have

r(~x1)
e= r(~x2) and s(~x1)

e= s(~x2); by Proposition 4.2 we immediately get r(~x1)s(~x1)
e=

r(~x2)s(~x2), that is, (rs)(~x1)
e= (rs)(~x2). For λ -abstraction: we have to show that

~x1
e= ~x2 → (λx r)(x,~x1)

e= (λx r)(x,~x2); let ~x1
e= ~x2; by the characterization of

Proposition 4.2, if x is of type ρ and r is of type σ , it is enough to show that

∀x1,x2

(

x1
e=ρ x2 → (λx r)(x,~x1)x1

e=σ (λx r)(x,~x2)x2

)

; by β -reduction this is equiv-

alent to ∀x1,x2

(

x1
e=ρ x2 → r(x1,~x1)

e=σ r(x2,~x2)
)

; this is immediately provided by

the induction hypothesis.

Step for E. For application: let Eρ→σ f and Eρ x; by Proposition 4.1 we get

x e=ρ x and we still have Eρ→σ f ; by the definition of Eρ→σ we have f x e=σ

f x; by the definition of e=σ we have Eσ f x. For λ -abstraction: let Eρ x and

r be of type σ ; we want to show that Eρ→σ λx r, which by the definition of

Eρ→σ is ∀x1,x2

(

x1
e=ρ x2 → (λx r)x1

e=σ (λx r)x2

)

; by β -reduction this becomes

∀x1,x2

(

x1
e=ρ x2 → r(x1)

e=σ r(x2)
)

, which is immediate by preservation of e= for

r. �

Now let A be a formula. Write AE for the extensional translation of the formula A,

that is, the formula which results from A after relativizing each of its quantifiers to E:

AE
≔ A , for A prime,

(A ^ B)E
≔ AE

^ BE , for ^∈ {∨,∧,→},
(

∃
x

A

)E

≔ ∃
x

(

Ex∧AE
)

,

(

∀
x

A

)E

≔ ∀
x

(

Ex→ AE
)

.

Proposition 4.4. It is (Eρ x)E ↔ Eρ x and (x1
e=ρ x2)

E ↔ x1
e=ρ x2.

132 4. Elimination of extensionality

Proof by mutual induction on the type. Base: Immediate from the definition of

EN and e=N. Step for E: Let (Eρ→σ f)E , which by definition means
(

∀x1,x2

(

x1
e=ρ x2 → f x1

e=σ f x2

))E
; by the definition of the extensional translation,

this is equivalent to ∀x1,x2

(

Eρ x1∧Eρ x2 → (x1
e=ρ x2)

E → (f x1
e=σ f x2)

E
)

, where

the first two clauses are redundant; the induction hypothesis for e= yields equiva-

lently ∀x1,x2

(

x1
e=ρ x2 → f x1

e=σ f x2

)

, which, by the definition of Eρ→σ , is Eρ→σ f .

Step for e=: Let (f1
e=ρ→σ f2)

E ; by the definition of e=ρ→σ , this is equivalent to
(

Eρ→σ f1∧Eρ→σ f2∧∀x

(

Eρ x→ f1x e=σ f2x
))E

; by the definition of the extensional

translation, this is equivalent to (Eρ→σ f1)
E ∧ (Eρ→σ f2)

E ∧∀x

(

Eρ x→ f1x e=σ f2x
)

;

by the step for E, we get the equivalent Eρ→σ f1∧Eρ→σ f2∧∀x

(

Eρ x→ f1x e=σ f2x
)

,

which is by definition equivalent to f1
e=ρ→σ f2. �

Proposition 4.5. Point-wise equality is equivalent to extensional equality up to exten-

sional translation, that is,

(

Eρ x1 → Eρ x2 → (x1 =ρ x2)
E
)

↔ x1
e=ρ x2 .

Proof by induction on the type. Base: Immediate. Step: Let Eρ→σ f1 ∧ Eρ→σ f2 ∧
(f1 =ρ→σ f2)

E ; by the definition of =ρ→σ we have Eρ→σ f1 ∧Eρ→σ f2 ∧ (∀x f1x =σ

f2x)E ; by the definition of the extensional translation we have Eρ→σ f1 ∧Eρ→σ f2 ∧

∀x

(

Eρ x→ (f1x =σ f2x)E
)

; by preservation of extensionality (Proposition 4.3) we can

write Eρ→σ f1 ∧Eρ→σ f2 ∧∀x

(

Eρ x→ Eσ f1x∧Eσ f2x∧ (f1x =σ f2x)E
)

; by the induc-

tion hypothesis for type σ we get Eρ→σ f1∧Eρ→σ f2∧∀x

(

Eρ x→ f1x e=σ f2x
)

, which

by the definition of e=ρ→σ is precisely f1
e=ρ→σ f2. �

Theorem 4.6 (Elimination of extensionality). The formula A(~x) is derivable within

E-HAω from assumptions ui : Ai(~xi) if and only if the formula E(~x)→ AE(~x) is deriv-

able within HAω from assumptions uE
i : E~xi → AE

i (~xi).

