Mathematical Statistical Physics, 2015 Homework Problems, LMU

Issued: May 6, 2015; deadline for handing in the solutions:
May 13, 2015, 10 pm (22:00)

10. Let \mathcal{A} be the C^{*}-algebra of a quantum spin system on $\Gamma=\mathbb{Z}^{d}$, with $\mathcal{H}_{x}=\mathcal{H}$ for all $x \in \mathbb{Z}^{d}$. Let $\mathbb{Z}^{d} \ni z \mapsto \tau_{z}$ be the family of *-automorphisms of spatial translations. Prove that \mathcal{A} is asymptotically abelian with respect to τ, viz.,

$$
\begin{equation*}
\lim _{|z| \rightarrow \infty}\left[\tau_{z}(a), b\right]=0 \tag{12}
\end{equation*}
$$

for all $a, b \in \mathcal{A}$.
11. Let \mathcal{A} be a C^{*}-algebra with a unit and let $\left\{\tau_{t}\right\}_{t \in \mathbb{R}}$ be a weakly continuous one-parameter group of ${ }^{*}$-automorphisms of \mathcal{A}, which by definition means

- for all $t \in \mathbb{R}, \tau_{t}$ is a ${ }^{*}$-automorphisms of \mathcal{A}
- $\tau_{0}=\mathrm{id}$ and $\tau_{s} \circ \tau_{t}=\tau_{s+t}$ holds for all $s, t \in \mathbb{R}$
- for any state ω and $x \in \mathcal{A}: \lim _{t \rightarrow 0} \omega\left(\tau_{t}(x)\right)=\omega(x)$.
(i) Let ν be a τ_{t}-invariant state, $\nu \circ \tau_{t}=\nu$ for all $t \in \mathbb{R}$. Prove that there exists a densely defined self-adjoint operator H on the GNS Hilbert space \mathcal{H} such that

$$
\begin{equation*}
\pi\left(\tau_{t}(x)\right)=\exp (\mathrm{i} t H) \pi(x) \exp (-\mathrm{i} t H), \quad \text { and } \quad H \Omega=0 \tag{13}
\end{equation*}
$$

Hint: Stone's theorem.
(ii) Show that there always exists a τ_{t}-invariant state

Hint: You can safely assume that $\mathcal{E}(\mathcal{A}) \neq \emptyset$. There is a natural operation on any state ω that yields a candidate invariant state.
12. Consider the C^{*}-algebra \mathcal{A} of a one-dimensional infinite chain of spins$1 / 2$. Here, $\Gamma=\mathbb{Z}$ and the local algebras $\mathcal{A}_{\Lambda}=\bigotimes_{n \in \Lambda} \mathcal{A}_{n}$, with the on-site Hilbert spaces being $\mathcal{H}_{n}=\mathbb{C}^{2}$ for all $n \in \Gamma$ and $\mathcal{A}_{n}=M_{2 \times 2}(\mathbb{C})$. Note that \mathcal{A}_{n} is generated by the identity and the Pauli matrices $\sigma_{n}^{x}, \sigma_{n}^{y}, \sigma_{n}^{z}$, and each $A \in \mathcal{A}_{n}$ is identified with the corresponding element $\ldots \otimes 1_{n-1} \otimes A \otimes 1_{n+1} \otimes \ldots$ of \mathcal{A}. The goal of this exercise is to show that \mathcal{A} admits two inequivalent representations $\left(\mathcal{H}_{ \pm}, \pi_{ \pm}\right)$.

Let
$S_{+}:=\left\{s=\left(s_{n}\right)_{n \in \mathbb{Z}}: s_{n} \in\{-1,+1\}\right.$ and $s_{n} \neq 1$ for at most finitely many $\left.n\right\}$
$S_{-}:=\left\{s=\left(s_{n}\right)_{n \in \mathbb{Z}}: s_{n} \in\{-1,+1\}\right.$ and $s_{n} \neq-1$ for at most finitely many $\left.n\right\}$
$\mathcal{H}_{ \pm}=l^{2}\left(S_{ \pm}\right)=\left\{f: S_{ \pm} \rightarrow \mathbb{C}: \sum_{s \in S_{ \pm}}|f(s)|^{2}<\infty\right\}$
Note that since $S_{ \pm}$are countable, then $l^{2}\left(S_{ \pm}\right)$is separable with canonical orthonormal basis $\left\{e_{s}\right\}_{s \in S_{ \pm}}$given by fixed spin configurations

$$
e_{s}(t)= \begin{cases}1 & \text { if } s=t \tag{15}\\ 0 & \text { otherwise }\end{cases}
$$

For any $n \in \mathbb{Z}$, let furthermore $\Theta_{n}: \mathcal{S}_{ \pm} \rightarrow \mathcal{S}_{ \pm}$

$$
\left(\Theta_{n}(s)\right)_{m}= \begin{cases}-s_{m} & \text { if } n=m \tag{16}\\ s_{m} & \text { otherwise }\end{cases}
$$

Finally, let $\pi_{ \pm}: \mathcal{A} \rightarrow \mathcal{B}\left(\mathcal{H}_{ \pm}\right)$be defined by

$$
\begin{align*}
\left(\pi_{ \pm}\left(1_{n}\right)(f)\right)(s) & :=f(s) \tag{17}\\
\left(\pi_{ \pm}\left(\sigma_{n}^{x}\right)(f)\right)(s) & :=f\left(\Theta_{n}(s)\right) \tag{18}\\
\left(\pi_{ \pm}\left(\sigma_{n}^{y}\right)(f)\right)(s) & :=\mathrm{i} s_{n} f\left(\Theta_{n}(s)\right) \tag{19}\\
\left(\pi_{ \pm}\left(\sigma_{n}^{z}\right)(f)\right)(s) & :=s_{n} f(s) \tag{20}
\end{align*}
$$

for all $f \in \mathcal{H}_{ \pm}, s \in S_{ \pm}$.
(i) Prove that $\pi_{ \pm}$define representations of \mathcal{A} in $\mathcal{H}_{ \pm}$
(ii) Show that $\pi_{ \pm}$are irreducible representations

Hint: Recall that a representation is irreducible if and only if any vector is cyclic; for any $f \in \mathcal{H}_{ \pm}$, any basis vector can be approximated arbitrarily well by $\pi_{ \pm}\left(x_{i_{N}}\right) \cdots \pi_{ \pm}\left(x_{i_{1}}\right) f$, where $x_{j} \in \mathcal{A}_{\{j\}}$ and of the form $\left(1_{j} \pm \sigma_{j}^{z}\right) / 2$ or σ_{j}^{x}.
(iii) For each $N \in \mathbb{N}$, consider the local average magnetisation operator $M_{N}:=\frac{1}{2 N+1} \sum_{n=-N}^{N} \sigma_{n}^{z} \in \mathcal{A}$. Prove that

$$
\begin{equation*}
\pi_{ \pm}\left(M_{N}\right) \rightarrow \pm 1 \quad \text { weakly, in the operator sense } \tag{21}
\end{equation*}
$$

i.e. for any $\phi_{ \pm}, \psi_{ \pm} \in \mathcal{H}_{ \pm}, \lim _{N \rightarrow \infty}\left\langle\phi_{ \pm}, \pi_{ \pm}\left(M_{N}\right) \psi_{ \pm}\right\rangle_{\mathcal{H}_{ \pm}}=\left\langle\phi_{ \pm}, \psi_{ \pm}\right\rangle_{\mathcal{H}_{ \pm}}$
(iv) Conclude that $\pi_{ \pm}$are inequivalent representations
(v) Argue that \mathcal{A} admits in fact infinitely many inequivalent representations

