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or upon introducing the three-dimensional vectors
A=(,y2 and B=(Ly+vz+ w),
that
v+ z2w)  |A? + (yv + zw)
B > |4] + =
|4l (|

1 +y(y.+ v)+z(z+w)_A-B
|4] [A]’
where the dot denotes the scalar product of the vectors.

Since 4-B =|A||B| cos(A, B) < |A1|B| with equality iff 4 and B are
codirected, it is seen that (11) does hold with equality iff (1, y,z)and (1, y + v,
z + w) are codirected, ie., iff v = w = 0. Thus, f(y,z) = /1 + ¥4z

strongly convex on R2.

ExaMpLE 11. If 0 < pe C[a, b], then

f()_c9ys z) = P(E)vl + yz + z2

is strongly convex on [g, b] x [? (Fact 2 and Example 10.)

EXAMPLE 12. When b # 0, then f(y, z) = /y? + b?z7 has derivatives

Y . b2z
o) = —==——r and fy2)=—o"
Y /yz T bz_zz /yz + p2z2
which are discontinuous at the origin. However, on the restricted set R? ~

{(0, 0)} this function is again convex but not strongly convex. (See Problem
3.24))

(Problems 3.1-3.1%)

§3.4. Applications

In this section we show that convexity is present in problems from several
diverse fields—at least after suitable formulation —and use previous results to
characterize their solutions. Applications, presented in order of increasing
difficulty—and/or sophistication, are given which characterize geodesics on a
cylinder, a version of the brachistochrone, Newton’s profile of minimurm drag,
an optimal plan of production, and a form of the minimal surface, Other

applications in which convexity can be used with profit will be found in
Problems 3.20 et seq.

iz
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(a) Geodesics on a Cylinder

To find the geodesics on the surface of a right circular cylinder of radius 1 unit,
we employ, naturally enough, the cylindrical coordinates (6, z) .shgv&‘fn. in
Figure 3.1 to denote a typical point. It is obvious that the geodesic joining
points P, = (6, z,), P, = (0, z,) is simply the vertical segment connecting
them. Thus it remains to consider the case where P, = (8,, z,) with 8, # 6,;
a little thought shows that by relabelling if necessary, We can suppose that
0 < 8; — 8, <=, and consider those curves which admit representation as
the graph of a function ze @ = {ze C'{6,, 8,]: 2(6)) = z;,j = 1, 2}.
The spatial coordinates of such a curve are

(x(6), W8), z(F)) = (cos 6, sin B, z(F)),

so that when z € 2, the resulting curve has the length

B2 — 82 —
L) = L SO + yOF + 28) db = J; VT b

With an obvious change in variables, this integrand corresponds to the
function of §3.3, Example 3, which is strongly convex. Thus by Corollary 3.8,
we conclude that

(3.12) Among curves which admit representation as the graph of a functiloh
z € &, the minimum length is given uniquely for that represented by the function

Zy — 2
2o =z, + m(f — 8,) form = 8, =8,
which describes the circular helix joining the points.
zZ4
P,
\\(e. 2(8))
'Pf,— P
1 y
¢

Figure 3.1
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(If the cylinder were “unrolled,” this would correspond to the straight line
joining the points.) Plants take helical paths when climbing around cylindrical
supporting stakes toward the sun [Li].

(b) A Brachistochrone

For our next application, we return to the brachistochrone of §1.2(a). As
formulated there, the function T(y)is not of the form covered by Theorem 3.5.
{Why not?) However, if we interchange the roles of x and y and consider those
curves which admit representation as the graph of a function ye @ =
{yeC'[0, x,]: H0) = 0, y(x,) = y,} (with x, and y, both positive) as in
Figure 3.2, then in the new coordinates, the same analysis as before gives for
each such curve the transit time

_ L yeP
o) = L N R

which has the strongly convex integrand function of §3.3, Example 4, with
r = land p(x) = (2gx)™ "% on (0, x,]. Now p(x) is positive and integrable on
[0, x,] and although it is not continuous (at 0), Theorem 3.7 remains valid.
{See Problem 3.21.)

