
Towards an arithmetic
for partial computable functionals

(outline of the talk)

Basil A. Karádais

August 12, 2013

1 Partiality, continuity, higher types
Consider the statement

∀
x∈R

(x = 0∨ x 6= 0) . (1)

• It is unlikely that there is an algorithm f that decides (1), i.e., returns tt if x = 0
and ff if x 6= 0: on input x = 0 it would run forever (think of the decimal repre-
sentation of x); it would only semi-decide it, i.e., it would be a partial algorithm.

• The algorithm as a mapping f : R→ B is discontinuous at 0.

• Reals are Cauchy sequences of rationals; rationals are pairs of integers; integers
are pairs of naturals; so

f : (N→ (N×N)× (N×N))× (N→ N)→ B . (2)

Algorithms like the above (and reals too) are certain higher-type functionals over
N and B.

• Domain theory provides solid mathematical grounds on which to construe algo-
rithms as partial continuous higher-type functionals.

• Aiming at an implementation in a proof assistant, so at a formal theory of higher-
type computability, we develop a constructive and bottom-up version of domain
theory.

2 A bottom-up approach to higher-type computability
through approximations

Three requirements for a theory of higher-type computation:

• Principle of monotonicity: if an algorithm terminates on some functional input
f with output y, then it should still terminate with the same output y even if we
gave more information on the input, namely some f ′ with f ⊆ f ′.

• Principle of finite support: in order to compute some finite output an algorithm
should only need finite information on the input.

1



• Effectivity principle: an algorithm should be approximated by a recursively enu-
merated set of finite pieces of data.

2.1 Approximations
Organize the finite approximations of objects of a given type as an information system.

• The tokens of information a,b,c, . . . form a countable set: Tok.

• Finite collections of tokens U can be consistent: U ∈ Con.

• A consistent set U may entail a token b: U ` b.

• Axioms for the approximations:{
a
}
∈ Con , (3)

U ∈ Con∧V ⊆U →V ∈ Con , (4)
U ∈ Con∧a ∈U →U ` a , (5)
U `V ∧V ` a→U ` a , (6)

U ` a→U ∪
{

a
}
∈ Con . (7)

• Coherence: consistency reduces to a binary predicate:

U ∈ Con↔ ∀
a,b∈U

{
a,b

}
∈ Con ; (8)

write a� b for
{

a,b
}
∈ Con.

• Atomicity: entailment reduces to a binary predicate:

U ` b↔ ∃
a∈U

{
a
}
` b ; (9)

write U `A b for a neighborhood with an atomic closure.

If ρ and σ are coherent information systems, define their function space ρ → σ .

• Function space tokens give information on the graph of a mapping. It is 〈U,b〉 ∈
Tokρ→σ if

U ∈ Conρ ∧b ∈ Tokσ .

• Consistency corresponds to single valuedness. It is 〈U,b〉 �ρ→σ 〈U ′,b′〉 if

U �ρ U ′→ b�σ b′ .

• If W =
{
〈Ui,bi〉 | i < n

}
∈ Conρ→σ and U ∈ Conρ , the application of W to U is

W ·U =
{

bi |U `ρ Ui
}
.

• Entailment expresses informational economy. It is W `ρ→σ 〈U,b〉 if

W ·U `σ b .

• Fact. If ρ and σ are coherent information systems, then ρ → σ is a coherent
information system.

• Fact. If ρ and σ are atomic-coherent information systems, then ρ → σ is an
atomic-coherent information system.

2



2.2 Objects (numbers, functions, functionals) as ideals
Recover the objects x⊆ Tok of the type as ideals. Write x ∈ Ide.

• An object is consistent (“well-defined”):

U ⊆ x→U ∈ Con .

• An object is deductively closed (“informationally complete”):

U ⊆ x∧U ` b→ b ∈ x .

Endow the set of objects with the Scott topology.

• A set U ⊆ Ide is open if it is upwards closed (monotonicity principle):

x ∈U ∧ x⊆ y→ y ∈U ,

and features finite support:

x ∈U → ∃
U⊆x

U ∈U ,

where U :=
{

b |U ` b
}

.

• The collection of the cones of ideals ∇U :=
{

x ∈ Ide |U ⊆ x
}

over consistent
sets U ∈ Con, {

∇U |U ∈ Con
}
,

is a basis for the Scott topology.

• T0-separation, but cartesian closure.

• Fact. A mapping f : Ideρ → Ideσ is Scott-continuous when it is monotone

x⊆ y→ f (x)⊆ f (y) ,

and it satisfies the principle of finite support:

b ∈ f (x)→ ∃
U⊆x

b ∈ f (U) .

Fact. Ideρ → Ideσ
∼= Ideρ→σ .

2.3 Concrete types
A toy type system.

• Base types are algebras A inductively generated by constructors C1, . . . ,CK of
respective arities r1, . . .rK :

a1, . . . ,ar ∈ A→Ca1 · · ·ar ∈ A .

• Naturals N are given by the constructors 0, S, of respective arities 0, 1.

• Booleans B are given by the constructors tt, ff, of respective arities 0, 0.

3



• Binary trees (or derivations) D are given by the constructors 0, B, of respective
arities 0, 2.

• Endow every algebra with partiality: either by adding a pseudotoken ∗ (flat
types), or by adding a pseudoconstructor ∗ of arity 0 (non-flat types).