Proof by induction on the calculus. We argue informally for the right (“only-if”) di-

rection, which is the most important.

Leaf cases. For assumptions it is trivial. Moreover, since extensional translation af-

fects only those formulas where quantification appears, it is trivial to prove the axioms

∨+, ∨−, ∧+, ∧−, ⊥−, as well as the ones for the recursor and β -reduction. Then, the

axioms of equality and the successor deal with prime formulas and are also trivial.

For exists introduction: For a formula A(x,~x), we have to show that Ex∧E~x →

(A→ ∃x A)E
; use ∃+ for the formula Ex∧AE .

For exists elimination: For formulas A(x,~x) and B(~y) with x not among~y, we have

to show that Ex∧ E~x∧ E~y → ((∀x A→ B)→ ∃x A→ B)E
; use ∃− for the formulas

Ex∧AE , BE .

For induction axioms: For a formula A(x,~x), we have to show that Ex∧ E~x →

(A(0,~x)→ ∀x (A(x,~x)→ A(Sx,~x))→ ∀x A(x,~x))E
; use IndN for the formula Ex →

A(x,~x).

For extensionality axioms: We have to show that Eρ x1 ∧ Eρ x2 ∧ Eρ→σ f1 ∧
Eρ→σ f2 → (x1 =ρ x2 → f1x1 =σ f2x2)

E , that is, Eρ x1∧Eρ x2∧Eρ→σ f1∧Eρ→σ f2 →
(x1 =ρ x2)

E → (f1x1 =σ f2x2)
E ; by preservation of extensionality (Proposition 4.3)

we get Ex1 ∧Ex2 ∧Eσ f1x1 ∧Eσ f2x2 → (x1 =ρ x2)
E → (f1x1 =σ f2x2)

E ; by Propo-

sition 4.5, we get x1
e=ρ x2 → f1x1

e=σ f2x2, or, equivalently by Proposition 4.2,

f1
e=ρ→σ f2, which is an atomic formula within HAω .

4.3 Notes 133

Step cases. For arrow introduction: Let E~y → BE(~y), derived from assumption

E~x→ AE(~x), be the premise; we want to derive E~x∧E~y→ AE(~x)→ BE(~y); so suppose

E~x, E~y, AE and show BE ; use→+ for the formulas AE and BE .

For arrow elimination: Let E~x∧ E~y → AE(~x)→ BE(~y) and E~x → AE(~x) be the

premise; we want to derive E~y→ BE(~y); so suppose E~y and show BE(~y); use →− for

the formulas AE → BE and AE .

For forall introduction: Let Ex∧E~x→ AE(x,~x) be the premise; we want to derive

E~x→ ∀x

(

Ex→ AE
)

; so suppose E~x and show ∀x

(

Ex→ AE
)

; use ∀+ for the formula

Ex→ AE(x,~x).
For forall elimination: Let E~x → ∀x

(

Ex→ AE(x,~x)
)

and r(~y) be the premise,

where r is a term of the same type as x; we want to derive E~x∧ E~y → AE [x ≔ r];
so suppose E~x and E~y and show AE [x ≔ r]; use ∀− for the formula AE(x,~x) and the

variable x, where extensionality is preserved by Proposition 4.3. �

4.3 Notes

Dues

The arguments of this chapter were devised under the guidance of Helmut Schwichten-

berg in 2006, and carried through in juxtaposition to the exposition of Horst Luckhardt

in [28] and its simplification by Ulrich Kohlenbach in an earlier draft of [22]; both of

these are based on Robin Gandy’s [12], while Luckhardt further reports that elimina-

tion of extensionality by relativization is to be found in Gaisi Takeuti’s [53] (earlier

than Gandy’s seemingly independent effort) as well as in Kurt Schütte’s [43]. In an-

other direction, elimination of extensionality in Martin-Löf type theory is the subject

of Martin Hofmann’s [15] (see also [16]).

Outlook

Elimination of extensionality as we presented it will find its place within TCF+ as soon

as the latter matures enough to formally encompass Heyting arithmetic; an embedding

of Heyting arithmetic into TCF+ is a straightforward and early question to pursue while

developing TCF+.

Appendix A

Some domain theory

We collect here notions and statements from elementary domain theory which are used

in the text as known facts. For details one can look into [52, 1, 2].

Preordered and ordered sets

Let T be a set with equality1 and ≥ a binary relation on T . The relation ≥ is well-

founded if there is no infinite sequence of the sort x0 ≥ x1 ≥ ·· · in T . It is finitely

branching if the class {y ∈ T | x≥ y} is finite for every x ∈ T . Say that y ∈ T is an

immediate successor of x ∈ T if it is

x≥ y∧ ∀
w∈T

((x≥ w→ y≥ w)∧ (w≥ y→ w≥ x)) ,

and write x ≥1 y (note that it is also x ≥1 x). The relation ≥ is finitarily branching (or

locally finitely branching) if the set of immediate successors x≥1 ≔ {y ∈ T | x≥1 y} is

finite for every x ∈ T .

