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Atomicity and Coherence in Scott Information Systems

Let α = (T,Con,`) be a Scott information system [Scott 1982].
Call it

I atomic when for all U ∈ Con

U ` b→ ∃
a∈U
{a} ` b

I coherent when for all a1, . . . , am ∈ T(
∀

1≤i,j≤m
{ai, aj} ∈ Con

)
→ {a1, . . . , am} ∈ Con

On the level of ideals atomicity is benign, whereas coherence
results in richer domains. For our purposes it is safe to require the
latter as well.
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Acises
An atomic-coherent information system (acis) [Schwichtenberg
2006] is a triple

α = (T,3,�)

where

I consistency 3 is a reflexive and symmetric binary relation

I entailment � is a reflexive and transitive binary relation

I concistency propagates through entailment:

a 3 b ∧ b � c→ a 3 c

Retrieve the consistent sets (or formal neighborhoods) by

U ∈ Con :⇔ U ⊆f T ∧ ∀
a,b∈U

a 3 b

and define ideals by

u ∈ Ide :⇔ ∀
a,b∈u

a 3 b ∧ ∀
a∈u

. a � b→ b ∈ u
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Function Spaces

Let α = (Tα,3α,�α) and β = (Tβ,3β,�β) be two acises. Define
their function space α→ β = (T,3,�) by

T := Conα × Tβ
(U, a) 3 (V, b) :⇔ U 3α V → a 3β b

(U, a) � (V, b) :⇔ V �α U ∧ a �β b

The triple α→ β is again an acis.
Define application between ideals u = {. . . , (U, a), . . .} ∈ Ideα→β
and v ∈ Ideα by

u(v) :=

{
b ∈ Tβ | ∃

(U,a)∈u
. v �α U ∧ a �β b

}
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Continuity

Write U for the deductive closure of a neighborhood U . An ideal
mapping f : Ideα → Ideβ is continuous if

I it is monotone
u ⊆ v → f(u) ⊆ f(v)

I and it satisfies the principle of finite support

b ∈ f(u)→ ∃
U⊆fu

b ∈ f(U)

The continuous ideal mappings from Ideα to Ideβ are exactly the
ideals of Ideα→β.
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Arithmetical and Boolean Acises
Let ∗ be a (pre)atom meaning least atomic information.
The algebra N = {0, S} defines a nonflat acis by

TN := {∗, 0, S∗, S0, S(S∗), S(S0), . . .}(
∀

a∈TN
a 3N ∗ ∧ ∗ 3N a

)
∧
(
∀

a,b∈TN
. a 3N b→ Sa 3N Sb

)
(
∀

a∈TN
a �N ∗

)
∧
(
∀

a,b∈TN
. a �N b→ Sa �N Sb

)
and the algebra B = {tt, ff} defines an acis by

TB := {∗, tt, ff}

∀
a∈TB

. a 3B a ∧ a 3B ∗

∀
a∈TB

. a �B a ∧ a �B ∗
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Arithmetical and Boolean Acises (continued)
The corresponding ideals are structured like this:

IdeN IdeB

• ⊥@
@@
•0

�
��
• S⊥@

@@
•S0

�
��
• S(S⊥)@

@@
•S(S0)

�
��

..
. • ∞

• ⊥@
@@
•tt

�
��
• ff

I Lower ideals are included in (entailed by) higher ideals when a
path connects them.

I The total ideals of N, GN = {0, 1, 2, . . .}, where n := Sn0,
can be used as indices.

I Partial continuous functionals are ideals of function spaces
over N and B.
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Enter Syntax

Types, terms, and semantics

I Build arrow types α→ β based on N and B.

I Use simply typed lambda terms, ie, typed variables,
application and lambda abstraction.

I Interprete each type by the set of ideals of the corresponding
acis; each lambda term will correspond to an ideal.

Computability

I Call an ideal of an acis computable if it is Σ0
1-definable as a

set of atoms.

I A simply typed lambda term corresponds to a computable
ideal.

I What about the converse? Is it always the case that a
computable ideal can be defined in lambda terms? [Plotkin
1977]
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Moving On to PCF
Introduce the following operators:

I fixed points Y : (α→ α)→ α

Y(u) :=
⋃
n∈GN

un(⊥)

I parallel conditional pcond : B→ N→ N→ N

pcond(p, u, v) :=


u p = tt

v p = ff

u ∩ v p = ⊥

I parallel existential exist : (N→ B)→ B

exist(u) :=


ff ∃n∈GN . u(Sn⊥) = ff ∧ ∀k≤n u(k) = ff

tt ∃n∈GN u(n) = tt

⊥ otherwise
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Recursion in pcond and exist

Call an ideal u ∈ Ideα→β recursive in pcond and exist if for all
arguments v ∈ Ideα it can be defined by an equation

u(v) = M(v)

where M is a simply typed lambda term built up from variables,
constructors, fixed points, parallel conditionals, and parallel
existentials.

Examples

I Sequential conditional operator

cond(p, u, v) := pcond(p, pcond(p, u,⊥), pcond(p,⊥, v))

I Disjunction operator

or(p, q) := pcond(p, tt, ff)
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Recursion in pcond and exist (continued)

For each type α assume an enumeration of Conα that starts from
the empty set and renders consistency, entailment, application, and
union primitive recursive.

I Extension enumeration operators enα : N→ N→ α, with the
property

enα(m,n) = Un, when Un �α Um

I Inconsistency operators incnsα : α→ N→ B, given by

incnsα(u, n) :=


tt u 63α Un

ff u �α Un

⊥ otherwise

These operators are simultaneously definable recursively in pcond
and exist.
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Definability Theorem

An ideal of type α→ N over N and B is computable if and only if
it is recursive in pcond and exist.

Proofsketch
Let Ω : α→ N be a computable ideal, represented as the primitive
recursively enumerable set of atoms

Ω =
{

(Uf(n), bg(n))
}
n∈GN

,

where f , g are primitive recursive functions.
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Definability Theorem (proofsketch continued)

For arbitrary u ∈ Ideα and v ∈ IdeN, define the following tests:

I argument inconsistency test:

qu,f,n := incnsα(u, f(n)) =


tt u 63α Uf(n)

ff u �α Uf(n)

⊥ otherwise

I value inconsistency test:

qv,g,n := incnsN(v, g(n)) =


tt v 63N bg(n)

ff v �N bg(n)

⊥ otherwise
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Definability Theorem (proofsketch continued)

Define a functional

ω : α1 → · · · → αp → (N→ N)→ GN → N

by

ωu(ψ)(n) := pcond
(
q~u,n, ψ(n+ 1),

bg(n) ∪ pcond
(
qψ(n+1),n,⊥, ψ(n+ 1)

))
Prove that

∀
n∈GN

. Ω(~u) �N bg(n) ↔ Y(ω~u)(0) �N bg(n)
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