Mathematical Quantum Mechanics, 2014/15 Homework Problems, LMU

Issued: January 20, 2015; deadline for handing in the solutions: Tuesday, January 27, 2015, 4 pm
38. Prove that for the sequence $\left\{\psi_{n}\right\}$ with $\psi_{n}\left(x_{1}, x_{2}\right)=\phi\left(x_{1}\right) \chi_{n}\left(x_{2}\right)$ constructed in the lecture for the proof of the HVZ theorem, the norm of the remaining potential terms converges to zero, i.e., as $n \rightarrow \infty$

$$
\begin{equation*}
\int\left|\frac{1}{\left|x_{1}-x_{2}\right|} \psi_{n}\left(x_{1}, x_{2}\right)-\frac{Z}{\left|x_{2}\right|} \psi_{n}\left(x_{1}, x_{2}\right)\right|^{2} d x_{1} d x_{2} \rightarrow 0 \tag{44}
\end{equation*}
$$

39. Consider a finite dimensional matrix $A=\left(\left(a_{i j}\right)\right)$ in Jordan normal form with an eigenvalue λ_{0}, and a small enough $\varepsilon>0$ such that λ_{0} is the only eigenvalue of A within a disc of radius ε around λ_{0}. Show that by

$$
\begin{equation*}
P=-\frac{1}{2 \pi \mathrm{i}} \oint_{\left|\lambda-\lambda_{0}\right|=\varepsilon}(A-\lambda)^{-1} d \lambda \tag{45}
\end{equation*}
$$

a projection is defined that projects onto the set $\left\{v \mid \exists n>0:\left(A-\lambda_{0}\right)^{n} v=0\right\}$. Hint: Set $a_{i j}=(\mu-\lambda) \delta_{i, j}+\delta_{i+1, j}$ and prove that

$$
\begin{equation*}
\left(A^{-1}\right)_{i j}=\delta_{i, j}(\mu-\lambda)^{-1}-\delta_{i+1, j}(\mu-\lambda)^{-2}+\delta_{i+2, j}(\mu-\lambda)^{-3}+\ldots \tag{46}
\end{equation*}
$$