The couple (T,≥) is a preordered set if≥ is reflexive and transitive and a (partially)

ordered set (or poset) if ≥ is reflexive, transitive and antisymmetric.

Fact A.1. A preordered set (T,≥) induces an ordered set (T/∼,≥), where

a∼ b⇔ a≥ b∧b≥ a

A maximal element a in a preordered set (T,≥) is such that ∀b∈T (b≥ a→ b≡ a);
dually, a minimal element a is such that ∀b∈T (a≥ b→ a≡ b). Denote the set of max-

imal elements of T by mxlT . A least element (or minimum)⊥ is such that ∀a∈T a≥⊥.

An upper bound of a subset {ai} is an element a ∈ T such that ∀i a ≥ ai; a is a least

upper bound (or supremum) if

∀
i

a≥ ai ∧ ∀
i

b≥ ai → b≥ a ;

write a = lubi{ai}. Call a,b ∈ T consistent if they have a common upper bound. We

remark the following:

1. Least elements of T or least upper bounds of an arbitrary subset of T , don’t have

to exist, but, in case T is an ordered set, if they do, they are unique.

1Say that a set T is a set with equality if it is equipped with an equivalence relation ≡T .

136 A. Some domain theory

2. Let S⊆ T , where T is an ordered set. Concerning the cardinality of the set mxlS,

we have the following possible cases:

(a) It may be empty; for example, consider S being an infinite ascending chain.

(b) It may be finite; this is the case with S being a singleton, or a discrete

subset (that is, consisting of mutually incomparable elements), or, say, a

finite (therefore finitely branching) tree.

(c) It may be infinite; for example, take S to be an infinitely branching flat tree.

Fact A.2. Let (T,≥) be an ordered set, U ⊆ T a subset and U ′ ⊆U such that

∀
a∈U

∃
a′∈U ′

a′ ≥ a .

The least upper bound of U exists if and only if the least upper bound of U ′ exists and,

if it does, lubU = lubU ′.

Let (T,≥) be an ordered set. A subset U ⊆ T is (upwards) directed when every

two of its elements have a common upper bound in U , that is,

∀
a1,a2∈U

∃
a∈U

(a≥ a1∧a≥ a2) .

Write U ∈Pd(T) and U ⊆d T . Further, U is closed (under the order) when

a ∈U ∧a≥ a′→ a′ ∈U .

Fact A.3. Let (T,≥) be an ordered set.

1. Let U ⊆ T . The closure U ≔ {a ∈ T | ∃a′∈U a′ ≥ a} is the smallest closed set in

(T,≥) that contains U.

2. For every a ∈ T , the closure a is a directed set.

A pre-ordered set (T,≥) is complete when every subset has a least upper bound,

δ -complete if every directed subset has a least upper bound, ω-complete when it has

a least element and every denumerable directed subset has a least upper bound, and

consistently complete when every consistent pair has a least upper bound; note that, in

the case of an ordered set, all of these least upper bounds are unique. Call the relation

≥ well-ordered if it yields no infinite descending chains in T , that is,

∀
{an}n∈N⊆T

(

∀
n∈N

an ≥ an+1 → ∃
n0∈N

∀
n≥Nn0

an ≡ an0

)

.

Fact A.4. An ordered set (T,≥) with a least element is ω-complete if and only if every

increasing sequence in it has a least upper bound.

An order-preserving mapping f from an ordered set (T,≥) to an ordered set

(T ′,≥′), is a mapping f : T → T ′ for which

a≥ b→ f (a)≥′ f (b)

If both (T,≥), (T ′,≥′) are complete, δ -complete or ω-complete then an order-

preserving mapping from one to the other is continuous, δ -continuous or ω-continuous

if it commutes with supremums of subsets, directed subsets or denumerable directed

subsets respectively:

f (lubU) = lub f (U)

where f (U)≔ { f (a) ∈ T ′ | a ∈U}.

137

Fact A.5. Let (T,≥), (T ′,≥′) be ω-complete ordered sets. An order-preserving map-

ping f : T → T ′ is ω-complete if and only if it commutes with supremums of increasing

sequences in T .

Domains

We restrict our attention to δ -complete ordered sets with least element, which we just

call complete ordered sets, or cpo’s, and we interpret a ≥ b as “a is approximated by

b”. For a detailed exposition we refer to [52, §§3.1–2].

Let D = (T,≥,⊥) be a cpo. Define its compact (or finite) elements by

a ∈ Dc ≔ ∀
U⊆dT

(

lubU ≥ a→ ∃
b∈U

b≥ a

)

.

