
Plotkin Definability Theorem for
Atomic-Coherent Information Systems

Basil Karádais

Institute of Mathematics
Ludwig-Maximilian University of Munich

June 18, 2008



Atomicity and Coherence in Scott Information Systems

Let α = (T,Con,`) be a Scott information system [Scott 1982].
Call it

I atomic when for all U ∈ Con

U ` b→ ∃
a∈U
{a} ` b

I coherent when for all a1, . . . , am ∈ T(
∀

1≤i,j≤m
{ai, aj} ∈ Con

)
→ {a1, . . . , am} ∈ Con

On the level of ideals atomicity is benign, whereas coherence
results in richer domains. For our purposes it is safe to require the
latter as well.



Atomicity and Coherence in Scott Information Systems

Let α = (T,Con,`) be a Scott information system [Scott 1982].
Call it

I atomic when for all U ∈ Con

U ` b→ ∃
a∈U
{a} ` b

I coherent when for all a1, . . . , am ∈ T(
∀

1≤i,j≤m
{ai, aj} ∈ Con

)
→ {a1, . . . , am} ∈ Con

On the level of ideals atomicity is benign, whereas coherence
results in richer domains. For our purposes it is safe to require the
latter as well.



Atomicity and Coherence in Scott Information Systems

Let α = (T,Con,`) be a Scott information system [Scott 1982].
Call it

I atomic when for all U ∈ Con

U ` b→ ∃
a∈U
{a} ` b

I coherent when for all a1, . . . , am ∈ T(
∀

1≤i,j≤m
{ai, aj} ∈ Con

)
→ {a1, . . . , am} ∈ Con

On the level of ideals atomicity is benign, whereas coherence
results in richer domains. For our purposes it is safe to require the
latter as well.



Atomicity and Coherence in Scott Information Systems

Let α = (T,Con,`) be a Scott information system [Scott 1982].
Call it

I atomic when for all U ∈ Con

U ` b→ ∃
a∈U
{a} ` b

I coherent when for all a1, . . . , am ∈ T(
∀

1≤i,j≤m
{ai, aj} ∈ Con

)
→ {a1, . . . , am} ∈ Con

On the level of ideals atomicity is benign, whereas coherence
results in richer domains. For our purposes it is safe to require the
latter as well.



Acises
An atomic-coherent information system (acis) [Schwichtenberg
2006] is a triple

α = (T,3,�)

where

I consistency 3 is a reflexive and symmetric binary relation

I entailment � is a reflexive and transitive binary relation

I concistency propagates through entailment:

a 3 b ∧ b � c→ a 3 c

Retrieve the consistent sets (or formal neighborhoods) by

U ∈ Con :⇔ U ⊆f T ∧ ∀
a,b∈U

a 3 b

and define ideals by

u ∈ Ide :⇔ ∀
a,b∈u

a 3 b ∧ ∀
a∈u

. a � b→ b ∈ u



Acises
An atomic-coherent information system (acis) [Schwichtenberg
2006] is a triple

α = (T,3,�)

where

I consistency 3 is a reflexive and symmetric binary relation

I entailment � is a reflexive and transitive binary relation

I concistency propagates through entailment:

a 3 b ∧ b � c→ a 3 c

Retrieve the consistent sets (or formal neighborhoods) by

U ∈ Con :⇔ U ⊆f T ∧ ∀
a,b∈U

a 3 b

and define ideals by

u ∈ Ide :⇔ ∀
a,b∈u

a 3 b ∧ ∀
a∈u

. a � b→ b ∈ u



Acises
An atomic-coherent information system (acis) [Schwichtenberg
2006] is a triple

α = (T,3,�)

where

I consistency 3 is a reflexive and symmetric binary relation

I entailment � is a reflexive and transitive binary relation

I concistency propagates through entailment:

a 3 b ∧ b � c→ a 3 c

Retrieve the consistent sets (or formal neighborhoods) by

U ∈ Con :⇔ U ⊆f T ∧ ∀
a,b∈U

a 3 b

and define ideals by

u ∈ Ide :⇔ ∀
a,b∈u

a 3 b ∧ ∀
a∈u

. a � b→ b ∈ u



Acises
An atomic-coherent information system (acis) [Schwichtenberg
2006] is a triple

