Mathematical Quantum Mechanics, 2014/15 Homework Problems, LMU

Issued: January 7, 2015; deadline for handing in the solutions:
Wednesday, January 14, 2015, 4 pm
32. For a neutral atom and the corresponding Thomas-Fermi minimizer ρ_{at} set $T=(3 / 5) \gamma_{\mathrm{TF}} \int \rho_{\mathrm{at}}^{5 / 3}$, and $V_{\mathrm{ne}}=Z \int \rho_{\mathrm{at}} /|x|$, and $V_{\mathrm{ee}}=D\left(\rho_{\mathrm{at}}, \rho_{\mathrm{at}}\right)$. Show that the following relations hold.

$$
\begin{align*}
& 0=2 T-V_{\mathrm{ne}}+V_{\mathrm{ee}} \\
& 0=(5 / 3) T-V_{\mathrm{ne}}+2 V_{\mathrm{ee}} \tag{37}
\end{align*}
$$

Compute the ensuing ratio $\left(-V_{\mathrm{ne}}\right) / T /\left(-E_{\mathrm{TF}}\right) / V_{\mathrm{ee}}$ with $E_{\mathrm{TF}}=T-V_{\mathrm{ne}}+V_{\mathrm{ee}}$.
33. Consider the N-body bosonic system described by the Hamiltonian

$$
\begin{equation*}
H=\sum_{j=1}^{N}-\Delta_{j}+\sum_{1 \leq i<j \leq N} e_{i} e_{j} V\left(x_{i}-x_{j}\right) \tag{38}
\end{equation*}
$$

for the Coulomb potential $V(x)=|x|^{-1}$ and the charges $e_{j} \in \mathbb{R}, j=1, \ldots N$. Show that if V is regularized at $x=0$, e.g., by replacing V by $W(x)=$ $(1-\exp (-m|x|))|x|^{-1}$ with $m>0$, then H can be bounded below by

$$
\begin{equation*}
H \geq \sum_{j=1}^{N}-\Delta_{j}-\frac{N}{2} e_{0}^{2} W(0) \geq \mathrm{const} N \tag{39}
\end{equation*}
$$

where $e_{0}=\max _{1 \leq j \leq N}\left|e_{j}\right|$.
34. Prove that the annihilation and creation operators a, a^{\star}, respectively, defined in the lecture are mutually adjoint, and that the second quantized

Hamiltonian $H=\sum_{i, j}\left\langle e_{i},(-\Delta+v) e_{j}\right\rangle a_{i}^{\star} a_{j}+(1 / 2) \sum_{i, j, k, l}\left\langle e_{i} \otimes e_{j}, w e_{k} \otimes\right.$ $\left.e_{l}\right) a_{i}^{\star} a_{j}^{\star} a_{l} a_{k}$ is symmetric and leaves the N-particle spaces invariant and acts in the N-particle spaces as $\sum_{i=1}^{N}\left(-\Delta_{i}-Z\left|x_{i}\right|^{-1}\right)+\sum_{1 \leq i<j \leq N}\left|x_{i}-x_{j}\right|^{-1}$. Here v stands for the one-body potential $(v \psi)(x)=-Z|x|^{-1} \psi(x)$ and w for the two-body interaction $(w \psi)(x, y)=|x-y|^{-1} \psi(x, y)$.

