Mathematical Statistical Physics, 2015 Homework Problems, LMU

Issued: June 17, 2015; deadline for handing in the solutions: June 24, 2015, 10 pm (22:00)

26. Let $\Lambda \subset \mathbb{R}^{\nu}$ be a connected bounded open region of \mathbb{R}^{ν} , $3 \leq \nu \in \mathbb{N}$, and define $\Lambda_L = \{x \in \mathbb{R} \mid x/L \in \Lambda\}$ for any L > 0. Let $h_L = -\Delta$ be the self-adjoint Hamiltonian with Dirichlet boundary conditions on $\partial \Lambda_L$, i.e., the closure of the Laplacian on $\{f \in C^{\infty}(\overline{\Lambda_L}) \mid f_{\mid \partial \Lambda_L} = 0\}$ where the boundary $\partial \Lambda_L$ is assumed to be sufficiently smooth. Then h_L enjoys a purely discrete spectrum, and the asymptotic distribution of its eigenvalues λ_i obeys the Weyl law,

$$\lim_{\lambda \to \infty} \lambda^{-\nu/2} N(\lambda) = \text{const.}$$
(64)

Here, $N(\lambda)$ stands for the number of eigenvalues of h_L that do not exceed λ , and the constant depends on the volume of λ_L . For $\beta > 0$ and $0 < z \leq 1$ we define

$$\rho_L(z,\beta) = \frac{1}{|\lambda_L|} \operatorname{Tr} \frac{z \exp(-\beta h_L)}{1 - z \exp(-\beta h_L)}.$$
(65)

Assuming $\lambda_1 < \lambda_2$, for $\overline{\rho} > 0$, let $z_L := \exp(\beta \mu_L)$ be the unique solution to

$$\overline{\rho} = \rho_L(z_L, \beta) \tag{66}$$

with $\mu_L < h_L$. Employing the expansion

$$\rho_L(z_L,\beta) = \sum_{n=1}^{\infty} \rho_L^{(n)}(z_L,\beta)$$
(67)

with

$$\rho_L^{(n)}(z_L,\beta) = \frac{1}{|\Lambda_L|} \langle \psi_L^{(n)}, \frac{z_L \exp(-\beta h_L)}{1 - z_L \exp(-\beta h_L)} \psi_L^{(n)} \rangle$$
(68)

and $\psi_L^{(n)}$ being the n^{th} eigenfunction of h_L , $n = 1, 2, \ldots$, prove that for n > 1

$$\lim_{L \to \infty} \rho_L^{(n)}(z_L, \beta) = 0.$$
(69)

27. For the system discussed in problem 26, show that in the limit

$$\lim_{L \to \infty} \sum_{n=2}^{\infty} \rho_L^{(n)}(z_L, \beta) = \text{const},$$
(70)

where the constant is finite and independent of $\overline{\rho}$. (In class it was claimed that this constant is given by $\rho_{\rm c}(\beta)$ and therefore $\lim_{L\to\infty} \rho_L^{(1)}(z_L,\beta) > 0$).