Mathematical Quantum Mechanics, 2014/15 Homework Problems, LMU

Issued: January 14, 2015; deadline for handing in the solutions: Wednesday, January 21, 2015, 4 pm

35. Consider the Hamilton operator h_Z in the Hilbert space $\mathcal{H} = L^2(\mathbb{R})$ defined by $h_Z \psi = -\psi''$ on the domain

$$\mathcal{D}(h_Z) = \{ \psi \in \mathcal{H} \mid \psi \in \mathrm{AC}(\mathbb{R}) \cap H^2(\mathbb{R} \setminus \{0\}), \\ \lim_{\epsilon \downarrow 0} (\psi'(-\epsilon) - \psi'(\epsilon)) = Z\psi(0), h_Z\psi \in \mathcal{H} \}$$
(40)

with $Z \in \mathbb{R}$.

(i) Show that h_Z is associated to the quadratic form

$$q_Z(\psi,\phi) = \int \overline{\psi'(x)} \phi'(x) \, dx - Z\overline{\psi}(0)\phi(0) \tag{41}$$

on $\mathcal{D}(q_Z) = H^1(\mathbb{R})$. Prove that h_Z is bounded from below and self-adjoint.

(ii) Find the spectrum $\sigma(h_Z)$, and, if Z > 0, compute the eigenvalues and eigenfunctions of h_Z .

36. With the help of the operator h_Z defined in Problem 35, we construct the (essentially self-adjoint) two-particle operator

$$H_{Z_1,Z_2}^{(0)} = h_{Z_1} \otimes 1 + 1 \otimes h_{Z_2} \tag{42}$$

on the domain $\mathcal{D}(H_{Z_1,Z_2}^{(0)}) = \mathcal{D}(H_{Z_1}) \otimes \mathcal{D}(H_{Z_2}) \subset L^2(\mathbb{R}^2)$. For $Z_i > 0, i = 1, 2,$ determine the eigenvalues and eigenfunctions and the spectrum $\sigma(\overline{H}_{Z_1,Z_2}^{(0)})$ of $\overline{H}_{Z_1,Z_2}^{(0)}$.

37. Assuming a repulsive Coulomb interaction $W_{\gamma}(x_1, x_2) = \gamma |x_1 - x_2|^{-1}$ with coupling parameter $\gamma > 0$ between both particles, the operator $H_{Z_1,Z_2}^{(0)}$ of problem 36 is modified into an interacting Hamiltonian by setting

$$H_{Z_1,Z_2}^{(\gamma)} = \overline{H}_{Z_1,Z_2}^{(0)} + W_{\gamma} = h_{Z_1} \otimes 1 + 1 \otimes h_{Z_2} + W_{\gamma}$$
(43)

where W_{γ} is defined on its maximal domain $\mathcal{D}(W_{\gamma}) = \{ \psi \in L^2(\mathbb{R}^2) \mid W_{\gamma} \psi \in L^2(\mathbb{R}^2) \}.$

- (i) Construct a self-adjoint operator $\tilde{H}_{Z_1,Z_2}^{(\gamma)}$ that extends the operator $H_{Z_1,Z_2}^{(\gamma)}$ defined on $\mathcal{D}(\overline{H}_{Z_1,Z_2}^{(0)}) \cap \mathcal{D}(W_{\gamma})$.
- (ii) For $Z_i > 0$, i = 1, 2, prove an HVZ theorem for $\tilde{H}_{Z_1,Z_2}^{(\gamma)}$ analogously as it has been done in the lecture for the two-electron atom.
- (iii) For given $Z_i > 0$, i = 1, 2, find a $\gamma_0 > 0$ that guarantees the existence of bound states of $\tilde{H}_{Z_1,Z_2}^{(\gamma)}$ for all $0 \leq \gamma < \gamma_0$.