Mathematical Quantum Mechanics, 2014/15 Homework Problems, LMU

Issued: October 7, 2014; deadline for handing in the solutions:
October 14, 2014, 4 pm

1. Let Mat ${ }_{n, n}$ stand for the set of n, n matrices with complex elements.
(i) Prove or disprove that if $1 \leq n<\infty$, then there exist $A, B \in \operatorname{Mat}_{n, n}$ and $c \in \mathbb{C} \backslash\{0\}$ such that

$$
\begin{equation*}
[A, B]:=A B-B A=c \tag{1}
\end{equation*}
$$

where on the right hand side the unit matrix is not displayed explicitly. Could you apply the same arguments of your proof if $n=\infty$?
(ii) Show that $[A, B]=\mathrm{i}$ would imply that $A^{k} B-B A^{k}=\mathrm{i} k A^{k-1}$ for all strictly positive integers $k \in \mathbb{N}$.
(iii) Let $\ell_{2}=\left\{\left.\left(x_{i}\right)_{i=1}^{\infty}\left|x_{i} \in \mathbb{C}, \sum_{i=1}^{\infty}\right| x_{i}\right|^{2}<\infty\right\}$ be the Hilbert space of square-summable sequences $\left(x_{i}\right)_{i=1}^{\infty}=\left(x_{1}, x_{2}, \ldots\right)$. Linear operators A on ℓ_{2} may be represented as infinite matrices such that $A\left(x_{i}\right)_{i=1}^{\infty}=$ $\left(\sum_{j=1}^{\infty} A_{i j} x_{j}\right)_{i=1}^{\infty}$. Prove that by

$$
\begin{equation*}
\|A\|=\sup _{\left\|\left(x_{i}\right)_{i=1}^{\infty}\right\|=1}\left\|A\left(x_{i}\right)_{i=1}^{\infty}\right\| \tag{2}
\end{equation*}
$$

a norm on the set of bounded linear operators on ℓ_{2} is defined, and that $\|A B\| \leq\|A\|\|B\|$ holds.
(iv) Employ (ii) and the last inequality to demonstrate that $[A, B]=\mathrm{i}$ for linear operators A, B on ℓ_{2} implies $k \leq 2\|A\|\|B\|$ for all $k \in \mathbb{N}$ and conclude that the relation $[A, B]=\mathrm{i}$ cannot be achieved by bounded operators on ℓ_{2}.
2. The example of a particle in a one-dimensional infinite square well is studied in every standard quantum text book, unfortunately not always in a mathemetically correct way. Mathematically, the infinite potential walls at $x=0$ and $x=1$ are incorporated by imposing Dirichlet boundary conditions, i.e., by considering the Hilbert space $\mathcal{H}=L^{2}(0,1)$ and the Hamiltonian

$$
\begin{equation*}
H=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \tag{3}
\end{equation*}
$$

on the domain $\mathcal{D}(H)=\left\{\psi \in \mathcal{H} \mid \psi \in C^{1}(0,1), \psi^{\prime} \in \mathrm{AC}(0,1), \psi^{\prime \prime} \in L^{2}(0,1)\right.$, $\psi(0)=0=\psi(1)\}$, where $\mathrm{AC}(0,1)$ are the absolutely continuous functions on $(0,1)$. For convenience, we may assume that $\hbar=2 m=1$.
(i) Prove that H is a nonnegative operator, i.e., $\langle\psi, H \psi\rangle \geq 0$ for all $\psi \in$ $\mathcal{D}(H)$.
(ii) As a rigorous alternative of the (frequently but not convincingly) invoked argument of the uncertainty relation to infer the existence of a nonvanishing zero-point energy for H, show (without solving explicitly the Schrödinger equation) that the energy of the system is bounded below by a positive constant, viz., for all $\psi \in \mathcal{D}(H), \psi \neq 0$, and assuming $\hbar=2 m=1$, we have

$$
\begin{equation*}
\frac{\langle\psi, H \psi\rangle}{\langle\psi, \psi\rangle} \geq 1 \tag{4}
\end{equation*}
$$

(iii) Compare the lower bound obtained in (ii) with the optimal lower bound for H, that is, with the ground state energy of H (again for $\hbar=2 m=$ 1).

