Mathematical Statistical Physics, 2015 Homework Problems, LMU

Issued: May 27, 2015; deadline for handing in the solutions:
June 3, 2015, 10 pm (22:00)
19. Consider the two self-adjoint operators H and V on the finite dimensional Hilbert space \mathcal{H}. For $t \in \mathbb{R}$ let τ_{t}^{V} be the \star automorphism of the algebra $\mathcal{B}(\mathcal{H})$ defined by

$$
\begin{equation*}
\tau_{t}^{V}(A)=e^{\mathrm{i} t(H+V)} A e^{-\mathrm{i} t(H+V)} \tag{38}
\end{equation*}
$$

Similarly, for $\beta \in(0, \infty)$, the thermal state $\omega_{\beta, V}$ is defined by

$$
\begin{equation*}
\omega_{\beta, V}(A)=\operatorname{Tr}\left\{A e^{-\beta(H+V)}\right\} / \operatorname{Tr}\left\{e^{-\beta(H+V)}\right\} . \tag{39}
\end{equation*}
$$

The goal of this exercise is to derive a rigorous expansion of $\omega_{\beta, V}$ with respect to V, viz.,

$$
\begin{equation*}
\omega_{\beta, V}(A)=\sum_{n=0}^{\infty} \nu_{n}(A) \quad \text { for } \quad \beta\|V\|<\log (2) \tag{40}
\end{equation*}
$$

by using the propagator in the interaction picture

$$
\begin{equation*}
\Gamma_{t}^{V}=e^{\mathrm{it}(H+V)} e^{-\mathrm{i} t H} \tag{41}
\end{equation*}
$$

(i) First, verify the following basic relations:

$$
\begin{align*}
e^{\mathrm{it}(H+V)} & =\Gamma_{t}^{V} e^{\mathrm{i} t H} \\
\tau_{t}^{V}(A) \Gamma_{t}^{V} & =\Gamma_{t}^{V} \tau_{t}^{0}(A) \\
\left(\Gamma_{t}^{V}\right)^{-1} & =\left(\Gamma_{t}^{V}\right)^{\star}=\tau_{t}^{0}\left(\Gamma_{-t}^{V}\right) \tag{42}\\
\Gamma_{t+s}^{V} & =\Gamma_{s}^{V} \tau_{s}^{0}\left(\Gamma_{t}^{V}\right) \\
\partial_{t} \Gamma_{t}^{V} & =\mathrm{i} \Gamma_{t}^{V} \tau_{t}^{0}(V), \quad \Gamma_{0}=1
\end{align*}
$$

(ii) In particular, $\Gamma_{i \beta}^{V}$ is well-defined for all $\beta \in \mathbb{R}$. Use this fact and the first relation in (42) to express $\omega_{\beta, V}$ in terms of $\omega_{\beta, 0}$.
(iii) Since $z \mapsto \tau_{z}^{V}(A)$ is an entire function, show that the Dyson expansion converges uniformly on all compact subsets of \mathbb{C} :

$$
\begin{equation*}
\Gamma_{t}^{V}=1+\sum_{k=1}^{\infty}(\mathrm{i} t)^{k} \int_{0 \leq s_{1} \leq \ldots s_{k} \leq 1} \tau_{t s_{1}}^{0}(V) \cdots \tau_{t s_{k}}^{0}(V) d s_{1} \cdots d s_{k} \tag{43}
\end{equation*}
$$

(iv) Employ the Golden-Thomson inequality

$$
\begin{equation*}
\operatorname{Tr}\left\{e^{A+B}\right\} \leq \operatorname{Tr}\left\{e^{A} e^{B}\right\} \tag{44}
\end{equation*}
$$

and the Duhamel formula, viz., for a differentiable matrix valued function $t \mapsto F(t) \in \operatorname{Mat}_{n, n}(\mathbb{C})$

$$
\begin{equation*}
\frac{d e^{F}}{d t}(t)=\int_{0}^{1} e^{s F(t)} \frac{d F}{d t}(t) e^{(1-s) F(t)} d s \tag{45}
\end{equation*}
$$

to prove: For V as above, $0<\beta<\infty$, and $\alpha \in \mathbb{C}$,

$$
\begin{equation*}
\left|\omega_{\beta, 0}\left(\Gamma_{\mathrm{i} \beta}^{\alpha V}\right)-1\right| \leq \exp (|\alpha \beta|| | V| |)-1 \tag{46}
\end{equation*}
$$

(v) Use the result of (ii) and the relations (43) and (46) to establish the expansion (40). In particular, show that

$$
\begin{align*}
\nu_{0}(A) & =\omega_{\beta, 0}(A) \tag{47}\\
\nu_{1}(A) & =-\beta\left(V, A-\omega_{\beta, 0}(A)\right)_{\beta}
\end{align*}
$$

where

$$
\begin{align*}
(x, y)_{\beta} & :=\int_{0}^{1} \omega_{\beta}\left(y \tau_{\mathrm{is} \beta}(x)\right) d s \tag{48}\\
& =Z^{-1} \int_{0}^{1} \operatorname{Tr}\left\{e^{-s \beta H} x e^{-(1-s) \beta H} y\right\} d s
\end{align*}
$$

