Mathematical Statistical Physics, 2015 Homework Problems, LMU

Issued: May 6, 2015; deadline for handing in the solutions: May 13, 2015, 10 pm (22:00)

10. Let \mathcal{A} be the C*-algebra of a quantum spin system on $\Gamma = \mathbb{Z}^d$, with $\mathcal{H}_x = \mathcal{H}$ for all $x \in \mathbb{Z}^d$. Let $\mathbb{Z}^d \ni z \mapsto \tau_z$ be the family of *-automorphisms of spatial translations. Prove that \mathcal{A} is asymptotically abelian with respect to τ , viz.,

$$\lim_{|z| \to \infty} [\tau_z(a), b] = 0, \tag{12}$$

for all $a, b \in \mathcal{A}$.

11. Let \mathcal{A} be a C*-algebra with a unit and let $\{\tau_t\}_{t\in\mathbb{R}}$ be a weakly continuous one-parameter group of *-automorphisms of \mathcal{A} , which by definition means

- for all $t \in \mathbb{R}$, τ_t is a *-automorphisms of \mathcal{A}
- $\tau_0 = \text{id and } \tau_s \circ \tau_t = \tau_{s+t} \text{ holds for all } s, t \in \mathbb{R}$
- for any state ω and $x \in \mathcal{A}$: $\lim_{t\to 0} \omega(\tau_t(x)) = \omega(x)$.
- (i) Let ν be a τ_t -invariant state, $\nu \circ \tau_t = \nu$ for all $t \in \mathbb{R}$. Prove that there exists a densely defined self-adjoint operator H on the GNS Hilbert space \mathcal{H} such that

$$\pi(\tau_t(x)) = \exp(\mathrm{i}tH)\pi(x)\exp(-\mathrm{i}tH), \quad \text{and} \quad H\Omega = 0$$
(13)

Hint: Stone's theorem.

(ii) Show that there always exists a τ_t -invariant state

Hint: You can safely assume that $\mathcal{E}(\mathcal{A}) \neq \emptyset$. There is a natural operation on any state ω that yields a candidate invariant state.

12. Consider the C*-algebra \mathcal{A} of a one-dimensional infinite chain of spins-1/2. Here, $\Gamma = \mathbb{Z}$ and the local algebras $\mathcal{A}_{\Lambda} = \bigotimes_{n \in \Lambda} \mathcal{A}_n$, with the on-site Hilbert spaces being $\mathcal{H}_n = \mathbb{C}^2$ for all $n \in \Gamma$ and $\mathcal{A}_n = M_{2 \times 2}(\mathbb{C})$. Note that \mathcal{A}_n is generated by the identity and the Pauli matrices $\sigma_n^x, \sigma_n^y, \sigma_n^z$, and each $A \in \mathcal{A}_n$ is identified with the corresponding element $\ldots \otimes \mathbb{1}_{n-1} \otimes A \otimes \mathbb{1}_{n+1} \otimes \ldots$ of \mathcal{A} . The goal of this exercise is to show that \mathcal{A} admits two inequivalent representations $(\mathcal{H}_{\pm}, \pi_{\pm})$.

Let

$$S_{+} := \{s = (s_{n})_{n \in \mathbb{Z}} : s_{n} \in \{-1, +1\} \text{ and } s_{n} \neq 1 \text{ for at most finitely many } n\}$$

$$S_{-} := \{s = (s_{n})_{n \in \mathbb{Z}} : s_{n} \in \{-1, +1\} \text{ and } s_{n} \neq -1 \text{ for at most finitely many } n\}$$

$$\mathcal{H}_{\pm} = l^{2}(S_{\pm}) = \{f : S_{\pm} \to \mathbb{C} : \sum_{s \in S_{\pm}} |f(s)|^{2} < \infty\}$$
(14)

Note that since S_{\pm} are countable, then $l^2(S_{\pm})$ is separable with canonical orthonormal basis $\{e_s\}_{s\in S_{\pm}}$ given by fixed spin configurations

$$e_s(t) = \begin{cases} 1 & \text{if } s = t \\ 0 & \text{otherwise} \end{cases}$$
(15)

For any $n \in \mathbb{Z}$, let furthermore $\Theta_n : \mathcal{S}_{\pm} \to \mathcal{S}_{\pm}$

$$(\Theta_n(s))_m = \begin{cases} -s_m & \text{if } n = m \\ s_m & \text{otherwise} \end{cases}$$
(16)

Finally, let $\pi_{\pm} : \mathcal{A} \to \mathcal{B}(\mathcal{H}_{\pm})$ be defined by

$$(\pi_{\pm}(1_n)(f))(s) := f(s) \tag{17}$$

$$(\pi_{\pm}(\sigma_n^x)(f))(s) := f(\Theta_n(s)) \tag{18}$$

$$(\pi_{\pm}(\sigma_n^y)(f))(s) := is_n f(\Theta_n(s))$$
(19)

$$(\pi_{\pm}(\sigma_n^z)(f))(s) := s_n f(s)$$
(20)

for all $f \in \mathcal{H}_{\pm}, s \in S_{\pm}$.

- (i) Prove that π_{\pm} define representations of \mathcal{A} in \mathcal{H}_{\pm}
- (ii) Show that π_{\pm} are irreducible representations *Hint:* Recall that a representation is irreducible if and only if any vector is cyclic; for any $f \in \mathcal{H}_{\pm}$, any basis vector can be approximated arbitrarily well by $\pi_{\pm}(x_{i_N}) \cdots \pi_{\pm}(x_{i_1}) f$, where $x_j \in \mathcal{A}_{\{j\}}$ and of the form $(1_j \pm \sigma_j^z)/2$ or σ_j^x .
- (iii) For each $N \in \mathbb{N}$, consider the local average magnetisation operator $M_N := \frac{1}{2N+1} \sum_{n=-N}^N \sigma_n^z \in \mathcal{A}$. Prove that

$$\pi_{\pm}(M_N) \to \pm 1$$
 weakly, in the operator sense (21)

i.e. for any $\phi_{\pm}, \psi_{\pm} \in \mathcal{H}_{\pm}, \lim_{N \to \infty} \langle \phi_{\pm}, \pi_{\pm}(M_N) \psi_{\pm} \rangle_{\mathcal{H}_{\pm}} = \langle \phi_{\pm}, \psi_{\pm} \rangle_{\mathcal{H}_{\pm}}$

- (iv) Conclude that π_\pm are inequivalent representations
- (v) Argue that \mathcal{A} admits in fact infinitely many inequivalent representations