So compact elements are those which, whenever they approximate the least upper

bound of a directed set U , they do so with a witness b ∈ U . Let apx(a) denote the

set of compact approximations of a, that is, apx(a)≔ {b ∈ Dc | a≥ b}. The cpo D is

called algebraic if every element a ∈ T can be characterized by its compact approxi-

mations, that is, if

∀
a∈T

(apx(a) ∈Pd(T)∧a = lubapx(a)) .

Finally, an algebraic cpo D = (T,≥,⊥) is called a (Scott-Ershov) domain when every

pair of consistent compact elements has a least upper bound (not necessarily compact

itself), that is, when

∀
a,b∈Dc

(

∃
c∈T

(c≥ a∧ c≥ b)→ lub{a,b} ∈ T

)

.

Fact A.6. Let D = (T,≥,⊥) be an algebraic cpo. The following hold.

1. For all a,b ∈ T it is a≥ b if and only if apx(a)≥ apx(b).

2. If U ⊆d T then apx(lubU) =
⋃

a∈U apx(a).

Fact A.7. Let D = (T,≥,⊥) be an algebraic cpo and D′ = (T ′,≥′,⊥′) a cpo. The

following hold.

1. A mapping f : D → D′ is continuous if and only if f (a) = lub{ f (b)}b∈apx(a),

for all a ∈ T . Moreover, every monotone function f : Dc → D′ has a unique

continuous extension f̂ : D→ D′ given by f̂ (a)≔ lub{ f (b)}b∈apx(a).

2. Let D′ be algebraic as well and f : D→ D′. Then f is continuous if and only if

it is monotone and it satisfies the principle of finite support, that is,

∀
a∈D

(

b ∈ apx(f (a))→ ∃
c∈apx(a)

f (c)≥ b

)

.

Fact A.8. Let D be a domain.

1. If U ⊆ f Dc is consistent, that is, if it has an upper bound, then it has a compact

least upper bound lubU ∈ Dc.

138 A. Some domain theory

2. Every domain is consistently complete, that is, every upper bounded set has a

least upper bound.

An ideal u in a domain D = (T,≥,⊥) is a set u⊆ Dc which contains the least ele-

ment, is downwards closed and consistently complete, that is, it satisfies the following:

• ⊥ ∈ u

• a ∈ u∧a≥ b→ b ∈ u

• ∀a,b∈u lub{a,b} ∈ u

Let a≔ {b ∈ Dc | a≥ b} and write IdeD to denote the set of ideals in D.

Fact A.9 (First Representation Theorem). The triple Dc ≔ (IdeD,⊇,⊥) constitutes a

domain. Moreover, it is Dc � D, through the mapping u 7→ lubu.

The domain Dc is called the ideal completion of Dc.

Bibliography

[1] Samson Abramsky and Achim Jung. Domain theory. In Handbook of logic in computer science, Vol.

3, volume 3 of Handb. Log. Comput. Sci., pages 1–168. Oxford Univ. Press, New York, 1994. (Cited

on pages 125 and 135.)

[2] Roberto M. Amadio and Pierre-Louis Curien. Domains and lambda-calculi, volume 46 of Cambridge

Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge, 1998. (Cited on

page 135.)

[3] Holger Benl, Ulrich Berger, Helmut Schwichtenberg, Monika Seisenberger, and Wolfgang Zuber.

Proof theory at work: Program development in the MINLOG system. In W. Bibel and P.H. Schmitt,

editors, Automated Deduction — A Basis for Applications, Volume II Systems and Implementation.

Kluwer, 1998. (Cited on page 103.)

[4] Ulrich Berger. Totale Objekte und Mengen in der Bereichstheorie. PhD thesis, Mathematisches Institut

der Universität München, 1990. (Cited on page 103.)

[5] Ulrich Berger. Total sets and objects in domain theory. Ann. Pure Appl. Logic, 60(2):91–117, 1993.

(Cited on page 103.)

[6] Ulrich Berger, Kenji Miyamoto, Helmut Schwichtenberg, and Monika Seisenberger. MINLOG — a

tool for program extraction supporting algebras and coalgebras. In Andrea Corradini, Bartek Klin, and

Corina Cı̂rstea, editors, CALCO, volume 6859 of Lecture Notes in Computer Science, pages 393–399.

Springer, 2011. (Cited on page 103.)

[7] Douglas S. Bridges and Luminita S. Vı̂ta. Apartness and Uniformity. Theory and Applications of

Computability. Springer, 2011. (Cited on page 126.)

[8] Antonio Bucciarelli, Alberto Carraro, Thomas Ehrhard, and Antonino Salibra. On linear information

systems. In LINEARITY, pages 38–48, 2009. (Cited on page 46.)

[9] Thierry Coquand, Giovanni Sambin, Jan Smith, and Silvio Valentini. Inductively generated formal

topologies. Ann. Pure Appl. Logic, 124(1-3):71–106, 2003. (Cited on page 113.)

[10] Yuri L. Ershov. Maximal and everywhere-defined functionals. Algebra and Logic, 13:210–225, 1974.

(Cited on page 102.)

