
Normal forms and linearity in nonflat domains

Basil A. Karádais

Department of Mathematics
University of Padua

July 14th, 2015



Scott, Plotkin, and sequentiality

I Dana Scott and Juri Ershov [late 60’s–70’s]: Scott–Ershov
domains with Scott-continuous functions provide an
appropriate framework for higher-type computability and
semantics of programming languages.

I Gordon Plotkin [Plotkin 1977] and PCF: There are inherently
nonsequential functionals in Scott’s model:

pcond(q, x, y) =


x if q = tt,

y if q = ff,

x ∩ y if q = ⊥.



Berry, Zhang, and linearity

I Gerard Berry [Berry1978]: If a functional is sequential, it has
to be stable (that is, preserve consistent infima).

I Guo-Qiang Zhang [Zhang 1989–1992]: In order to represent
stable domains by information systems, we have to require
linearity (in Munich, “atomicity”): if a consistent set entails a
token of information, it must do so with a single witness.



Linear logic and higher-type computability

I Stability and linearity are quite relevant to classical [Girard et
al. 1989] and intuitionistic linear logic [Bucciarelli et al.
2009-10].

I Helmut Schwichtenberg and the Munich group
[Schwichtenberg, Huber, B., Ranzi 2006–] working towards a
formal theory of computable functionals (TCF+), have been
using nonflat base types (and have obtained density,
preservation of values, adequacy, definability. . . ), sometimes
with linear systems, most of the time with nonlinear ones.



Flatness vs. nonflatness

I Why nonflat? (a) Trivially good reasons: injectivity of
constructors and nonoverlapping of their ranges. (b) Deeper
good reasons: more degrees of freedom in the model allow for
stronger results—see [Escardò 1993] and Davide’s talk.

I Why not nonflat? (a) Trivially good reasons: combinatorial
chaos. (b) Deeper good reasons: flat base types are still
refined enough to support relevant research; flat base types
are linear but nonflat aren’t.

I But: function spaces preserve linearity!



Coherent information systems

I Information system A = (Tok,Con,`)

{a} ∈ Con,

U ⊆ V ∧ V ∈ Con→ U ∈ Con,

U ∈ Con ∧ a ∈ U → U ` a,
U ` V ∧ V ` c→ U ` c,
U ∈ Con ∧ U ` b→ U ∪ {b} ∈ Con.

I Coherence property

∀
a,a′∈U

{
a, a′

}
∈ Con→ U ∈ Con. (1)

Write a � b for {a, b} ∈ Con, and even U � V for
U ∪ V ∈ Con.



Coherent function spaces

Function space A→ B

〈U, b〉 ∈ Tok := U ∈ ConA ∧ b ∈ TokB,

〈U, b〉 �
〈
U ′, b′

〉
:= U �A U ′ → b �B b′,

W ` 〈U, b〉 :=WU `B b,

where

b ∈WU := ∃
U ′∈ConA

(〈
U ′, b

〉
∈W ∧ U `A U ′

)
.

Fact
The function space of two coherent information systems is itself a
coherent information system.



Linear information systems

Linearity property
U ` b→ ∃

a∈U
{a} ` b (2)

Fact
The function space of two linear information systems is itself a
linear information system.



Objects as ideals

Ideal x ∈ Ide

∀
U⊆fx

(U ∈ Con ∧ ∀
b∈Tok

(U ` b→ b ∈ x))

Coherent domains (with countable bases) are algebraic bounded
complete cpo’s, where every set of compacts has a least upper
bound exactly when each of its pairs has a least upper bound.

Fact
Let (Tok,Con,`) be a coherent information system. Then
(Ide,⊆,∅) is a coherent domain with compacts given by{
U | U ∈ Con

}
. Conversely, every coherent domain can be

represented by a coherent information system.



Approximable mappings

Approximable mapping r ⊆ ConA × ConB

〈∅,∅〉 ∈ r,
〈U, V1〉 , 〈U, V2〉 ∈ r → 〈U, V1 ∪ V2〉 ∈ r,
U `ρ U ′ ∧

〈
U ′, V ′

〉
∈ r ∧ V ′ `σ V → 〈U, V 〉 ∈ r.

Fact
There is a bijective correspondence between the approximable
mappings from ρ to σ and the ideals of the function space ρ→ σ;
domains (with Scott continuous functions) and information
systems (with approximable mappings) are categorically equivalent
[Scott 1982]. Moreover, the equivalence is preserved if we restrict
ourselves to the coherent case [B 2013].



Types and partiality

I Base types ι, given by constructors

B = {tt, ff} ,
N = {0, S0, SS0, . . .} ,
D = {0, 1, S0, . . . , B01, . . . , BS0B01, . . .} ,

and higher types ρ→ σ.

I Partiality at base types ι is not a distinguished token but a
distinguished nullary constructor ∗ι: the base types are
already nonflat:

B = {∗, tt, ff} ,
N = {∗, 0, S∗, S0, SS∗, SS0, . . .} ,
D = {∗, 0, 1, S∗, S0, . . . , B∗1, . . . , BS∗B01, . . .} .