Thus we know that among such curves, the minimum transit time would
be given uniquely by each y € Z which makes

yx)

NENSESTE

for some constant c.

c

y&x? o x
1+ y(xy ¢
or
’ z _ X
Yo = (12)
Thus y'(0) = 0.
y
%
(x, ®(x))
X ¥ (x1, y1)
Figure 3.2
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If we introduce the new independent variable 8 through the relation
x(8) = (c?/2X1 — cos 8) = c? sin’(8/2), then # =0 when x = 0, and for
A < =, & increases with x. By the chain rule ‘

2
= YOO = ¥ (% sin 9),
and equation (12) becomes

dy\> 4 sz L —cost
(@) (¢? sin 9)2—y(x) T 1l4+cos®

dy ¢ j1—-cos0 . c?
= — [———sinfl=— (1 — 8.
do 21+ cosf)Sm 2 ( cos 6)

Hence y(0) = (c2/2)(@ — sin 0) + ¢, and the requirement {0) = 0 shows
that ¢; = 0.

Uponreplacing the unspecified constant ¢ by ﬁ ¢, wesee that the minimum
transit time would be given parametrically by a curve of the form

x(#) = c*(1 — cos 8),
y(B) = (0 — sin B),

provided that ¢? and #, can be found to make x(8,) = x;, y(8,) = y,. The
curve described by these equations is the cycloid with cusp at (0, 0) which
would be traced by a point on the circumference of a disk of radius ¢* as it
rolls along the y axis from “below” as shown in Figure 3.3.

For 8 > 0, the ratio y(0)/x(0) = (6 — sin 8)/(1 — cos 6) has the limiting
value +co as 0 T 2r, and by L'Hopital’s rule it has the limiting value of 0 as
# 5 0, Its derivative is

(1 —cos@)* —sinB(® —sinf) 2(1 —cosf) —Osinf

or

0<0<8, (13)

(1 — cos 6)* a (1 — cos 0)? ’
p e ~ - . ; _
b N
{ / \
\ |
\ @6 \ / _
S -~
~ —_ | ~_ - -
(x1, ¥1)
x¥

Figure 3.3
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which utilizing the half angle formulae may be rewritten as

cos 6/2 8 0
S 0)2 (‘an 2 E) @ #m,

and thus is positive for 0 < & < 2z, (Why?) y(0)/x(t)) is positive, increases
strictly from 0 to + oo as 6 increases from 0 to 2z, and hence from continuity
(through the intermediate value theorem of §A.1), assumes each positive
value precisely once. In particular, there is a unique 8, € (0, 27) for which
¥0:)/%(8) = y,/x,, and for this 8,, choosing ¢? = x,/(1 — cos 0,) will
guarantee the existence of a (unique) cycloid joining (0,0) to (x4, y,).

Unfortunately, as Figure 3.3 shows, the associated curve can be represented
in the form y = y(x) only when 0, < =,i.e., when y,/x, < r/2. Moreover, the
associated function y e C*[0, x,] only when y,/x, < n/2, since the tangent
line to the cycloid must be horizontal at the lowest point on the arch. Never-
theless, we do have a nontrivial result:

(3.13) When y,/x, < n/2, among all curves representable as the graph of a
Junction y € C'[0, x,] which join (0, 0) to (x,, y,), the cycloid provides unigquely
the least time of descent.

Thus we confirm Galileo’s belief that the brachistochrone is not the
straight line and support the classical assertion by Newton and the Bernoullis
that it must always be a cycloid.

It is not too difficult to extend our analysis to the case y,/x, = n/2 (see
Problem 3.22*), and it may seem physically implausible to consider curves
which {ail below their final point or those which have horizontal sections (i.e.,
those which cannot be expressed in the form y = y(x)) as candidates for the
brachistochrone. However, it is true that the brachistochrone is always the

cycloid, but a proof for the general case must be deferred until we have the far
more sophisticated tools of Chapter 9.

(c) A Profile of Minimum Drag

One of the first problems to be attacked by a variational approach was that
propounded by Newton in his Principia (1686) of finding the profile of [the
shoulder of] a projectile of revolution which would offer minimum resistance
(or drag) when moved in the direction of its axis at a constant (unit) speed in
water,

We adopt the coordinates and geometry shown in Figure 3.4, and postulate
with Newton that the resisting pressure at a surface point on the shoulder is
proportional to the square of the normal component of its velocity. Then, if
denotes the angle between the positive x axis and the tangent to a point on a
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] 1 Motion
’ N
/ I (x, Wx)) = (x(s), Wx))

P2y
/ i
/ e V)
/ i N\ .
a 1

" ¥

Figure 3.4

meridional curve of length [ whose rotation determines the surface of the
shoulder, we wish to minimize

chosz(n — W(s))2mx(s) cos Y(s) ds.
0

Since cos ¥(s) = x'(s) while 1 + y'(x)® = sec? Y(s), we evidently wish to
minimize
1

