Mathematical Statistical Physics, 2015 Homework Problems, LMU

Issued: June 3, 2015; deadline for handing in the solutions: June 10, 2015, 10 pm (22:00)

20. Consider the quasilocal UHF algebra $(\mathcal{A}, (\mathcal{A}_{\Lambda})_{\Lambda \in \mathcal{F}(\mathbb{Z}^{\nu})}), \nu \in \mathbb{N}$, associated with an infinite quantum spin system on \mathbb{Z}^{ν} , where $\mathcal{F}(\mathbb{Z}^{\nu})$ stands for the collection of finite subsets of \mathbb{Z}^{ν} . We assume a self-adjoint interaction $\Phi : \mathcal{F}(\mathbb{Z}^{\nu}) \to \mathcal{A}, \Phi(\Lambda) = \Phi(\Lambda)^*$, that is bounded in the sense that

$$||\Phi|| := \sup_{x \in \mathbb{Z}^{\nu}} \sum_{\Lambda \in \mathcal{F}(\mathbb{Z}^{\nu}), \Lambda \cap \{x\} \neq \emptyset} ||\Phi(\Lambda)|| < \infty.$$
(49)

Furthermore, Φ is of finite range, that is, there exists $R_{\Phi} \geq 1$ such that $\Phi(\Lambda) = 0$ if $R_{\Phi} < \operatorname{diam}(\Lambda) := \sup_{x,y \in \Lambda} |x - y|$. The local Hamiltonians are then defined by $H_{\Lambda} := \sum_{X \subset \Lambda} \Phi(X)$ for all $\Lambda \in \mathcal{F}(\mathbb{Z}^{\nu})$.

(i) With $A \in \mathcal{A}_{loc} = \bigcup_{\Lambda \in \mathcal{F}(\mathbb{Z}^{\nu})} \mathcal{A}_{\Lambda}$, prove that the limit

$$\delta(A) := \lim_{\Lambda \to \infty, \Lambda \in \mathcal{F}(\mathbb{Z}^{\nu})} i[H_{\Lambda}, A]$$
(50)

exists in \mathcal{A}_{loc} and that $\delta(A)$ is a symmetric derivation with domain $\mathcal{D}(\delta) = \mathcal{A}_{\text{loc}}$ and $\delta(\mathcal{D}(\delta)) \subset \mathcal{D}(\delta)$. Here, the limit $\Lambda \to \infty$ is understood in the following way: For every sequence $\Lambda_1 \subset \Lambda_2 \subset \cdots$ in $\mathcal{F}(\mathbb{Z}^{\nu})$ with $\bigcup_{n=1}^{\infty} \Lambda_n = \mathbb{Z}^{\nu}$ the limit $\lim_{n\to\infty} i[H_{\Lambda_n}, A]$ exists and does not dependent on the choice of the sequence.

(ii) Show that for every $A \in \mathcal{A}_{loc}$ and for sufficiently small $t \in \mathbb{R}$ the series

$$e^{t\delta}(A) = \sum_{n=1}^{\infty} \frac{t^n}{n!} \delta^n(A)$$
(51)

converges in norm in \mathcal{A} and therefore the function $t \mapsto e^{t\delta}(A)$ is analytic.

Hint: Argue that $\delta^n(A) \in \mathcal{A}_{\text{loc}}$ and control $||\delta^n(A)|| \leq c(n, ||\Phi||)||A||$ by estimating properly all commutators; you may use the inequality $a^n \leq n! b^{-n} e^{ab}$ for a, b > 0 and $n \in \mathbb{N}$.

21. Consider now the quasilocal UHF algebra $(\mathcal{A}, (\mathcal{A}_{\Lambda})_{\Lambda \in \mathcal{F}(\mathbb{Z}^{\nu})})$ for $\nu = 1$ and associated with an infinite quantum spin system on \mathbb{Z} . Again $\mathcal{F}(\mathbb{Z})$ stands for the collection of finite subsets of \mathbb{Z} and the single-site Hilbert space is given by $\mathcal{H}_x = \mathbb{C}^n$ with $n \in \mathbb{N}$. The interaction $\Phi : \mathcal{F}(\mathbb{Z}) \to \mathcal{A}$ is assumed to be hermitian, $\Phi(X) = \Phi(X)^*$ with $\Phi(X) \in \mathcal{A}_X$ for all $X \in \mathcal{F}(\mathbb{Z})$. Also, Φ is assumed to be bounded and decaying at infinity,

$$\sup_{x \in \mathbb{Z}} \sum_{X \in \mathcal{F}(\mathbb{Z}^{\nu}), X \cap \{x\} \neq \emptyset} \operatorname{diam}(X) ||\Phi(X)|| < \infty.$$
(52)