The information system induced by D:

∗, 0, 1 ∈ Tok,

a ∈ Tok→ Sa ∈ Tok,

a, b ∈ Tok→ Bab ∈ Tok,

a � ∗ ∧ ∗ � a,
a � a′ → Sa � Sa′,

a � a′ ∧ b � b′ → Bab � Ba′b′,

U ` ∗,
U ` a→ SU ` Sa, for U 6= ∅,
U ` a ∧ V ` b→ BUV ` Bab, for U, V 6= ∅,
U ` b→ U ∪ {∗} ` b,

where BUV := {Bab | a ∈ U, b ∈ V }.



Inconveniences

Fact
Let ι be an algebra given by constructors. The triple
(Tokι,Conι,`ι) is a coherent information system.

The definition above is rather unduly involved—actually, I had to
push some details concerning entailment under the rug, to keep
the slides relatively light. Moreover, we have two main sources of
inconvenience.

I The systems B and N are linear but D is not:
{B0∗, B∗1} ` B01 but {B0∗} 6` B01 and {B∗1} 6` B01.

I At base types antisymmetry holds for tokens, but neither for
neighborhoods (e.g., {B0∗, B∗1} ∼ {B01} and
{S0, S∗} ∼ {S0}) nor, consequently, at higher types.



Neighborhood mappings

Let ρ, σ be types. A mapping f : Conρ → Conσ is compatible,
monotone, and consistent if

U1 ∼ρ U2 → f(U1) ∼σ f(U2),

U1 `ρ U2 → f(U1) `σ f(U2),

U1 �ρ U2 → f(U1) �σ f(U2),

respectively.

Lemma
Let f : Conρ → Conσ be a neighborhood mapping.

1. It is monotone if and only if it is compatible with
equientailment and f(U1 ∪ U2) `σ f(U1) ∪ f(U2) for every
U1, U2 ∈ Conρ with U1 �ρ U2.

2. If it is monotone, then it is also consistent.



Idealization

The idealization f̂ of a neighborhood mapping f : Conρ → Conσ is
the token set

f̂ := {〈U, b〉 ∈ Tokρ→σ | ∃
U1,...,Um

(U `ρ
⋃
j

Uj ∧
⋃
j

f(Uj) `σ b)}

Theorem
Let ρ, σ be types, and f be a neighborhood mapping at type
ρ→ σ. Then f̂ is an ideal if and only if f is consistent.

Not all ideals are induced by neighborhood mappings: e.g., at type
N→ N take {〈0, Sn∗〉 | n = 0, 1, . . .}. Neighborhood mappings are
those approximable maps r for which r(U) is covered by a finite
collection V1, . . . , Vm ∈ Conσ for every U ∈ Conρ.



Normal form mappings

Let ρ be a type. A neighborhood-mapping f : Conρ → Conρ is a
normal form mapping (at type ρ) if it preserves information and
identifies equivalent neighborhoods, that is,

f(U) ∼ρ U,
U1 ∼ρ U2 → f(U1) = f(U2).

Every normal form mapping is monotone (so by Lemma 6 also
compatible and consistent).



Normal forms at base types: closures and suprema

I Deductive closure. Define

U := {b ∈ Tok | U ` b} .

The mapping U 7→ U is a normal form mapping at base types.

I Supremum. For a, b ∈ TokD, define sup(a, b) by

sup(a, ∗) = sup(∗, a) = a,

sup(Sa, Sa′) = S sup(a, a′),

sup(Bab, Ba′b′) = B sup(a, a′) sup(b, b′).

For a neighborhood U ∈ ConD define sup(U) ∈ Tok by

sup(∅) := ∗,
sup({a1, . . . , am}) := sup(· · · sup(a1, a2) · · · , am).

The neighborhood mapping U 7→ {sup(U)} is a normal form
mapping at base types.



Normal forms at base types: paths I

Path reduced neighborhood. Define the paths in D, TokpD, by

∗, 0, 1 ∈ TokpD,

a ∈ TokpD → Sa ∈ TokpD,

a, b ∈ TokpD → Ba∗, B∗b ∈ TokpD.

At a base type ι, let p ∈ Tokpι , a, b ∈ Tokι, and U ∈ Conι \∅.
The following hold.

I path comparability: p `ι a ∧ p `ι b→ a `ι b ∨ b `ι a
I downward closure: p `ι a→ a ∈ Tokpι
I path linearity: U `ι p→ ∃a∈U {a} `ι p



Normal forms at base types: paths II

A path reduced neighborhood is an inhabited neighborhood whose
every token is maximal and a path.

Theorem (Path normal form)

There exists a normal form mapping nfp : Conι → Conι, such that
nfp(U) is path reduced for every U ∈ Conι.



Moving on to higher types

Let W = {〈U1, b1〉 , . . . , 〈Um, bm〉} ∈ Conρ→σ. Let

L(W ) :=

m⋃
i=1

Ui = {a ∈ Ui | i = 1, . . . ,m} ,

R(W ) := {bi | i = 1, . . . ,m} .

