Mathematical Statistical Physics, 2015 Homework Problems, LMU

Issued: April 29, 2015; deadline for handing in the solutions: May 6, 2015, 10 pm (22:00)

7. Let \mathcal{A} be the C^{*} algebra $\operatorname{Mat}_{2,2}$ of 2×2 complex matrices with its usual linear and algebraic structure and operator norm $|| \cdot ||_{\operatorname{op}}$, and consider the density matrix

$$\rho_{\alpha} = \begin{pmatrix} 1 - \alpha & 0 \\ 0 & \alpha \end{pmatrix} \tag{11}$$

that depends on the parameter $\alpha \in [0, 1/2]$. Construct explicitly the GNS representation $(\mathcal{H}_{\alpha}, \pi_{\alpha}, \Omega_{\alpha})$ of \mathcal{A} associated with the state ω_{α} , where ω_{α} is the state induced by ρ_{α} , in case of (i) $\alpha = 0$; (ii) $\alpha = 1/4$; ; (iii) $\alpha = 1/2$. Determine whether ω_{α} is pure or mixed, and whether or not it is a vector state for the respective representation.

8. Consider the set of continuous functions C([0, 1]) with the norm $||f|| = \sup\{|f(x)| | 0 \le x \le 1\}$ as a C^{*} algebra \mathcal{A} .

- (i) Prove that by $\omega(f) := \int_0^1 f(x) dx$ for all $f \in \mathcal{A}$ a state is defined on \mathcal{A} .
- (ii) Construct the GNS representation $(\mathcal{H}_{\omega}, \pi_{\omega}, \Omega_{\omega})$ associated with this state ω .
- (iii) Show the equality $||\pi_{\omega}(f)|| = ||f||$ for all $f \in \mathcal{A}$.

9. A normalized positive linear functional ω on a C^{*} algebra \mathcal{A} is called a "tracial state" iff $\omega(a^*a) = \omega(aa^*)$ for all $a \in \mathcal{A}$.

- (i) Show that ω being a tracial state on \mathcal{A} is equivalent to: ω is a normalized positive linear functional ω on \mathcal{A} and $\omega(ab) = \omega(ba)$ for all $a, b \in \mathcal{A}$.
- (ii) If \mathcal{A} is given by the C^{*} algebra $\operatorname{Mat}_{n,n}$ (discussed, e.g., in Problem 6), prove that there exists a tracial state ω on \mathcal{A} and that this ω is unique.
- (iii) Consider the C^{*} algebra of compact operators $\mathcal{J}_{\infty} \subset \mathcal{B}(\mathcal{H})$ on the Hilbert space \mathcal{H} . Demonstrate that there does not exist a tracial state ω on \mathcal{A} if dim $\mathcal{H} = \infty$.

Hint: Examine ω for finite dimensional subalgebras of \mathcal{A} .