α = (T,3,�)

where

I consistency 3 is a reflexive and symmetric binary relation

I entailment � is a reflexive and transitive binary relation

I concistency propagates through entailment:

a 3 b ∧ b � c→ a 3 c

Retrieve the consistent sets (or formal neighborhoods) by

U ∈ Con :⇔ U ⊆f T ∧ ∀
a,b∈U

a 3 b

and define ideals by

u ∈ Ide :⇔ ∀
a,b∈u

a 3 b ∧ ∀
a∈u

. a � b→ b ∈ u



Acises
An atomic-coherent information system (acis) [Schwichtenberg
2006] is a triple

α = (T,3,�)

where

I consistency 3 is a reflexive and symmetric binary relation

I entailment � is a reflexive and transitive binary relation

I concistency propagates through entailment:

a 3 b ∧ b � c→ a 3 c

Retrieve the consistent sets (or formal neighborhoods) by

U ∈ Con :⇔ U ⊆f T ∧ ∀
a,b∈U

a 3 b

and define ideals by

u ∈ Ide :⇔ ∀
a,b∈u

a 3 b ∧ ∀
a∈u

. a � b→ b ∈ u



Function Spaces

Let α = (Tα,3α,�α) and β = (Tβ,3β,�β) be two acises. Define
their function space α→ β = (T,3,�) by

T := Conα × Tβ
(U, a) 3 (V, b) :⇔ U 3α V → a 3β b

(U, a) � (V, b) :⇔ V �α U ∧ a �β b

The triple α→ β is again an acis.
Define application between ideals u = {. . . , (U, a), . . .} ∈ Ideα→β
and v ∈ Ideα by

u(v) :=

{
b ∈ Tβ | ∃

(U,a)∈u
. v �α U ∧ a �β b

}



Function Spaces

Let α = (Tα,3α,�α) and β = (Tβ,3β,�β) be two acises. Define
their function space α→ β = (T,3,�) by

T := Conα × Tβ
(U, a) 3 (V, b) :⇔ U 3α V → a 3β b

(U, a) � (V, b) :⇔ V �α U ∧ a �β b

The triple α→ β is again an acis.
Define application between ideals u = {. . . , (U, a), . . .} ∈ Ideα→β
and v ∈ Ideα by

u(v) :=

{
b ∈ Tβ | ∃

(U,a)∈u
. v �α U ∧ a �β b

}



Function Spaces

Let α = (Tα,3α,�α) and β = (Tβ,3β,�β) be two acises. Define
their function space α→ β = (T,3,�) by

T := Conα × Tβ
(U, a) 3 (V, b) :⇔ U 3α V → a 3β b

(U, a) � (V, b) :⇔ V �α U ∧ a �β b

The triple α→ β is again an acis.
Define application between ideals u = {. . . , (U, a), . . .} ∈ Ideα→β
and v ∈ Ideα by

u(v) :=

{
b ∈ Tβ | ∃

(U,a)∈u
. v �α U ∧ a �β b

}



Continuity

Write U for the deductive closure of a neighborhood U . An ideal
mapping f : Ideα → Ideβ is continuous if

I it is monotone
u ⊆ v → f(u) ⊆ f(v)

I and it satisfies the principle of finite support

b ∈ f(u)→ ∃
U⊆fu

b ∈ f(U)

The continuous ideal mappings from Ideα to Ideβ are exactly the
ideals of Ideα→β.



Continuity

Write U for the deductive closure of a neighborhood U . An ideal
mapping f : Ideα → Ideβ is continuous if

I it is monotone
u ⊆ v → f(u) ⊆ f(v)

I and it satisfies the principle of finite support

b ∈ f(u)→ ∃
U⊆fu

b ∈ f(U)

The continuous ideal mappings from Ideα to Ideβ are exactly the
ideals of Ideα→β.



Continuity

Write U for the deductive closure of a neighborhood U . An ideal
mapping f : Ideα → Ideβ is continuous if

I it is monotone
u ⊆ v → f(u) ⊆ f(v)

I and it satisfies the principle of finite support

b ∈ f(u)→ ∃
U⊆fu

b ∈ f(U)

The continuous ideal mappings from Ideα to Ideβ are exactly the
ideals of Ideα→β.