These finite sets are not necessarily consistent! Also, write

〈U, V 〉 := {〈U, b〉 | b ∈ V } .



Eigen-neighborhoods I

An eigen-neighborhood of W is a neighborhood H = 〈U, V 〉,
where U ∈ ConL(W ) (a subset of L(W ) which is consistent) and
furthermore

U = U ∩ L(W ) ∧ V =WU ∩R(W ).

Write H ∈ EigW . The eigenform of W is given by the
neighborhood mapping

eig(W ) :=
⋃

U∈ConL(W )

〈
U ∩ L(W ),WU ∩R(W )

〉
,

that is, it is the union
⋃
EigW of its eigen-neighborhoods. (At

base types we use the convention eig(U) := U .)



Eigen-neighborhoods II

Lemma (Eigenform)

Let ρ and σ be types, and W,W1,W2 ∈ Conρ→σ.

1. The eigenform mapping is information preserving, that is,
W ∼ρ→σ eig(W ), and idempotent, that is
eig(eig(W )) = eig(W ).

2. It is

W1 `ρ→σ W2 ↔ ∀
H2∈EigW2

∃
H1∈EigW1

H1 `ρ→σ H2,

W1 �ρ→σ W2 ↔ ∀
H1∈EigW1

∀
H2∈EigW2

H1 �ρ→σ H2.

Note: The mapping eig is not a normal form mapping!



Eigen-maximal neighborhoods

Write Eig 0
W for the inhabited eigen-neighborhoods of W . Call

W ∈ Conρ→σ eigen-maximal if W = eig(W ), and each H ∈ EigW
is either empty or maximal, that is, if H ∈ Eig 0

W , then for all
H ′ ∈ EigW with H ′ `ρ→σ H, it is H ′ ∼ρ→σ H.
An eigen-maximal neighborhood is “flat”, in the sense that the
inclusion diagram of its eigen-neighborhoods forms a flat tree.

Lemma
Let ρ, σ be types. There exists a neighborhood mapping emax
such that for every W ∈ Conρ→σ the neighborhood emax(W ) is
eigen-maximal and W ∼ρ→σ emax(W ).

Note: The mapping emax is (still) not a normal form mapping!



Eigen-products of neighborhood mappings

Write Finρ for all (not necessarily consistent) finite token sets at
type ρ. If f : Conρ → Conρ and g : Conσ → Conσ, define their
eigenproduct 〈f, g〉 : Conρ→σ → Finρ→σ by

〈f, g〉 (W ) :=
⋃

H∈Eig 0
W

〈f(L(H)), g(R(H))〉 .

Lemma
Let f and g be normal form mappings at types ρ and σ
respectively. Then their eigenproduct is a normal form mapping at
type ρ→ σ, when restricted to eigen-maximal neighborhoods.



Normal forms at higher types

As a corollary we obtain the following.

Theorem (Inductive normal forms)

Let f and g be normal form mappings at types ρ and σ
respectively. Then the mapping 〈f, g〉 ◦ emax is a normal form
mapping at type ρ→ σ.



Implicit linearity

Call a type implicitly linear when every neighborhood has an
equivalent one which is linear.
All base types are implicitly linear, since there are normal forms for
every neighborhood which are linear, like the closure and the
supremum.

Theorem
Let ρ be an arbitrary type. There exists a neighborhood mapping
atρ : Conρ → Conρ, such that atρ(U) is linear and equivalent to U
for all U ∈ Conρ.

Witness.
atρ→σ(W ) := 〈id, atσ〉 (W ).



Explicit linearity I

Fact 2 (i.e., the preservation of linearity by exponentiation) bluntly
suggests the following simple strategy: build your base type
information systems in a linear manner and you’re done.
The only challenge is to avoid missing some ideals while restricting
to linear base types.



Explicit linearity II

Write ρ ∼= σ if the ideals of ρ and the ideals of σ are in a bijective
correspondence.

Theorem
Let ι be a finitary base type. There exists a linear-coherent
information system ι′, such that ι′ ∼= ι.



Explicit linearity III

Proofsketch.
Given a finitary base type ι, define the path subsystem of ι, ιp, by
letting

Tokιp := Tokpι ,

Conιp := Conι ∩ Pf (Tokιp),
`ιp := `ι ∩ (Conιp × Tokιp).

The triple ιp is a coherent information system and it is ιp ∼= ι.
To see that it is linear, let U ∈ Conιp and q ∈ Tokιp be such that
U `ιp q. By path linearity there is a p ∈ U with {p} `ι q. But p is
itself a path, so {p} `ιp q.



Outlook

I Can linearity help us prove definability also for base types with
superunary constructors? [Huber, B, Schwichtenberg 2010]

I How exactly does “linearity” manifest in a formal topological
setting a la Padua?

I Is there something to be gained by pursuing nonflat models of
linear logic?


	Background
	Prerequisites
	Normal forms
	Linearity
	Outlook