[11] Martı́n Hötzel Escardó. PCF extended with real numbers: a domain-theoretic approach to higher-

order exact real number computation. PhD thesis, University of London, Imperial College of Science,

Technology and Medicine, Department of Computing, 1997. (Cited on page 34.)

[12] Robin O. Gandy. On the axiom of extensionality—Part I. J. Symb. Log., 21(1):36–48, 1956. (Cited on

pages 4 and 133.)

[13] Gerhard Gierz, Karl Heinrich Hofmann, Klaus Keimel, Jimmie D. Lawson, Michael Mislove, and

Dana S. Scott. Continuous Lattices and Domains, volume 93 of Encyclopedia of Mathematics and its

Applications. Cambridge University Press, 2003. (Cited on page 20.)

[14] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and types, volume 7 of Cambridge Tracts in

Theoretical Computer Science. Cambridge University Press, Cambridge, 1989. (Cited on page 125.)

[15] Martin Hofmann. Elimination of extensionality in Martin-Löf type theory. In Types for proofs and

programs (Nijmegen, 1993), volume 806 of Lecture Notes in Comput. Sci., pages 166–190. Springer,

Berlin, 1994. (Cited on page 133.)

[16] Martin Hofmann. Extensional concepts in intensional type theory. PhD thesis, University of Edinburgh,

1995. (Cited on page 133.)

[17] William A. Howard. Appendix: Hereditarily majorizable functionals of finite type. In Troelstra [55],

pages 454–461. Lecture Notes in Mathematics, Vol. 344. (Cited on page 127.)

140 BIBLIOGRAPHY

[18] Simon Huber, Basil A. Karádais, and Helmut Schwichtenberg. Towards a formal theory of com-

putability. In Ways of Proof Theory (Pohler’s Festschrift), pages 257–282. Ontos Verlag, Frankfurt,

2010. (Cited on pages 4, 47, 100, 103, and 127.)

[19] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. On generating all maximal

independent sets. Inf. Process. Lett., 27(3):119–123, 1988. (Cited on page 101.)

[20] Peter T. Johnstone. Stone spaces, volume 3 of Cambridge Studies in Advanced Mathematics. Cam-

bridge University Press, Cambridge, 1982. (Cited on page 125.)

[21] Stephen C. Kleene. Countable functionals. In Constructivity in mathematics: Proceedings of the

colloquium held at Amsterdam, 1957 (edited by A. Heyting), Studies in Logic and the Foundations

of Mathematics, pages 81–100, Amsterdam, 1959. North-Holland Publishing Co. (Cited on pages 1

and 102.)

[22] Ulrich Kohlenbach. Applied proof theory: proof interpretations and their use in mathematics. Springer

Monographs in Mathematics. Springer-Verlag, Berlin, 2008. (Cited on page 133.)

[23] Georg Kreisel. Wittgenstein’s remarks on the foundations of mathematics. British Journal for the

Philosophy of Science, 9(34):135–158, 1958. (Cited on page x.)

[24] Georg Kreisel. Interpretation of analysis by means of constructive functionals of finite types. In

Constructivity in mathematics: Proceedings of the colloquium held at Amsterdam, 1957 (edited by A.

Heyting), Studies in Logic and the Foundations of Mathematics, pages 101–128, Amsterdam, 1959.

North-Holland Publishing Co. (Cited on pages 1 and 102.)

[25] Lill Kristiansen and Dag Normann. Total objects in inductively defined types. Archive for Mathemati-

cal Logic, 36:405–436, 1997. (Cited on page 103.)

[26] Thomas S. Kuhn. The structure of scientific revolutions. University of Chicago Press, Chicago, 1970.

(Cited on page x.)

[27] Imre Lakatos. Proofs and refutations: the logic of mathematical discovery. Cambridge University

Press, 12th edition, 1976. (Cited on page x.)

[28] Horst Luckhardt. Extensional Gödel functional interpretation. A consistency proof of classical anal-

ysis. Lecture Notes in Mathematics. 306. Berlin-Heidelberg-New York: Springer-Verlag. VI, 161 p.,

1973. (Cited on page 133.)

[29] George Markowsky and Barry K. Rosen. Bases for chain-complete posets. IBM J. Res. Develop.,

20(2):138–147, 1976. (Cited on page 125.)

[30] Sara Negri. Continuous domains as formal spaces. Math. Structures Comput. Sci., 12(1):19–52, 2002.

(Cited on pages 113, 118, 119, and 125.)

[31] Dag Normann. Computability over the partial continuous functionals. J. Symbolic Logic, 65(3):1133–

1142, 2000. (Cited on page 34.)

[32] Dag Normann. Applications of the Kleene–Kreisel Density Theorem to Theoretical Computer Science.

In S. Barry Cooper, Benedikt Lwe, and Andrea Sorbi, editors, New Computational Paradigms, pages

119–138. Springer New York, 2008. (Cited on page 103.)

[33] Erik Palmgren. A note on domain representability and formal topology. Revised version of U.U.D.M.