Continuity

Write U for the deductive closure of a neighborhood U . An ideal
mapping f : Ideα → Ideβ is continuous if

I it is monotone
u ⊆ v → f(u) ⊆ f(v)

I and it satisfies the principle of finite support

b ∈ f(u)→ ∃
U⊆fu

b ∈ f(U)

The continuous ideal mappings from Ideα to Ideβ are exactly the
ideals of Ideα→β.



Arithmetical and Boolean Acises
Let ∗ be a (pre)atom meaning least atomic information.
The algebra N = {0, S} defines a nonflat acis by

TN := {∗, 0, S∗, S0, S(S∗), S(S0), . . .}(
∀

a∈TN
a 3N ∗ ∧ ∗ 3N a

)
∧
(
∀

a,b∈TN
. a 3N b→ Sa 3N Sb

)
(
∀

a∈TN
a �N ∗

)
∧
(
∀

a,b∈TN
. a �N b→ Sa �N Sb

)
and the algebra B = {tt, ff} defines an acis by

TB := {∗, tt, ff}

∀
a∈TB

. a 3B a ∧ a 3B ∗

∀
a∈TB

. a �B a ∧ a �B ∗



Arithmetical and Boolean Acises
Let ∗ be a (pre)atom meaning least atomic information.
The algebra N = {0, S} defines a nonflat acis by

TN := {∗, 0, S∗, S0, S(S∗), S(S0), . . .}(
∀

a∈TN
a 3N ∗ ∧ ∗ 3N a

)
∧
(
∀

a,b∈TN
. a 3N b→ Sa 3N Sb

)
(
∀

a∈TN
a �N ∗

)
∧
(
∀

a,b∈TN
. a �N b→ Sa �N Sb

)
and the algebra B = {tt, ff} defines an acis by

TB := {∗, tt, ff}

∀
a∈TB

. a 3B a ∧ a 3B ∗

∀
a∈TB

. a �B a ∧ a �B ∗



Arithmetical and Boolean Acises
Let ∗ be a (pre)atom meaning least atomic information.
The algebra N = {0, S} defines a nonflat acis by

TN := {∗, 0, S∗, S0, S(S∗), S(S0), . . .}(
∀

a∈TN
a 3N ∗ ∧ ∗ 3N a

)
∧
(
∀

a,b∈TN
. a 3N b→ Sa 3N Sb

)
(
∀

a∈TN
a �N ∗

)
∧
(
∀

a,b∈TN
. a �N b→ Sa �N Sb

)
and the algebra B = {tt, ff} defines an acis by

TB := {∗, tt, ff}

∀
a∈TB

. a 3B a ∧ a 3B ∗

∀
a∈TB

. a �B a ∧ a �B ∗



Arithmetical and Boolean Acises (continued)
The corresponding ideals are structured like this:

IdeN IdeB

• ⊥@
@@
•0

�
��
• S⊥@

@@
•S0

�
��
• S(S⊥)@

@@
•S(S0)

�
��

..
. • ∞

• ⊥@
@@
•tt

�
��
• ff

I Lower ideals are included in (entailed by) higher ideals when a
path connects them.

I The total ideals of N, GN = {0, 1, 2, . . .}, where n := Sn0,
can be used as indices.

I Partial continuous functionals are ideals of function spaces
over N and B.



Arithmetical and Boolean Acises (continued)
The corresponding ideals are structured like this:

IdeN IdeB

• ⊥@
@@
•0

�
��
• S⊥@

@@
•S0

�
��
• S(S⊥)@

@@
•S(S0)

�
��

..
. • ∞

• ⊥@
@@
•tt

�
��
• ff

I Lower ideals are included in (entailed by) higher ideals when a
path connects them.

I The total ideals of N, GN = {0, 1, 2, . . .}, where n := Sn0,
can be used as indices.

I Partial continuous functionals are ideals of function spaces
over N and B.



Arithmetical and Boolean Acises (continued)
The corresponding ideals are structured like this:

IdeN IdeB

• ⊥@
@@
•0

�
��
• S⊥@

@@
•S0

�
��
• S(S⊥)@

@@
•S(S0)

�
��

..
. • ∞

• ⊥@
@@
•tt

�
��
• ff

I Lower ideals are included in (entailed by) higher ideals when a
path connects them.

