Mathematical Statistical Physics, 2015 Homework Problems, LMU

Issued: June 10, 2015; deadline for handing in the solutions:
June 17, 2015, 10 pm (22:00)
23. Let \mathcal{H} stand for the one-particle Hilbert space and H for the oneparticle Hamiltonian. Define $\mathrm{a} \star$ automorphism τ_{t} on $\mathcal{A}_{\mathrm{CAR}}(\mathcal{H})$ by $\tau_{t}\left(a^{\sharp}(f)\right):=$ $a^{\sharp}\left(e^{\mathrm{i} H t} f\right)$ for $t \in \mathbb{R}$. Show that for a $\left(\beta, \tau_{t}\right)$ KMS state ω the following relation holds

$$
\begin{equation*}
\omega\left(a^{\star}\left(f_{1}\right) \cdots a^{\star}\left(f_{n}\right) a\left(g_{1}\right) \cdots a\left(g_{m}\right)\right)=\delta_{n, m} \operatorname{det}\left(\left(\left\langle g_{i}, \frac{\exp (-\beta H)}{1+\exp (-\beta H)} f_{j}\right\rangle\right)\right) \tag{58}
\end{equation*}
$$

and conclude that there exists at most one $\left(\beta, \tau_{t}\right)$ KMS state.
24. Let $\mathcal{A}_{\mathrm{SD}}(\mathcal{H})$ be the completion of the \star algebra generated by the operators $b(f), b^{\star}(f)$ and a unit, where $f \in \mathcal{H}$ and where \mathcal{H} is a Hilbert space. Here, $f \mapsto b(f)$ is assumed to be linear, and $b(f) b^{\star}(g)+b^{\star}(g) b(f)=\langle g, f\rangle$. In addition, $b^{\star}(f)=b(\Gamma f)$ holds, where Γ is an antiunitary involution on \mathcal{H}, viz., $\Gamma^{2}=1$ and $\langle\Gamma f, \Gamma g\rangle=\langle g, f\rangle$ for $f, g \in \mathcal{H}$. (As an example for Γ, one may take the complex conjugation that in field theory exchanges the particles (i.e., positive energy solutions) with the antiparticles (i.e., negative energy solutions). We call a projection $P \in \mathcal{B}(\mathcal{H})$ a "basis projection" if $\Gamma P \Gamma=1-P$, and a state ω on $\mathcal{A}_{\mathrm{SD}}$ a "quasi-free state" if

$$
\begin{equation*}
\omega\left(b\left(f_{1}\right) \cdots b\left(f_{2 n+1}\right)\right)=0 \tag{59}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega\left(b\left(f_{1}\right) \cdots b\left(f_{2 n}\right)\right)=(-1)^{n(n-1) / 2} \sum_{\pi \in S_{<}} \operatorname{sign}(\pi) \Pi_{j=1}^{n} \omega\left(b\left(f_{\pi(j)}\right) b\left(f_{\pi(j+n)}\right)\right) \tag{60}
\end{equation*}
$$

for $n \in \mathbb{N}$. Here $S_{<}$denotes the set of permutations π of $2 n$ elements that obey $\pi(j)<\pi(j+1)$ for $j \in\{1, \ldots, n-1\}$, while $\pi(j)<\pi(j+n)$ holds for $j \in\{1, \ldots, n\}$.
(i) Construct $\mathrm{a} \star$ isomorphism $\mathcal{A}_{\mathrm{SD}}(\mathcal{H}) \rightarrow \mathcal{A}_{\mathrm{CAR}}(P \mathcal{H})$ for some basis projection P.
(ii) Show that for every state ω over $\mathcal{A}_{\mathrm{SD}}(\mathcal{H})$ there exists an operator $S \in$ $\mathcal{B H}$ such that

$$
\begin{equation*}
\omega\left(b(f)^{\star} b(g)\right)=\langle f, S g\rangle \tag{61}
\end{equation*}
$$

and S satisfies

$$
\begin{equation*}
0 \leq S=S^{\star} \leq 1, \quad S+\Gamma S \Gamma=1 \tag{62}
\end{equation*}
$$

25. For the system discussed in problem 24, prove that for each S that obeys (62) there exists a unique quasi-free state ω for which (61) holds.
Hint: Consider the operator P_{S} on $\mathcal{H} \oplus \mathcal{H}$

$$
\rho_{\alpha}=\left(\begin{array}{cc}
S & S^{1 / 2}(1-S)^{1 / 2} \tag{63}\\
S^{1 / 2}(1-S)^{1 / 2} & 1-S
\end{array}\right)
$$

and demonstrate that P_{S} is a basis projection on $\mathcal{H} \oplus \mathcal{H}$ with respect to $\Gamma \oplus(-\Gamma)$. Then realize ω as the Fock state on $\mathcal{A}_{\mathrm{CAR}}\left(P_{S} \mathcal{H} \oplus \mathcal{H}\right)$.