In addition, Φ is invariant under the automorphism α , viz., $\alpha(\Phi(X)) = \Phi(X)$ for all $X \in \mathcal{F}(\mathbb{Z})$, where the automorphism α is defined locally by

$$\alpha(A) = \left(\otimes_{x \in \Lambda} U_x^{\star} \right) A \left(\otimes_{x \in \Lambda} U_x \right) \tag{53}$$

and extended to \mathcal{A} by density. Here, each U_x is a unitary operator on \mathcal{H}_x . As in Problem 20, a strongly continuous one-parameter group τ_t , $t \in \mathbb{R}$ of \star automorphisms of \mathcal{A} is constructed as the limit of the local dynamics generated by the local Hamiltonians $H_{\Lambda} = \sum_{X \subset \Lambda} \Phi(X)$. This τ_t satisfies $\tau_t \circ \alpha = \alpha \circ \tau_t$ for all $t \in \mathbb{R}$.

Demonstrate that if ω is a (τ_t, β) KMS state for some $\beta \in (0, \infty)$, then $\omega \circ \alpha = \omega$ on \mathcal{A} .

Hint: Examine whether a certain theorem discussed in class can be applied.

22 Let \mathcal{H} be a finite dimensional Hilbert space, $H = H^* \in \mathcal{B}(\mathcal{H})$ be the Hamiltonian generating the dynamics and $\rho_\beta = \operatorname{Tr}(\exp(-\beta H))^{-1}\exp(-\beta H)$ be the density matrix of the Gibbs state. For any $A \in \mathcal{B}(\mathcal{H})$, let $\gamma_t : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ be defined for $t \geq 0$ by

$$\gamma_t(x) = \exp(tL_A)(x), \qquad L_A(x) = A^*xA - \frac{1}{2}(A^*Ax + xA^*A).$$
 (54)

Note that $L_A(1) = 0$ and that $\operatorname{Tr}(L_A(x)y) = \operatorname{Tr}(xL_{A^*}(y))$.

- (i) Check that $\gamma_t(1) = 1$ and that $\gamma_t(x) > 0$ if x > 0
- (ii) Prove that for any density matrix ρ , there is a unique density matrix ρ_t (namely positive and normalised) such that

$$Tr(\rho_t x) = Tr(\rho\gamma_t(x)) \tag{55}$$

(iii) Recall that the free energy functional if given by

$$F_{\beta}(\rho) = \operatorname{Tr}(\rho H) - \beta^{-1} S(\rho), \qquad S(\rho) = -\operatorname{Tr}(\rho \log \rho).$$
(56)

Use the variational principle applied to the family $\rho_{\beta,t}$, namely $F_{\beta}(\rho_{\beta,t}) \geq F_{\beta}(\rho_{\beta})$ for all $t \in [0, 1)$ to derive the energy-entropy balance inequality *Hint:* It suffices to consider $\lim_{t\to 0^+} t^{-1}[F_{\beta}(\rho_{\beta,t}) - F_{\beta}(\rho_{\beta})]$. In order to bound the entropy term, you can use the joint convexity of $(u, v) \mapsto s(u || v) := u \ln(u/v)$:

$$s\left(\sum_{i}\lambda_{i}u_{i}\right\|\sum_{i}\lambda_{i}v_{i}\right)\leq\sum_{i}\lambda_{i}s(u_{i}\|v_{i})$$
(57)

(iv) Reciprocally, prove that the unique $\rho > 0$ satisfying the energy-entropy balance inequality is the Gibbs state. *Hint:* First, observe that if ρ satisfies the EEB inequality then $[\rho, H] = 0$. Secondly, use the observables $P_{ij} = |\psi_i\rangle\langle\psi_j|$, where $\{\psi_i\}_{i=1}^{\dim \mathcal{H}}$ is an eigenbasis of H.