Mathematical Quantum Mechanics, 2014/15 Homework Problems, LMU

Issued: November 11, 2014; deadline for handing in the solutions: November 18, 2014, 4 pm
17. Demonstrate that at $t=0$

$$
\begin{equation*}
\frac{d}{d t} \int(\rho(x)+\operatorname{tg}(x))^{5 / 3} d x=\int \frac{d}{d t}(\rho(x)+t g(x))^{5 / 3} d x \tag{19}
\end{equation*}
$$

for the densities ρ and g discussed in the lecture, i.e., $\operatorname{supp} g \subset\{x \mid \rho(x)>$ $\delta>0\}$ and $-\delta / 2<t<\delta / 2$.
18. Let $\Omega \subset \mathbb{R}^{3}$ be a bounded region, $\rho \in L^{2}(\Omega)$. Show that the equation $-\Delta \phi=4 \pi \rho$ in Ω with $\phi=0$ on $\partial \Omega$ enjoys a unique (weak) solution in the local Sobolev space $H_{0}^{1}(\Omega)$. (Hint: Study the functional $p(\phi)=\int_{\Omega}|\nabla \phi|^{2}-$ $8 \pi \int \rho \phi$ and recall the Poincaré inequality to infer the existence of a finite infimum of p.)
19. Consider the Thomas-Fermi functional for an atom, viz., $\mathcal{E}_{\mathrm{TF}}(\rho)=$ $(3 / 5) \gamma_{\text {TF }} \int \rho(x)^{5 / 3} d^{3} x-\int Z|x|^{-1} \rho(x) d^{3} x+D(\rho, \rho)$.
(i) Show that the minimizing ρ of $\mathcal{E}_{\mathrm{TF}}$ is spherically symmetric.
(ii) Prove (without using the Thomas-Fermi equation) that $\int \rho(x) d^{3} x>Z$ cannot hold for the minimizer ρ of $\mathcal{E}_{\mathrm{TF}}$. (Hint: Suppose $\int \rho(x) d^{3} x>Z$ and then take the smallest $R>0$ such that $\int_{|x|<R} \rho(x) d^{3} x=Z$ and estimate the difference $\mathcal{E}_{\mathrm{TF}}\left(\rho_{R}\right)-\mathcal{E}_{\mathrm{TF}}(\rho)$ for ρ_{R} defined by $\rho_{R}(x)=\rho(x)$ if $|x| \leq R$, and $\rho_{R}(x)=0$ otherwise.

