Mathematical Quantum Mechanics, 2014/15 Homework Problems, LMU

Issued: November 18, 2014; deadline for handing in the solutions: November 25, 2014, 4 pm

20. Let γ_{ψ} denote the one-particle reduced density matrix associated to the state ψ, and let $T^{(N)}=T \otimes 1 \otimes \ldots \otimes 1+1 \otimes T \otimes 1 \otimes \ldots \otimes 1+\ldots+1 \otimes 1 \otimes \ldots \otimes T$ be a one-particle operator with $\psi \in \mathcal{D}\left(T^{(N)}\right)$.
(i) Show that $\left\langle\psi, T^{(N)} \psi\right\rangle=\operatorname{tr}\left\{T \gamma_{\psi}\right\}$.
(ii) If $\psi\left(x_{1}, \ldots, x_{N}\right)=(N!)^{-1 / 2}\left|\phi_{1}\left(x_{1}\right) \ldots \phi_{N}\left(x_{N}\right)\right|$ is of determinantel form, i.e., $\left|\phi_{1}\left(x_{1}\right) \ldots \phi_{N}\left(x_{N}\right)\right|=\sum_{\pi \in S_{N}} \operatorname{sign}(\pi) \phi_{1}\left(x_{\pi(1)}\right) \ldots \phi_{N}\left(x_{\pi(N)}\right)$ with the sum running over all permutations π, and where $\left\{\phi_{j}\right\}$ is an orthonormal set, prove that $\gamma_{\psi}(x, y)=\sum_{j=1}^{N} \phi_{j}(x) \bar{\phi}_{j}(y)$.
21. Use the Hardy inequality to demonstrate that the (distributional) Laplacian obeys the inequality $|x|(-\Delta)+(-\Delta)|x| \geq 0$. Infer that this implies $\operatorname{Re}\langle | x|\psi,-\Delta \psi\rangle \geq 0$ for all $\psi \in \mathcal{D}(-\Delta) \cap \mathcal{D}(|x|)$.
22. Consider the modified atomic functional $\mathcal{E}(\rho)=\int(\nabla \sqrt{\rho})^{2} d^{3} x+$ $(3 / 5) \gamma_{\text {TF }} \int \rho(x)^{5 / 3} d^{3} x-\int Z|x|^{-1} \rho(x) d^{3} x+D(\rho, \rho)$ defined on $\mathcal{D}_{\mathcal{E}}=\{\rho \in$ $\left.L^{5 / 3}\left(\mathbb{R}^{3}\right), \nabla \sqrt{\rho} \in L^{2}\left(\mathbb{R}^{3}\right), D(\rho, \rho)<\infty, \rho>0\right\}$. Assume that \mathcal{E} enjoys a unique minimizer (For enthusiasts (and extra points): Prove this).
(i) Show that this minimizer solves the Euler equation (expressed with the help of $\psi=\sqrt{\rho}$) associated with \mathcal{E}, viz.,

$$
\begin{equation*}
-\Delta \psi(x)+\gamma \psi^{7 / 3}(x)-\frac{Z}{|x|} \psi(x)+\int \frac{\psi(y)^{2}}{|x-y|} \psi(x)=0 . \tag{20}
\end{equation*}
$$

(ii) Prove that the validity of (20) implies the bound $N<2 Z$ for $\int \rho=N$. (Hint: Take the inner product of (20) with $|x| \psi$ and employ the results of problem 21.)

