Mathematical Statistical Physics, 2015 Homework Problems, LMU

Issued: May 13, 2015; deadline for handing in the solutions: May 20, 2015, 10 pm (22:00)

13. (10 P) Let \mathcal{A}_{CCR} stand for the Weyl algebra over a given separable Hilbert space \mathcal{H} , and let $S : \mathcal{H} \to \mathcal{H}$ denote a real invertible linear map obeying $\operatorname{Im}(\langle Sf, Sg \rangle) = \operatorname{Im}(\langle f, g \rangle)$. The Bogoliubov \star automorphism $\gamma :$ $\mathcal{A}_{CCR} \to \mathcal{A}_{CCR}$ associated with S is defined by $\gamma(W(f)) := W(Sf)$ for all $f \in \mathcal{H}$. Furthermore, we denote by $(\mathcal{F}_+, \pi, \Omega)$ the Fock space representation of \mathcal{A}_{CCR} (recall that this representation is regular).

For any $f \in \mathcal{H}$, by

$$\exp(\mathrm{i}\tilde{\Phi}_{\pi}(f)) := \pi(\gamma(W(f)))$$

$$\tilde{a}_{\pi}(f) := (\tilde{\Phi}_{\pi}(f) + \mathrm{i}\tilde{\Phi}_{\pi}(\mathrm{i}f))/\sqrt{2}$$

$$\tilde{a}_{\pi}^{\star}(f) := (\tilde{\Phi}_{\pi}(f) - \mathrm{i}\tilde{\Phi}_{\pi}(\mathrm{i}f))/\sqrt{2}$$
(22)

unbounded operators in \mathcal{F}_+ are defined; below, all domain question for these operators may be ignored and the necessary algebraic manipulations may be preformed on a formal level.

(i) Construct two maps $L : \mathcal{H} \to \mathcal{H}$ and $A : \mathcal{H} \to \mathcal{H}$ in terms of S such that

$$\widetilde{a}_{\pi}(f) = a(Lf) + a^{\star}(Af)
\widetilde{a}_{\pi}^{\star}(f) = a(Af) + a^{\star}(Lf)$$
(23)

for all $f \in \mathcal{H}$. *Hint*: Employ the fact that $\pi : \mathcal{A}_{CCR} \to \mathcal{B}(\mathcal{F}_+)$ is a regular representation to give a meaning to the generator of $t \mapsto \pi(W(tf)), t \in \mathbb{R}$, and compare it with $\tilde{\Phi}_{\pi}(f)$. (ii) If $\tilde{a}_{\pi}(f)$ and $\tilde{a}_{\pi}^{\star}(f)$ are required to satisfy the CCR as operators on \mathcal{F}_{+} , show that

$$L^{*}L - A^{*}A = 1 = LL^{*} - AA^{*}$$
$$L^{*}A - A^{*}L = 0 = AL^{*} - LA^{*}.$$
 (24)

Hint: Use the canonical commutation relations on the one hand, and the invertibility of the map γ on the other hand.

(iii) Assume that $\text{Tr}A^*A < \infty$. Prove that

$$\langle \Omega, \, \tilde{N}_{\pi}\Omega \rangle_{\mathcal{F}} = \mathrm{Tr}A^{\star}A$$

$$\tag{25}$$

where $\tilde{N}_{\pi} := \sum_{n=1}^{\infty} \tilde{a}_{\pi}^{\star}(f_n) \tilde{a}_{\pi}(f_n)$ and $(f_n)_{n \in \mathbb{N}}$ is an orthonormal basis of \mathcal{H} .

Remark: Note that the Bogoliubov transformation changes the meaning of a "particle" and (25) shows that the number of particles with respect to the original ground state is bounded if A is Hilbert-Schmidt. In fact, one can prove that the above manipulations are well-defined if and only if A is Hilbert-Schmidt.

