Mathematical Statistical Physics, 2015 Homework Problems, LMU

Issued: May 20, 2015; deadline for handing in the solutions: May 27, 2015, 10 pm (22:00)

16. Let \mathcal{A} be a C^{*} algebra with a unit element, and τ_t , $t \in \mathbb{R}$, a strongly continuous one-parameter group of \star automorphisms of \mathcal{A} . For $\beta \in \mathbb{R}$ prove the equivalence of the following conditions (A) and (B):

(A) The state ω is a (τ_t, β) KMS state

(B) For all $A, B \in \mathcal{A}$ and functions f that enjoy a Fourier transform $\hat{f} \in C_c^{\infty}(\mathbb{R})$

$$\int_{-\infty}^{\infty} f(t)\omega(A\tau_t(B)) dt = \int_{-\infty}^{\infty} f(t+i\beta)\omega(\tau_t(B)A)$$
(34)

Hint: For the direction (A) to (B), first prove the assertion for an analytic element B, and then invoke density arguments. For the direction (B) to (A), you may use a sequence $\hat{f}_n \in C_c^{\infty}(\mathbb{R})$ with $0 \leq \hat{f}_n \leq 1$, $\hat{f}_n(\lambda) = 1$ if $|\lambda| \leq n$, and $\hat{f}_n(\lambda) = 0$ if $|\lambda| \geq n + 1$.

You also need the Paley and Wiener theorem: A measurable function Fon \mathbb{C} is the inverse Fourier transform of a function $\hat{F} \in C_c^{\infty}$ with $\operatorname{supp} F \subset [-R, R]$, R > 0, iff F is entire analytic and for each $n \in \mathbb{N}$ there exists a constant C_n such that

$$|F(z)| \le C_n \frac{\exp(R |\mathrm{Im}z|)}{(1+|z|)^n}.$$
 (35)

17. Let $\mathcal{A} = \overline{\bigcup_{\Lambda \in \mathbb{Z}^{\nu}} \mathcal{A}_{\Lambda}}$ be a quantum spin system, and for $\Lambda \in \mathcal{F}(\mathbb{Z}^{\nu})$ let $H_{\Lambda} = H_{\Lambda}^{\star} \in \mathcal{A}_{\Lambda}$ be the corresponding finite volume Hamiltonian. Assume

that for $\Lambda_n = [-n, n]^{\nu} \cap \mathbb{Z}^{\nu}$ and all $A \in \mathcal{A}_{\text{loc}}, t \in \mathbb{R}$, the Heisenberg dynamics

$$\tau_t^{\Lambda_n}(A) := \exp(\mathrm{i}tH_{\Lambda_n}) A \exp(-\mathrm{i}tH_{\Lambda_n})$$
(36)

has a limit $\tau_t(A)$ as $n \to \infty$.

- (i) Prove that τ_t is a strongly continuous group of \star automorphisms of \mathcal{A} . *Hint*: You may use that $\tau_t^{\Lambda_n}(A)$ is a strongly continuous group of \star automorphisms of \mathcal{A}_{Λ_n} .
- (ii) Show that $\mathcal{A}_{\text{loc}} \subset \mathcal{D}(\delta)$, where δ is the generator of τ_t .
- (iii) Use the EEB inequality to prove the existence a (τ, β) KMS state for any $\beta > 0$.

18. Consider a C^{*} algebra \mathcal{A} with a unit and a strongly continuous oneparameter group of \star automorphisms of \mathcal{A} . Let ω be a τ_t invariant state such that

- (i) τ_t is asymptotically abelian: $\lim_{t\to\infty} || [A, \tau_t(B)] || = 0$ for all $A, B \in \mathcal{A}$
- (ii) ω has the "cluster property:" $\omega(A\tau_t(B)) \to \omega(A)\omega(B)$ holds as $t \to \infty$ for all $A, B \in \mathcal{A}$ (This is the typical property exhibited by KMS states with respect to an asymptotically abelian dynamics)

Prove that any ω -normal state ν "returns to equilibrium" in the sense that upon $t \to \infty$

$$\nu(\tau_t(A)) \to \omega(A) \tag{37}$$

for all $A \in \mathcal{A}$.