Mathematical Quantum Mechanics, 2014/15 Homework Problems, LMU

Issued: November 11, 2014; deadline for handing in the solutions: November 18, 2014, 4 pm

17. Demonstrate that at t = 0

$$\frac{d}{dt} \int (\rho(x) + tg(x))^{5/3} dx = \int \frac{d}{dt} (\rho(x) + tg(x))^{5/3} dx$$
(19)

for the densities ρ and g discussed in the lecture, i.e., $\operatorname{supp} g \subset \{x \mid \rho(x) > \delta > 0\}$ and $-\delta/2 < t < \delta/2$.

18. Let $\Omega \subset \mathbb{R}^3$ be a bounded region, $\rho \in L^2(\Omega)$. Show that the equation $-\Delta \phi = 4\pi\rho$ in Ω with $\phi = 0$ on $\partial\Omega$ enjoys a unique (weak) solution in the local Sobolev space $H_0^1(\Omega)$. (Hint: Study the functional $p(\phi) = \int_{\Omega} |\nabla \phi|^2 - 8\pi \int \rho \phi$ and recall the Poincaré inequality to infer the existence of a finite infimum of p.)

19. Consider the Thomas-Fermi functional for an atom, viz., $\mathcal{E}_{\text{TF}}(\rho) = (3/5)\gamma_{\text{TF}} \int \rho(x)^{5/3} d^3x - \int Z|x|^{-1}\rho(x) d^3x + D(\rho,\rho).$

- (i) Show that the minimizing ρ of \mathcal{E}_{TF} is spherically symmetric.
- (ii) Prove (without using the Thomas-Fermi equation) that $\int \rho(x)d^3x > Z$ cannot hold for the minimizer ρ of \mathcal{E}_{TF} . (Hint: Suppose $\int \rho(x)d^3x > Z$ and then take the smallest R > 0 such that $\int_{|x| < R} \rho(x)d^3x = Z$ and estimate the difference $\mathcal{E}_{\text{TF}}(\rho_R) - \mathcal{E}_{\text{TF}}(\rho)$ for ρ_R defined by $\rho_R(x) = \rho(x)$ if $|x| \le R$, and $\rho_R(x) = 0$ otherwise.