I The total ideals of N, GN = {0, 1, 2, . . .}, where n := Sn0,
can be used as indices.

I Partial continuous functionals are ideals of function spaces
over N and B.



Arithmetical and Boolean Acises (continued)
The corresponding ideals are structured like this:

IdeN IdeB

• ⊥@
@@
•0

�
��
• S⊥@

@@
•S0

�
��
• S(S⊥)@

@@
•S(S0)

�
��

..
. • ∞

• ⊥@
@@
•tt

�
��
• ff

I Lower ideals are included in (entailed by) higher ideals when a
path connects them.

I The total ideals of N, GN = {0, 1, 2, . . .}, where n := Sn0,
can be used as indices.

I Partial continuous functionals are ideals of function spaces
over N and B.



Enter Syntax

Types, terms, and semantics

I Build arrow types α→ β based on N and B.

I Use simply typed lambda terms, ie, typed variables,
application and lambda abstraction.

I Interprete each type by the set of ideals of the corresponding
acis; each lambda term will correspond to an ideal.

Computability

I Call an ideal of an acis computable if it is Σ0
1-definable as a

set of atoms.

I A simply typed lambda term corresponds to a computable
ideal.

I What about the converse? Is it always the case that a
computable ideal can be defined in lambda terms? [Plotkin
1977]



Enter Syntax

Types, terms, and semantics

I Build arrow types α→ β based on N and B.

I Use simply typed lambda terms, ie, typed variables,
application and lambda abstraction.

I Interprete each type by the set of ideals of the corresponding
acis; each lambda term will correspond to an ideal.

Computability

I Call an ideal of an acis computable if it is Σ0
1-definable as a

set of atoms.

I A simply typed lambda term corresponds to a computable
ideal.

I What about the converse? Is it always the case that a
computable ideal can be defined in lambda terms? [Plotkin
1977]



Enter Syntax

Types, terms, and semantics

I Build arrow types α→ β based on N and B.

I Use simply typed lambda terms, ie, typed variables,
application and lambda abstraction.

I Interprete each type by the set of ideals of the corresponding
acis; each lambda term will correspond to an ideal.

Computability

I Call an ideal of an acis computable if it is Σ0
1-definable as a

set of atoms.

I A simply typed lambda term corresponds to a computable
ideal.

I What about the converse? Is it always the case that a
computable ideal can be defined in lambda terms? [Plotkin
1977]



Enter Syntax

Types, terms, and semantics

I Build arrow types α→ β based on N and B.

I Use simply typed lambda terms, ie, typed variables,
application and lambda abstraction.

I Interprete each type by the set of ideals of the corresponding
acis; each lambda term will correspond to an ideal.

Computability

I Call an ideal of an acis computable if it is Σ0
1-definable as a

set of atoms.

I A simply typed lambda term corresponds to a computable
ideal.

I What about the converse? Is it always the case that a
computable ideal can be defined in lambda terms? [Plotkin
1977]



Enter Syntax

Types, terms, and semantics

I Build arrow types α→ β based on N and B.

I Use simply typed lambda terms, ie, typed variables,
application and lambda abstraction.

I Interprete each type by the set of ideals of the corresponding
acis; each lambda term will correspond to an ideal.

Computability

I Call an ideal of an acis computable if it is Σ0
1-definable as a

set of atoms.

I A simply typed lambda term corresponds to a computable
ideal.

I What about the converse? Is it always the case that a
computable ideal can be defined in lambda terms? [Plotkin
1977]



Enter Syntax

Types, terms, and semantics

I Build arrow types α→ β based on N and B.

I Use simply typed lambda terms, ie, typed variables,
application and lambda abstraction.

I Interprete each type by the set of ideals of the corresponding
acis; each lambda term will correspond to an ideal.

Computability

I Call an ideal of an acis computable if it is Σ0
1-definable as a

set of atoms.

I A simply typed lambda term corresponds to a computable
ideal.