• B, N, D are types; if ρ , σ are types, then ρ → σ is a type.

Every type is interpreted as a coherent information system.

• The tokens of D are the elements of the algebra (generated together with the
pseudoconstructor).

• Consistency:

a�D ∗∧∗ �D a ,

0�D 0 ,

a�D a′∧b�D b′→ Bab�D Ba′b′ .

• Entailment:

U `D ∗ ,{
0, . . . ,0

}
`D 0 ,{

a1, . . . ,am
}
`D a∧

{
b1, . . . ,bm

}
`D b→

{
Ba1b1, . . . ,Bambm

}
`D Bab ,

U r
{
∗
}
` b→U ` b .

• If ρ , σ are types interpreted as coherent information systems, then ρ → σ is
interpreted as their function space.

• Non-flat base types increase complexity of the arguments but allow for more
flexibility and nice properties.

• For base types over N and B (and other non-superunary algebras) we may ex-
clusively use atomic-coherent information systems, but in general, like with D,
just coherent ones, due to the Coquand counterexample:{

B0∗,B∗0
}
` B00 ∧

{
B0∗,B∗0

}
6`A B00 ; (10)

3 Contributions
Two major questions in higher-type computability theory:

• Density: In the presence of partiality, can we recover the total objects of a given
type?

Many important consequences: one of them, choice principle for total function-
als (i.e., the axiom of choice is provable).

Kleene 1959, Kreisel 1959: before domain theory.

Berger 1993: density (“total objects are dense in the partial ones”) in abstract
domain theory.

Schwichtenberg 1996: density for flat systems.

4



Schwichtenberg 2006: density for non-flat systems over N and B.

Huber 2010: density for non-flat systems.

Huber–K.–Schwichtenberg 2010: formalization of density for non-flat systems.

• Definability: Given an object at some type as a recursively enumerable set of
tokens (i.e., with an algorithm listing its elements), what basic constructs do we
need to have in the formal language in order to express it?

Of the same importance in higher-type computability as the characterization of
recursive functions of type N→N by certain schemes (initial functions, compo-
sition, primitive recursion, µ-recursion).

Plotkin 1977: definability for a theory over N and B, without approximations;
need least fixed point functionals and two “parallel operations”.

Schwichtenberg 1999: definability for flat systems over N and B; Plotkin’s extra
terms suffice.

3.1 Density in coherent systems
• A total token is a token with no ∗’s. A total object at a base type A is an ideal

that contains a total token. At type ρ → σ , a total object is one that gives total
values to total arguments. Write Gρ for the totals at ρ .

• A type is separating if inconsistent neighborhoods in the type can be separated
by total objects of appropriate type.

• A type is dense if
∀

U∈Con
∃

x∈G
U ⊆ x ,

that is, the set G is dense with respect to the Scott topology: U ⊆ x means x∈∇U ,
so G∩U 6=∅, for all U’s.

• All of the previous proofs are by mutual induction: if ρ is dense and σ is sepa-
rating, then ρ → σ is separating; if ρ is separating and σ is dense, then ρ → σ

is dense; so all types all simultaneously separating and dense.

Elegant argument, but complicated implementation.

• Call a type finitely separating if inconsistent neighborhoods in the type can be
separated by neighborhoods of appropriate type.

Result 1.1. Every type is finitely separating (no density required).

Result 1.2. Every type is dense (use Result 1.1 as a lemma).

In this way we obtain a “linear” proof of density.

3.2 Definability in atomic-coherent systems
• Result 2. To capture all computable functionals over N and B, we need one more

“parallel operation” other than Plotkin’s.

5



• What about more general base types like D?

In the proof of Result 1 we made heavy and crucial use of the comparability
property

U �V →U `V ∨V `U ,

a converse of the “propagation of consistency” axiom (7).

Result 3. A coherent information system induced by an algebra has the compa-
rability property if and only if the algebra has at most unary constructors.

For base types like D we need a better understanding of non-atomic systems.

3.3 Implicit atomicity in non-atomic coherent systems
• Counter-observation to the Coquand counterexample (10): there is some hidden

atomicity even in non-atomic systems.

{
B0∗,B∗0

}
` B00⇔ B

[
0 ∗
∗ 0

]
` B

[
0
0

]
⇔

[
0 ∗
∗ 0

]
`A

[
0
0

]
.

• Elaboration of the notion of (not necessarily atomic) entailment for algebras
and redefinition in terms of entailment on appropriate matrix systems which are
atomic.

Result 4. In a coherent information system induced by an algebra, for every
neighborhood there is a equientailing token.

For example,
{

B0∗,B∗0
}
∼
{

B00
}

. Does this hold for higher types?

• Call a type implicitly atomic if for every neighborhood there is an equivalent one
whose closure is atomic, in the sense of (9).

Result 5. Every type is implicitly atomic.

4 Outlook
• Use of implicit atomicity to simplify arguments and obtain nicer results in the

general case of types over any kinds of algebra.

• Similarly to separation, can one prove density also with a finite witness? Can
one retain the linear argumentation?

• What more is needed in order to establish definability for types over general
algebras?

• Result 6. Coherent information systems correspond to “coherent” domains.

What is the domain-theoretic counter-part of (implicitly) atomic information sys-
tems?

Thanks

To Apostolos, Brent, Dirk, Rhea, Sifis.

6


