Mathematical Quantum Mechanics, 2014/15 Homework Problems, LMU

Issued: December 2, 2014; deadline for handing in the solutions: December 9, 2014, 4 pm
24. Determine the form of the Hartree-Fock energy for a two-electron system with

$$
\begin{equation*}
H=\sum_{i=1}^{2}\left(-\Delta_{i}-\frac{Z}{\left|x_{i}\right|}\right)+\frac{1}{\left|x_{1}-x_{2}\right|} \tag{24}
\end{equation*}
$$

on $\Lambda_{i=1,2} H^{2}\left(\mathbb{R}^{3}\right)$ and $\gamma_{\psi}, \gamma_{\chi}$ associated with the Slaterdeterminants $\psi\left(x_{1}, x_{2}\right)=$ $(1 / \sqrt{2})\left|\phi\left(x_{1}\right) \alpha \phi\left(x_{2}\right) \beta\right|$ and $\chi\left(x_{1}, x_{2}\right)=(1 / \sqrt{2})\left|\phi_{1}\left(x_{1}\right) \alpha \phi_{2}\left(x_{2}\right) \alpha\right|$, where α and β stand for up and down spin, respectively,

$$
\begin{equation*}
\alpha=\binom{1}{0}, \quad \beta=\binom{0}{1} \tag{25}
\end{equation*}
$$

and $\phi, \phi_{1}, \phi_{2} \in H^{2}\left(\mathbb{R}^{3}\right)$ with ϕ_{1}, ϕ_{2} being orthonormal.
25. Prove that the Gaussian coherent states

$$
\begin{equation*}
\psi_{p, q}(x)=c e^{\mathrm{i} \hbar^{-1} p x} e^{-a(x-q)^{2}} \tag{26}
\end{equation*}
$$

with $q, p \in \mathbb{R}, c \in \mathbb{C}, a>0$, yield an equality in the uncertainty relation

$$
\begin{equation*}
\Delta_{\psi} p_{\mathrm{op}} \Delta_{\psi} x_{\mathrm{op}} \geq \hbar / 2 \tag{27}
\end{equation*}
$$

for the momentum operator $p_{\mathrm{op}}=-i \hbar d / d x$ and position operator x_{op} in $L^{2}(\mathbb{R})$, and where the variance $\Delta_{\psi} A$ of an operator A is given by $\Delta_{\psi} A=$ $\sqrt{\left\langle\psi, A^{2} \psi\right\rangle-\langle\psi, A \psi\rangle^{2}}$.
26. Consider the functional $\mathcal{E}(\psi)=-(1 / 8 \pi) \int|\nabla \psi(x)|^{2} d^{3} x-(2 / 5) \int[V(x)-$ $\psi(x)]_{+}^{5 / 2} d^{3} x$, where $V(x)=-Z /|x|, Z>0$, and $[g(x)]_{+}$denotes the nonnegative part of a function, i.e., $[g(x)]_{+}=g(x)$ if $g(x)>0$, and $[g(x)]_{+}=0$ otherwise, and where \mathcal{E} is defined on $\mathcal{D}_{\mathcal{E}}=\left\{\psi \in \mathcal{S}^{\prime}\left(\mathbb{R}^{3}\right) \cap L_{\text {loc }}^{1}\left(\mathbb{R}^{3}\right), \nabla \psi \in\right.$ $L^{2}\left(\mathbb{R}^{3}\right), \exists c_{0}, R_{0}>0$ such that $|\psi(x)| \leq c_{0}|x|^{-1}$ a.e. for $\left.|x|>R_{0}\right\}$
(i) Show that \mathcal{E} is strictly concave and therefore there is at most one maximizer.
(ii) Demonstrate that each maximizer of \mathcal{E} has to obey the distributional equation $-\Delta \psi=4 \pi[V(x)-\psi(x)]_{+}^{3 / 2}$. Compare this equation with the Thomas-Fermi equation.