Report 2007:28, Department of Mathematics, University of Uppsala, 2007, 2007. (Cited on pages 113

and 124.)

[34] Iosif Petrakis. The topology of the strong Scott condition. Preprint, 2012. (Cited on page 20.)

[35] Gordon D. Plotkin. LCF considered as a programming language. Theoret. Comput. Sci., 5(3):223–255,

1977/78. (Cited on pages 34 and 47.)

[36] Gordon D. Plotkin. T ω as a universal domain. J. Comput. System Sci., 17(2):209–236, 1978. (Cited

on page 125.)

[37] Giovanni Sambin. Intuitionistic formal spaces — a first communication. In Mathematical logic and its

applications (Druzhba, 1986), pages 187–204. Plenum, New York, 1987. (Cited on page 118.)

[38] Giovanni Sambin. Formal topology and domains. In Electronic notes in theoretical computer sci-

ence, 35 (Remagen-Rolandseck, 1998), volume 35 of Electron. Notes Theor. Comput. Sci., page 14 pp.

(electronic). Elsevier, Amsterdam, 2000. (Cited on pages 105 and 113.)

[39] Giovanni Sambin. Some points in formal topology. Theoret. Comput. Sci., 305(1-3):347–408, 2003.

Topology in computer science (Schloß Dagstuhl, 2000). (Cited on pages 113 and 118.)

[40] Giovanni Sambin and Silvia Gebellato. A preview of the basic picture: a new perspective on formal

topology. In Types for proofs and programs (Irsee, 1998), volume 1657 of Lecture Notes in Comput.

Sci., pages 194–207. Springer, Berlin, 1999. (Cited on page 113.)

BIBLIOGRAPHY 141

[41] Giovanni Sambin, Silvio Valentini, and Paolo Virgili. Constructive domain theory as a branch of

intuitionistic pointfree topology. Theoret. Comput. Sci., 159(2):319–341, 1996. (Cited on pages 113

and 125.)

[42] Peter Schuster. Formal Zariski topology: positivity and points. Ann. Pure Appl. Logic, 137(1-3):317–

359, 2006. (Cited on page 113.)

[43] Kurt Schütte. Grundlagen der Analysis im Rahmen einer einfachen Typenlogik: Ausz. (mit einigen

Erg.) aus d. Vorlesung: Grundlagen d. Math., München, W.S. 1966/67. 1967. (Cited on page 133.)

[44] Helmut Schwichtenberg. Eine Normalform für endliche Approximationen von partiellen stetigen Funk-

tionalen. In J. Diller, editor, Logik und Grundlagenforschung, Festkolloquium zum 100. Geburtstag von

Heinrich Scholz, pages 89–95, 1986. (Cited on page 46.)

[45] Helmut Schwichtenberg. Density and choice for total continuous functionals. In Kreiseliana. About

and Around Georg Kreisel, pages 335–362, 1996. (Cited on page 103.)

[46] Helmut Schwichtenberg. Classifying recursive functions. In E. Griffor, editor, Handbook of com-

putability theory, volume 140 of Stud. Logic Found. Math., pages 533–586. North-Holland, Amster-

dam, 1999. (Cited on pages 34 and 47.)

[47] Helmut Schwichtenberg. Recursion on the partial continuous functionals. In C. Dimitracopoulos,

L. Newelski, D. Normann, and J. Steel, editors, Logic Colloquium ’05, volume 28 of Lecture Notes in

Logic, pages 173–201. Association for Symbolic Logic, 2006. (Cited on pages 3, 5, and 46.)

[48] Helmut Schwichtenberg. MINLOG. In Freek Wiedijk, editor, The Seventeen Provers of the World, vol-

ume 3600 of Lecture Notes in Computer Science, pages 151–157. Springer, 2006. (Cited on page 103.)

[49] Helmut Schwichtenberg and Stanley S. Wainer. Proofs and computations. Perspectives in Logic.

Cambridge University Press, Cambridge, 2012. (Cited on pages 1, 3, 50, 97, and 127.)

[50] Dana S. Scott. A type-theoretical alternative to ISWIM, CUCH, OWHY. Manuscript, 1969. (Cited on

page 1.)

[51] Dana S. Scott. Domains for denotational semantics. In Automata, languages and programming

(Aarhus, 1982), volume 140 of Lecture Notes in Comput. Sci., pages 577–613. Springer, Berlin, 1982.

(Cited on page 108.)

[52] Viggo Stoltenberg-Hansen, Ingrid Lindström, and Edward R. Griffor. Mathematical theory of domains,

volume 22 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1994.

(Cited on pages 103, 113, 114, 115, 117, 118, 119, 125, 135, and 137.)

[53] Gaisi Takeuti. On a generalized logic calculus. Japanese Journal of Mathematics, 23:39–96, 1953.

Errata: ibid, vol. 24 (1954), 149–156. (Cited on page 133.)

[54] Terese. Term rewriting systems, volume 55 of Cambridge Tracts in Theoretical Computer Science.