14. (5 P) The purpose of this exercise is to prove the uniqueness of the irreducible representation of the CAR algebra $\mathcal{A}_{-}(\mathbb{C})$, generated by 1, *a*. Consider the self-adjoint elements

$$\psi_1 := a + a^*, \qquad \psi_2 := \mathbf{i}(a - a^*)$$
 (26)

- (i) Compute $\{\psi_i, \psi_j\}$, i, j = 1, 2
- (ii) Use the Pauli matrices to exhibit a representation of $\mathcal{A}_{-}(\mathbb{C})$ in \mathbb{C}^{2} and show that it is irreducible.
- (iii) Let ϕ_1, ϕ_2 be an arbitrary representation of ψ_1, ψ_2 in a Hilbert space \mathcal{H} . Determine the spectrum of $\phi_0 := i\phi_1\phi_2$
- (iv) Let $\mathcal{K} := \operatorname{Ker}(\phi_0 1)$. Prove that the map

$$\mathcal{H} \ni \xi \longmapsto U\xi := \left(\frac{\phi_1}{2}(1-\phi_0)\xi, \frac{1}{2}(1+\phi_0)\xi\right)$$
(27)

is a unitary map $\mathcal{H} \to \mathcal{K} \oplus \mathcal{K}$.

(v) Show that

$$U\phi_1 = (\sigma^1 \otimes 1_{\mathcal{K}})U, \qquad U\phi_2 = (\sigma^2 \otimes 1_{\mathcal{K}})U \tag{28}$$

(vi) Conclude that the representation on \mathcal{H} is irreducible if and only if $\mathcal{K} = \mathbb{C}$.

15. (15 P) Consider the Hilbert space $\mathcal{H} = \mathbb{C}^n$ and the C^{*} algebra $\mathcal{A} = \operatorname{Mat}_{n,n}(\mathbb{C})$ with $n \in \mathbb{N}$.

(i) Take any positive $A, B > 0, A, B \in \mathcal{A}$, and any convex $f \in C^1((0, \infty), \mathbb{R})$. Show that

$$Tr\{f(A) - f(B) - (A - B)f'(B)\} \ge 0$$
(29)

and that for a strictly convex f equality holds iff A = B.

(ii) If $\beta > 0$, H self-adjoint Hamiltonian, and ω a state on \mathcal{A} , we set

$$F_{\beta}(\omega) := -\beta^{-1}S(\omega) + \omega(H)$$
(30)

where $S(\omega) = -\text{Tr}\{\rho_{\omega} \log \rho_{\omega}\}$ denotes the entropy of ω . Establish the existence of a unique minimizer $\omega_{\rho_{\beta H}}$ with

$$F_{\beta}(\omega_{\rho_{\beta H}}) = \inf\{F_{\beta}(\omega) \,|\, \omega \text{ is a state on } \mathcal{A}\}$$
(31)

and show that $\omega_{\rho_{\beta H}}$ is given by the Gibbs state at inverse temperature β associated to

$$\rho_{\beta H} = \frac{e^{-\beta H}}{\text{Tr}\{e^{-\beta H}\}} \tag{32}$$

and compute $F_{\beta}(\omega_{\rho_{\beta H}})$. *Hint*: Demonstrate that

$$F_{\beta}(\omega_{\rho}) = \beta^{-1} \log \operatorname{Tr}\{e^{-\beta H}\} + \beta^{-1} \operatorname{Tr}\{\rho \log \rho - \rho \log \rho_{\beta H}\}$$
(33)

and use (i) with the choice $f(t) = t \log t$.

- (iii) Prove that $t \mapsto \tau_t$ is strongly continuous.
- (iv) For a self-adjoint $H \in \mathcal{A}$ consider the one-parameter group $\{\tau_t \mid t \in \mathbb{R}\}$ of \star automorphisms $A \mapsto \tau_t(A) := \exp(itH) A \exp(-itH)$ of \mathcal{A} . If $\beta > 0$, prove that a state ω on \mathcal{A} is a (τ_t, β) KMS state iff ω equals the Gibbs state at inverse temperature β , viz., $\omega = \omega_{\rho_{\beta H}}$. Also prove that $t \mapsto \tau_t$ is strongly continuous.

(v) Assume $\beta = 1$ and let ω be a state on \mathcal{A} . Give a necessary and sufficient condition for the existence of a dynamics σ_t for which ω is a $(\sigma, 1)$ -KMS state. Is σ generated by a Hamiltonian K? Are σ and K unique?