Mathematical Quantum Mechanics, 2014/15 Homework Problems, LMU

Issued: December 2, 2014; deadline for handing in the solutions: December 9, 2014, 4 pm

24. Determine the form of the Hartree-Fock energy for a two-electron system with

$$H = \sum_{i=1}^{2} \left(-\Delta_i - \frac{Z}{|x_i|} \right) + \frac{1}{|x_1 - x_2|}$$
(24)

on $\Lambda_{i=1,2}H^2(\mathbb{R}^3)$ and $\gamma_{\psi}, \gamma_{\chi}$ associated with the Slater determinants $\psi(x_1, x_2) = (1/\sqrt{2})|\phi(x_1)\alpha \phi(x_2)\beta|$ and $\chi(x_1, x_2) = (1/\sqrt{2})|\phi_1(x_1)\alpha \phi_2(x_2)\alpha|$, where α and β stand for up and down spin, respectively,

$$\alpha = \begin{pmatrix} 1\\0 \end{pmatrix}, \qquad \beta = \begin{pmatrix} 0\\1 \end{pmatrix}, \tag{25}$$

and $\phi, \phi_1, \phi_2 \in H^2(\mathbb{R}^3)$ with ϕ_1, ϕ_2 being orthonormal.

25. Prove that the Gaussian coherent states

$$\psi_{p,q}(x) = c e^{i\hbar^{-1}px} e^{-a(x-q)^2}$$
(26)

with $q, p \in \mathbb{R}, c \in \mathbb{C}, a > 0$, yield an equality in the uncertainty relation

$$\Delta_{\psi} p_{\rm op} \, \Delta_{\psi} x_{\rm op} \ge \hbar/2 \tag{27}$$

for the momentum operator $p_{\rm op} = -i\hbar d/dx$ and position operator $x_{\rm op}$ in $L^2(\mathbb{R})$, and where the variance $\Delta_{\psi}A$ of an operator A is given by $\Delta_{\psi}A = \sqrt{\langle \psi, A^2\psi \rangle - \langle \psi, A\psi \rangle^2}$.

26. Consider the functional $\mathcal{E}(\psi) = -(1/8\pi) \int |\nabla \psi(x)|^2 d^3x - (2/5) \int [V(x) - \psi(x)]_+^{5/2} d^3x$, where V(x) = -Z/|x|, Z > 0, and $[g(x)]_+$ denotes the nonnegative part of a function, i.e., $[g(x)]_+ = g(x)$ if g(x) > 0, and $[g(x)]_+ = 0$ otherwise, and where \mathcal{E} is defined on $\mathcal{D}_{\mathcal{E}} = \{\psi \in \mathcal{S}'(\mathbb{R}^3) \cap L^1_{\text{loc}}(\mathbb{R}^3), \nabla \psi \in L^2(\mathbb{R}^3), \exists c_0, R_0 > 0$ such that $|\psi(x)| \leq c_0 |x|^{-1}$ a.e. for $|x| > R_0\}$

- (i) Show that \mathcal{E} is strictly concave and therefore there is at most one maximizer.
- (ii) Demonstrate that each maximizer of \mathcal{E} has to obey the distributional equation $-\Delta \psi = 4\pi [V(x) \psi(x)]_{+}^{3/2}$. Compare this equation with the Thomas-Fermi equation.