Cambridge University Press, Cambridge, 2003. (Cited on page 100.)

[55] Anne S. Troelstra, editor. Metamathematical investigation of intuitionistic arithmetic and analysis.

Springer-Verlag, Berlin, 1973. Lecture Notes in Mathematics, Vol. 344. (Cited on pages 127 and 139.)

[56] Wolfgang Wechler. Universal algebra for computer scientists, volume 25 of EATCS Monographs on

Theoretical Computer Science. Springer-Verlag, Berlin, 1992. (Cited on page 2.)

[57] Glynn Winskel. Event structures. In Advances in Petri nets 1986, Part II (Bad Honnef, 1986), volume

255 of Lecture Notes in Comput. Sci., pages 325–392. Springer, Berlin, 1987. (Cited on page 126.)

[58] Ludwig Wittgenstein. Bemerkungen über die Grundlagen der Mathematik. Suhrkamp, Frankfurt am

Main, 1984. (Cited on page x.)

Index

aboveness, 31

Abramsky, Samson, 125

acis, 3, 7, 47, 49, 53, 84

algebraic, 29

antisymmetric, 32

arithmetical, 31, 34

basic algebraic, 29, 62

composite algebraic, 29

induced by algebra, 29

matrix, 53

nbr-acis, 56, 60, 100

parametric, 32

sub-acis, 8

acis graph, 6

Alexandrov topology, 19

algebra, 1

comparability, 46

finitary, 1, 82

infinitary, 2, 48, 85

non-superunary, 3, 34, 46, 51, 126

structure-finitary, 1

apartness space, 126

application, 17

boolean, 87

of constructor contexts to matrices, 66, 67

of constructors to matrices, 63

of ideals, 23, 34

of lists, 50, 88

of sets, 17

approximable map, 107, 114

n-ary, 29

of acises, 17

of precusl’s, 116

of Scott–Ershov formal topologies, 121

argument

parametric, 1

recursive, 1

arity

left arity of a constructor context, 66

of a constructor, 1

right arity of a constructor context, 66

atom, 7

atomicity, 111, 124

as uniformity, 101

implicit, 3, 48, 51, 94, 101, 126

B, 2, 3, 30

basic coefficient of a matrix, 77, 86

basis of a matrix, 77, 86

Berger, Ulrich, 46, 103

block coding, 57

blocking and unblocking, 57

Bridges, Douglas, ix

category of ideals, 26

CiE 2008, 47

closure-mapping, 13

coherence, 6, 49, 111, 113

coherence space, 125

coherent locale, 125

compact approximation, 114, 137

comparability property, 31, 44, 47

composition of ideals, 26, 34

conditional extension functional, 38, 47

conditional functional, 37

cone of ideals, 7, 20

conjunction functional, 37

conjunction-implication information system, 51, 100

consistency, 3, 7, 135, 137

head-consistency, 69

left-consictency, 94

of constructor contexts, 68

of matrices, 53, 56

propagation of, 6, 49, 106

trivial, 89

consistent set, 7

consistently defined, 17

constructor, 1

partiality pseudo-constructor, 2, 28, 50

proper, 50

constructor arity, 1

constructor context, 66

constructor operator, 63

constructor context, 66

blank, 66

identity, 66

continuous union functional, 47

Coquand counterexample, 47, 67, 89, 106, 113, 125

Coquand information system, 106, 113

Coquand, Thierry, x, 47, 125

cpo, 137

currying functional, 25, 34

D, 51

deductive closure, 7, 106, 136

definability, 34, 48

Dialectica realizability, 127

disjoint union of acises, 8

144 INDEX

disjunction functional, 37

domain, 114, 137

coherent, 114

continuous, 125

domain ideal, 138

domain theory, 1, 113

E-HAω , 127

eigen-neighborhood, 94, 126

eigensplitting mapping, 96

eigentoken, 82

eigenvector, 82

entailment, 3, 7, 44, 50, 63, 88, 105

contravariance of, 90

of constructor contexts, 68

of matrices, 53, 57

enumeration functional, 38

equality

extensional equality, 130

ideal-wise, 108

of neighborhoods, 29

of tokens, 28

point-wise, 129, 130, 132

equientailment, 78, 95, 109

atomical equientailment, 78

equivalence, 78, 109

atomical, 78

Ershov, Yuri, 102

evaluation functional, 25, 34

event structure, 126

existential functional, 36

extension lemma, 97

extensionality, 127

factorization, 67, 78, 80, 85, 87

flattening mapping, 93, 96

formal point, 118

formal topology, 105, 113, 118

coherent Scott–Ershov, 123

consistently complete, 119

Scott–Ershov, 119

unary, 119, 124

function space, 1

atomic, 56

of acises, 10

functional, 1

arithmetical, 30

computable, 34

continuous, 31

extensional, 130

partial, 1