I What about the converse? Is it always the case that a
computable ideal can be defined in lambda terms? [Plotkin
1977]



Moving On to PCF
Introduce the following operators:

I fixed points Y : (α→ α)→ α

Y(u) :=
⋃
n∈GN

un(⊥)

I parallel conditional pcond : B→ N→ N→ N

pcond(p, u, v) :=


u p = tt

v p = ff

u ∩ v p = ⊥

I parallel existential exist : (N→ B)→ B

exist(u) :=


ff ∃n∈GN . u(Sn⊥) = ff ∧ ∀k≤n u(k) = ff

tt ∃n∈GN u(n) = tt

⊥ otherwise



Moving On to PCF
Introduce the following operators:

I fixed points Y : (α→ α)→ α

Y(u) :=
⋃
n∈GN

un(⊥)

I parallel conditional pcond : B→ N→ N→ N

pcond(p, u, v) :=


u p = tt

v p = ff

u ∩ v p = ⊥

I parallel existential exist : (N→ B)→ B

exist(u) :=


ff ∃n∈GN . u(Sn⊥) = ff ∧ ∀k≤n u(k) = ff

tt ∃n∈GN u(n) = tt

⊥ otherwise



Moving On to PCF
Introduce the following operators:

I fixed points Y : (α→ α)→ α

Y(u) :=
⋃
n∈GN

un(⊥)

I parallel conditional pcond : B→ N→ N→ N

pcond(p, u, v) :=


u p = tt

v p = ff

u ∩ v p = ⊥

I parallel existential exist : (N→ B)→ B

exist(u) :=


ff ∃n∈GN . u(Sn⊥) = ff ∧ ∀k≤n u(k) = ff

tt ∃n∈GN u(n) = tt

⊥ otherwise



Recursion in pcond and exist

Call an ideal u ∈ Ideα→β recursive in pcond and exist if for all
arguments v ∈ Ideα it can be defined by an equation

u(v) = M(v)

where M is a simply typed lambda term built up from variables,
constructors, fixed points, parallel conditionals, and parallel
existentials.

Examples

I Sequential conditional operator

cond(p, u, v) := pcond(p, pcond(p, u,⊥), pcond(p,⊥, v))

I Disjunction operator

or(p, q) := pcond(p, tt, ff)



Recursion in pcond and exist

Call an ideal u ∈ Ideα→β recursive in pcond and exist if for all
arguments v ∈ Ideα it can be defined by an equation

u(v) = M(v)

where M is a simply typed lambda term built up from variables,
constructors, fixed points, parallel conditionals, and parallel
existentials.

Examples

I Sequential conditional operator

cond(p, u, v) := pcond(p, pcond(p, u,⊥), pcond(p,⊥, v))

I Disjunction operator

or(p, q) := pcond(p, tt, ff)



Recursion in pcond and exist (continued)

For each type α assume an enumeration of Conα that starts from
the empty set and renders consistency, entailment, application, and
union primitive recursive.

I Extension enumeration operators enα : N→ N→ α, with the
property

enα(m,n) = Un, when Un �α Um

I Inconsistency operators incnsα : α→ N→ B, given by

incnsα(u, n) :=


tt u 63α Un

ff u �α Un

⊥ otherwise

These operators are simultaneously definable recursively in pcond
and exist.



Recursion in pcond and exist (continued)

For each type α assume an enumeration of Conα that starts from
the empty set and renders consistency, entailment, application, and
union primitive recursive.

I Extension enumeration operators enα : N→ N→ α, with the
property

enα(m,n) = Un, when Un �α Um

I Inconsistency operators incnsα : α→ N→ B, given by

incnsα(u, n) :=


tt u 63α Un

ff u �α Un

⊥ otherwise

These operators are simultaneously definable recursively in pcond
and exist.



Recursion in pcond and exist (continued)

For each type α assume an enumeration of Conα that starts from
the empty set and renders consistency, entailment, application, and
union primitive recursive.

I Extension enumeration operators enα : N→ N→ α, with the
property

enα(m,n) = Un, when Un �α Um

I Inconsistency operators incnsα : α→ N→ B, given by

incnsα(u, n) :=


tt u 63α Un

ff u �α Un

⊥ otherwise

These operators are simultaneously definable recursively in pcond
and exist.



Definability Theorem

An ideal of type α→ N over N and B is computable if and only if
it is recursive in pcond and exist.

Proofsketch
Let Ω : α→ N be a computable ideal, represented as the primitive
recursively enumerable set of atoms

Ω =
{

(Uf(n), bg(n))
}
n∈GN

,

where f , g are primitive recursive functions.



