Mathematical Quantum Mechanics, 2014/15 Homework Problems, LMU

Issued: October 21, 2014; deadline for handing in the solutions: October 28, 2014, 4 pm

6. Let us consider the Hilbert space $\mathcal{H}=L^{2}(0,1)$ and the momentum operator for a particle moving on a circle, i.e., $p_{\mathrm{c}}=-\mathrm{i} d / d x$ with domain $\mathcal{D}\left(p_{\mathrm{c}}\right)=\left\{\psi \in \mathcal{H} \mid \psi \in \mathrm{AC}(0,1), \psi^{\prime} \in \mathcal{H}, \psi(0)=\psi(1)\right\}$. Determine the resolvent set $\rho\left(p_{\mathrm{c}}\right)$, and for $z \in \rho\left(p_{\mathrm{c}}\right)$ compute the resolvent $\left(p_{\mathrm{c}}-z\right)^{-1}$ of this operator.
7. Starting with the kinetic energy operator $H_{0}=-\Delta$ on the Sobolev space $\mathcal{D}\left(H_{0}\right)=H^{2}\left(\mathbb{R}^{3}\right) \subset \mathcal{H}=L^{2}\left(\mathbb{R}^{3}\right)$, and $a \in \mathbb{R}^{3} \backslash\{0\}$, are the following operators bounded relative to H_{0} ?
(i) $a \cdot p$ with $p=-\mathrm{i} \nabla$ and $\mathcal{D}(a \cdot p)=H^{1}\left(\mathbb{R}^{3}\right)$.
(ii) $a \cdot x$ with $\mathcal{D}(a \cdot x)=\{\psi \in \mathcal{H} \mid a \cdot x \psi \in \mathcal{H}\}$
8. Demonstrate that for all $\psi \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$ the following inequalty holds:

$$
\begin{equation*}
\frac{1}{4} \int_{\mathbb{R}^{3}}|x|^{-2}|\psi(x)|^{2} d^{3} x \leq \int_{\mathbb{R}^{3}}|\nabla \psi(x)|^{2} d^{3} x \tag{9}
\end{equation*}
$$

9. Let the operator H in the Hilbert space $\mathcal{H}=L^{2}\left(\mathbb{R}^{3}\right)$ be defined by

$$
\begin{equation*}
(H \psi)(x)=\left(|x|^{2}+\frac{1}{4}\right) \psi(x)-\frac{1}{2 \pi^{2}} \int_{\mathbb{R}^{3}} \frac{1}{|x-y|^{2}} \psi(y) d^{3} y \tag{10}
\end{equation*}
$$

on the domain $\mathcal{D}(H)=\left\{\psi \in \mathcal{H} \mid \psi(x)=\left(|x|^{2}+1 / 4\right)^{-2} \phi(x)\right.$ with $\phi \in$ $C_{0}^{\infty}\left(\mathbb{R}^{3}\right\}$.
(i) Show that by H a symmetric operator in \mathcal{H} is defined.
(ii) Prove that H is bounded below. Hint: Consider the quadratic form $\langle\psi, H \psi\rangle$. You may use the integrals:

$$
\begin{equation*}
\int_{0}^{\infty} d t \frac{t \log \left((a \pm t)^{2}\right)}{\left(b^{2}+t^{2}\right)^{2}}=\frac{ \pm \pi a b+2 a^{2} \log (a)+2 b^{2} \log (b)}{2\left(a^{2}+b^{2}\right) b^{2}} \tag{11}
\end{equation*}
$$

(iii) Determine the (unnormalized) ground state wave function of H (Hint: In part (ii), can you make $\langle\psi, H \psi\rangle$ to attain its lower bound?) What can be concluded about the degeneracy of the ground state and the nodes of its wave function?