recursive in pcond, exist, and condext, 42

total, 1, 97

Gandy, Robin, 4, 133

Girard, Jean-Yves, 125

HAω , 127

Hausdorff space, 19

higher-type computability, 1, 127

Hofmann, Martin, x, 133

homogenization

of matrices, 73

of tokens, 69, 86

Howard, William, 127

Huber, Simon, ix, 47

ideal, 7, 106

cone, 7, 20

empty, 7, 23

finitely valued, 14

total, 31, 97

idealization

of a token-mapping, 10

implementation, 4, 127

implication functional, 37

inconsistency functional, 38

indiscernibility of identicals, 127

information system, 3, 105

atomic, 3, 47

atomic-coherent, 5, 7

coherent, 3, 49

flat, 46, 47

function space, 50

non-flat, 47

intersection of acises, 8

Johnstone, Peter, 125

Jung, Achim, 125

Kleene, Stephen, 1, 102

Kohlenbach, Ulrich, 133

Kolmogorov space, 19

Kreisel, Georg, x, 1, 102

Kuhn, Thomas, x

Lakatos, Imre, x

least fixed point functional, 35

least upper bound, 29

Leibniz law, 127

Leibniz, Gottfried Wilhelm, 127

L(ρ), 2

Luckhardt, Horst, 133

MAP 2006, 47

mapping

n-ary continuous, 30

continuous, 19

monotone, 21

of closures, 13

of neighborhoods, 11

of tokens, 10

Scott-continuous, 20

Markowsky, George, 125

matrix, 3, 53

argument and value part, 61

atomically maximal, 84

augmented, 80

basic, 63

blank, 63

blank inclusion, 63

block, 58

coherently consistent, 53

empty, 54

INDEX 145

homogeneous, 73

horizontal append, 54

inclusion, 59

inner transpose, 60

mixed, 55, 85

overlapping, 59

product, 54

pseudo-basic, 86

sigma-pi and pi-sigma notation, 55

sum, 54

test, 58, 88

transpose, 54

true, 58

vertical append, 54

matrix form, 78

matrix theory, 101

maximal clique, 92, 101

maximum token, 45

MINLOG, 103

mutual induction, 1, 103, 130–132

N, 2, 3, 30

negation functional, 37

Negri, Sara, 125

neighborhood, 3, 7, 19, 105

conservative extension of, 95

maximal, 91

monotone, 34, 96

total, 97

neighborhood information system, 11, 94, 108

neighborhood-mapping, 11

normal form, 46, 78, 100

of constructor contexts, 67

atomic maximal, 33, 46, 84

eigenform, 96

eigentoken, 3, 82, 84

eigenvector, 82

homogeneous, 3, 84

matrix form, 77, 86

number

boolean, 2

natural, 2, 30

ordinal, 2

rational, 1

real, 1

O, 2, 48, 51

Palmgren, Erik, 124

parallel conditional functional, 35

parametric argument, 1

partial height of tokens, 31

PCF, 34, 47

Plotkin counterexample, 125

Plotkin information system, 107, 113

Plotkin, Gordon, 32, 47, 125

point-free topology, 4, 113

precusl, 115

coherent, 117

precusl ideal, 115

principle of atomic support, 22

principle of comparability, 45

principle of finite support, 21, 137

product algebra, 2

product of acises

cartesian, 9, 24

set-theoretic, 8

product of continuous mappings, 24, 34

projection functional, 24, 34

propagation of matrix overlapping, 60

quotient information system, 109

Ranzi, Florian, ix, 47

recursive argument, 1

rewriting system, 100

Rosen, Barry, 125

Sambin, Giovanni, ix, 105, 118, 125, 126

Schütte, Kurt, 133

Schuster, Peter, ix, 125

Schwichtenberg, Helmut, ix, 3, 11, 46, 47, 133

Scott topology, 20

Scott, Dana, 1, 108

separation axiom

T0, 19

T2, 19

separation lemma, 97

separator, 97, 103

set induced by a list, 78

Stoltenberg-Hansen, Viggo, 125

Takeuti, Gaisi, 133

TCF, 127

TCF+, vii, 47, 103, 127

theorem

atomic maximal form, 33

calculus of homogeneous forms, 80

comparability, 46

definability, 42

density, 97, 102

elimination of extensionality, 132

entailment, 64

finitely valued ideals, 15

implicit atomicity at base types, 83

implicit atomicity at higher types, 95

matrix characterization of functional consis-

tency and entailment, 62

matrix form (finitary), 77

matrix form (infinitary), 86

token, 3, 7, 105

alien, 86, 87

nullary, 69, 86

total, 97

token-mapping, 10

consistency-preserving, 10

idealization of, 10

monotone, 10

topological basis, 19

topological space, 18

topology

Alexandrov, 19

liminf, 20

Scott, 20

146 INDEX

type

base type, 1

constructor type, 1

dense, 97

higher type, 1

type system, 1

type variable, 1

universal algebra, 2

WFTop 2007, 125

Wittgenstein, Ludwig, x

Yannakakis, Mihalis, 102