Definability Theorem

An ideal of type α→ N over N and B is computable if and only if
it is recursive in pcond and exist.

Proofsketch
Let Ω : α→ N be a computable ideal, represented as the primitive
recursively enumerable set of atoms

Ω =
{

(Uf(n), bg(n))
}
n∈GN

,

where f , g are primitive recursive functions.



Definability Theorem (proofsketch continued)

For arbitrary u ∈ Ideα and v ∈ IdeN, define the following tests:

I argument inconsistency test:

qu,f,n := incnsα(u, f(n)) =


tt u 63α Uf(n)

ff u �α Uf(n)

⊥ otherwise

I value inconsistency test:

qv,g,n := incnsN(v, g(n)) =


tt v 63N bg(n)

ff v �N bg(n)

⊥ otherwise



Definability Theorem (proofsketch continued)

For arbitrary u ∈ Ideα and v ∈ IdeN, define the following tests:

I argument inconsistency test:

qu,f,n := incnsα(u, f(n)) =


tt u 63α Uf(n)

ff u �α Uf(n)

⊥ otherwise

I value inconsistency test:

qv,g,n := incnsN(v, g(n)) =


tt v 63N bg(n)

ff v �N bg(n)

⊥ otherwise



Definability Theorem (proofsketch continued)

For arbitrary u ∈ Ideα and v ∈ IdeN, define the following tests:

I argument inconsistency test:

qu,f,n := incnsα(u, f(n)) =


tt u 63α Uf(n)

ff u �α Uf(n)

⊥ otherwise

I value inconsistency test:

qv,g,n := incnsN(v, g(n)) =


tt v 63N bg(n)

ff v �N bg(n)

⊥ otherwise



Definability Theorem (proofsketch continued)

Define a functional

ω : α1 → · · · → αp → (N→ N)→ GN → N

by

ωu(ψ)(n) := pcond
(
q~u,n, ψ(n+ 1),

bg(n) ∪ pcond
(
qψ(n+1),n,⊥, ψ(n+ 1)

))
Prove that

∀
n∈GN

. Ω(~u) �N bg(n) ↔ Y(ω~u)(0) �N bg(n)



Definability Theorem (proofsketch continued)

Define a functional

ω : α1 → · · · → αp → (N→ N)→ GN → N

by

ωu(ψ)(n) := pcond
(
q~u,n, ψ(n+ 1),

bg(n) ∪ pcond
(
qψ(n+1),n,⊥, ψ(n+ 1)

))
Prove that

∀
n∈GN

. Ω(~u) �N bg(n) ↔ Y(ω~u)(0) �N bg(n)



Definability Theorem (proofsketch continued)

Define a functional

ω : α1 → · · · → αp → (N→ N)→ GN → N

by

ωu(ψ)(n) := pcond
(
q~u,n, ψ(n+ 1),

bg(n) ∪ pcond
(
qψ(n+1),n,⊥, ψ(n+ 1)

))
Prove that

∀
n∈GN

. Ω(~u) �N bg(n) ↔ Y(ω~u)(0) �N bg(n)



References

I Plotkin, Gordon: LCF considered as a programming language,
Theoretical Computer Science 5(3) (1997)

I Schwichtenberg, Helmut: Classifying recursive functions. In
Griffor, E., ed.: Handbook of computability theory. Volume
140 of Studies in Logic and Foundations of Mathematics.
North-Holland (1999)

I Schwichtenberg, Helmut: Recursion on the partial continuous
functionals. In Dimitracopoulos, C., Newelski, L., Normann,
D., Steel, J., eds.: Logic Colloquium ’05. Volume 28 of
Lecture Notes in Logic. Association for Symbolic Logic (2006)

I Scott, Dana: Domains for denotational semantics, in Nielsen,
E. and Schmidt, E. M., eds.: Automata, languages, and
programming. Volume 140 of Lecture Notes in Computer
Science. Springer (1982)


	Atomicity and Coherence in Scott Information Systems
	Acises
	Function Spaces
	Continuity
	Arithmetical and Boolean Acises
	Enter Syntax
	Moving On to PCF
	Recursion in pcond and exist
	Definability Theorem
	References

