Mathematical Statistical Physics, 2015 Homework Problems, LMU

Issued: April 22, 2015; deadline for handing in the solutions: April 29, 2015, 10 pm (22:00)

4. If \mathcal{A} is a C^{*} algebra without unit element, show that by setting $\mathcal{A}_{I} = \mathcal{A} \oplus \mathbb{C}$ (as linear spaces) and introducing the product $(a \oplus \alpha)(b \oplus \beta) = (ab+\alpha b+\beta a, \alpha \beta)$, the involution $(a \oplus \alpha)^* = a^* \oplus \overline{\alpha}$, and the norm $||a \oplus \alpha||_{\mathcal{A}_{I}} = \sup\{||ab+\alpha b||_{\mathcal{A}} | b \in \mathcal{A}, ||b||_{\mathcal{A}} \leq 1\}$ (for all $\alpha, \beta \in \mathbb{C}, a, b \in \mathcal{A}$), a C^{*} algebra with unit $I = 0 \oplus 1$ is defined. In particular, check that by $|| \cdot ||_{\mathcal{A}_{I}}$ indeed a norm on \mathcal{A}_{I} is provided. (Remark: This construction of \mathcal{A}_{I} implies that \mathcal{A} is isometrically \star isomorphic to a C^{*} subalgebra of codimension one of \mathcal{A}_{I}).

5. Consider a C^{*} algebra \mathcal{A} with unit element I, and the spectrum $\sigma(a) = \{\lambda \in \mathbb{C} \mid \lambda \mathbf{I} - a \text{ has no inverse in } \mathcal{A}\}$ of a normal element $a \in \mathcal{A}$. Prove that for all $a \in \mathcal{A}$ the limit $\lim_{n\to\infty} ||a^n||^{1/n}$ exists and equals the spectral radius $r(a) := \sup_{\lambda \in \sigma(a)} |\lambda|$ of a. In addition, show that r(a) = ||a||. *Hint:* Prove the complementary inequalities $r(a) \leq \liminf_n ||a^n||^{1/n}$ and $r(a) \geq \limsup_n ||a^n||^{1/n}$. To derive the first inequality, study the series $\lambda^{-1} \sum_k (a/\lambda)^k$; for the second inequality, investigate the radius of convergence of this series. To establish r(a) = ||a||, consider $||a^{2^k}||^2$.

6. Starting with the set $\operatorname{Mat}_{n,n}$ of $n \times n$ complex matrices with its usual vector space structure, this becomes an associative algebra if the standard matrix multiplication serves as the algebra multiplication. Banach spaces $(\operatorname{Mat}_{n,n}, |, || \cdot ||_{\operatorname{op}})$ and $(\operatorname{Mat}_{n,n}, || \cdot ||_{\operatorname{HS}})$ are obtained by choosing the norms $||A||_{\operatorname{op}} = \sup\{||Ax|| \mid x \in \mathbb{C}^n, ||x|| = 1\}$ (with $||x|| = (\sum_{i=1}^n |x_i|^2)^{1/2}$ for $x \in \mathbb{C}^n$) and $||A||_{\operatorname{HS}} = (\operatorname{Tr} A^* A)^{1/2}$.

- (i) Does the involution defined by $A^* :=$ adjoint of A render the algebras $(Mat_{n,n}, || \cdot ||_{op})$ and $(Mat_{n,n}, || \cdot ||_{HS})$ into C^{*} algebras?
- (ii) Consider the linear space of matrix valued continuous functions $\mathcal{A} := \{f : [-1,1] \to \operatorname{Mat}_{2,2}(\mathbb{C}) \mid f(t) \text{ is diagonal if } |t| = 1\}$ with the norm $||f|| = \sup_{t \in [-1,1]} ||f(t)||_{\operatorname{op}}$ and matrix multiplication and involution $f \mapsto f^*, f^*(t) := f(t)^*$. Is this \mathcal{A} a C^{*} algebra?