F) = f *(1 + YR dx,

. 2 = {yeC'la, 1]: y(@ = h, (1) = 0, y(x) = 0},

where we suppose that the positive constants a < 1 and h are given;{(a == O1s
excluded for reasons which will emerge). Now, if

x ‘ —2zx
f(x, zZ) = 1——_}—_—2.2—, then f,(x, z) = m,
and for x > O:
2x(3z2 = 1) 1
=202 — ) o0, when|z| > —.
fu(xa Z) (1 + 22)3 > when IZl \/5

On physical grounds we expect y' < 0 (Why?), and, by Proposition 3.10,
f(x, z) is strongly convex on [g, 1] % (-0, —1 /\/5]. Hence from Theorem
3.7, we know that if .

Vo€@ = {ye@: y(x) < —1//3,xe[a, 11}

/2

_zxyr(x) = const. = —
(1 + y()Y e’

makes

folx, y(x)) =
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say, for a positive constant ¢, then it minimizes F on 9’ uniquely. Upon
squaring and rewriting, we wish foru = 1 + y'(x)? that «® — 2¢2x%u + 2c2x?
= 0. Solving for u, we obtain u = ¢*x? + cx(c?x? — 2)172, provided that
c¢*a® = 2 (and this excludes a = 0). Then —/2exy(x) = u? = 2¢ix¥u — 1)
so that

Y = —2ex[(c*x* - ) F ex(e®x? — 2)112),

and upon integration, incorporating the outer boundary condition y(1) = 0,
we get

. 1
Hx) = 2‘3”0{02(1 -x%-2(1 - x*) F4c J. (e — )2 dt}, {14)

X
where ¢ is to be determined if possible to satisfy the inner boundary condition
¥(a) = h, while keeping y'(x) < — 1/\/5 Although the rematning integration
can also be performed, we shall not pursue this approach further except to
remark that in view of the uniqueness, at most one solution Y=Y @ is
possible. Hence, depending on the particular geometrical constants, it suffices
to consider only one of the signs in (14). In practice, it would be easier to
choose ¢ > 2, and then determine the values of @ and i = ¥a) which can be
attained by numerical integration in (14), while keeping y'(x) < —1/\/5.
Each nontrivial solution thus obtained provides the profile of minimum
drag at least among those in 2', and-this could be used in designing a torpedo
or some other missile moving in a medium Jor which Newton’s resistance law
is areasonable assumption.' Alternative drag postulates can be investigated by

the same approach. See [P] for a more thorough discussion.

In the preceding sections, we have explored a rather complete theory for

analyzing the classical problem of characterizing the minimum of the
function

b
F() = f 166 000, ¥ () dx,

where f(x, y, z} is suitably defined and convex, over all functions y e Cl[q, b]
with prescribed end point values.

We examine now two problems which are not of the same form but which
admit solution through the same considerations,

(d) An Economics Problem

All of the classical optimization problems arose in the development of physics
and are usually concerned with optimizing one of the fundamental quantities,
length, time, or energy under various conditions. For a change of interest, we

! Newton himself believed that his results might be applicable in the design of a ship’s hull.
See {Fu].

i
i
I
[
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will consider a more contemporary problem of production planning (whose
statement is taken from [Sm]). _ . N

From previous data a manufacturing company with *continuous’
inventory has decided that with an initial inventory #(0) = & anq a
projected sales rate § = S(t) over a time interval [0, T], the best product1.on
rate at time ¢ is given by a function # = 2(r). Assuming that .loss c‘iunng
storage occurs at a rate which is a fixed proportion, a, of the assqclated inven-
tory J(t) at time ¢ (perhaps through spoilage), and the rest is sqld at the
projected rate S(r), then we should have at time t, the simple differential
relation

F(@)y = Pty — S(t) — aF (L)
(or 2(t) = #'(t) + af(r) + S@t)).

Now suppose that it wishes to maintain the same sales rate S(f) over a
period [0, T] but its actual initial inventory I(0} = I, # .#,. Then from the
assumed continuity, each projected production rate function P = P(t) results

inaninventory I{t)at time ¢ which differs from .#(z) (at least in a neighborhood
of 0). With the same percentage loss, we would have as above,

P(t) = 1'(¢) + od(t) + S(2).

As a consequence, the company will experience additional operatiqg costs
(perhaps due to handling and storage problems); these costs might be
estimated by a function such as

C = f T[ﬁ2(I — D) + (P — P2()] at,
1]

which takes into account the deviations in both inventory I and associat.ed
production rate P from their “ideal” counterparts. (f is a constant which
adjusts proportions.) This is rather a crude measure of cost, but it possesses
analytical advantages. Moreover, since both # and # are known, while P is
determined by I as above, the cost function C may be regarded as

) = LT[ﬁz(I(t) — SO + (@) — £ + o) — FON*] dr
= IT[(az + U = 20 + I~ FY ()] de

+ 2 '[T(I - AU - YO dt, (15)

which should be minimized over all functions I e C*{0, T]for which I(0) = I,.
Integrating the last term and introducing

2 =a?+ B2 (18)
there results

CU)+ oy — Fo) = f:[vlu SV + (I = FYO] de + ol — ST,
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It is now natural to introduce the inventory deviation function w(t) =
It} — #(t) which has the known initial value WO}y = Iy — #4 = y,, say, and
consider instead the equivalent problem of minimizing the modified cost
function

() = f 2907 + Y()] dt + ay*(T) (17)

over 2 = {ye C'[0, T]: y(0) = y, prescribed].
The presence of the term ay*(T) prevents this function from being of the

classical form studied in §3.2. However, the general approach employed there
Is suggested, since the integrand function, viz,,

fn2) =y + 22

is clearly strongly convex on B2, so that C is strictly convex for a > 0. (See
Proposition 3.2 and Example 4 of §3.1.)
Now, ¥ y, ve C![0, T],

T
8C(y;v) =2 L [V2(E@) + v @] dt + 200(T)(T),

and a minimizing function would be given by a y e @ for which
8C(yiv) =0, VYy+uved

Introducing %, = {ve C'[0, T]: v(0) = 0}, naive inspection suggests
consideration of a y € 2 which makes the last integral vanish ¥ ve 2, and
for which y(T) = 0. However, it is not evident how to force the vanishing of
the integral. Instead we try to find a ye€2 n C?*[0, T], and integrate the
second term by parts to get the equation

T
6C(y;v) = 2 L [¥23(0) — y'®1e() dt + 2[Y(T) + ax(T)]e(T),

(where we have incorporated the vanishing of v at 0),

Now it is clear that 6C(y; v) = 0, ¥ v e D,, provided that y satisfies the
differential equation '

§3.4. Applications 7

but as usualin these problems, it is not guaranteed that the constants ¢, and ¢,
can be found so that y(t) satisfies the boundary conditions. We require that
¥o(0) = y; = ¢; + c3,
and
0 = yo(T) + ayo(T)

=c (v + D’ + e~y + e,
or that

0 =c,(y + @)e?T — cy(y ~ a).
From this last equation, the ratio

w? % oG

Y — & €1

- 20

is specified, and for this p the choices ¢, = y,/(1 + ,o),'cz = y,p/(1 + p) will
satisfy both conditions. This gives the desired conclusion:

(3.14) Among all inventory functions I € C'[0, T] with o, B, and I0) = I,
prescribed, that given by

(Io — £o)

I(t) = #(t) + )

(" + pe™ ™), (22)

with p, y determined by (21) and {(16), respectively, will provide uniquely the
minimum cost of operation as assessed by (15).

Moreover, in this case the minimum cost can easily be computed. Indeed
from (17)

T
&) = j [2¥0? + (2] dt + ayX(T)

and when y e C?[0, T), integration of the second term by parts gives

&u) = LT(?ZY — YYOW) dt + [Y(T) + afDINT) — Y©O(0). (23)

Yy —=vy=0 (18) o
and the natural boundary condition Since y(t) = I(t) — #(t), the minimizing y is seen from (22) to be
Y(T) + ay(T) = 0. 19 Yolt) = (IOI 1-—;0) (" + pe ™). (24)

(In more familiar terms, (19) simply requires that the terminal production
rate, P(T) = #(T). Indeed, in general, P — # =y + ay.) (Why? In

. addition to (19), y must also satisfy the given boundary condition y(0) = y,.

Evaluating (23) for y = y, we see that the integral vanishgs because y,
satisfies the differential equation (18), and the next term also vanishes because

The general solution of the differential equation (18) is well known to be

¥, fulfills the boundary condition (19). From the other boundary condition,
viz., yo(0) = y,, we have

Cmin = C(Yo) = ~y1¥o(0).

L G

s

iven by
* Rrocy j Yol) = cie” + cae™, with yy(t) = p(cie” — c,e™™),  (20)

e o
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Thus differentiating (24) and evaluating at 0:

Iy — #4)
&= yyo=Fo
Y1y 55 o —1),

or finally recalling that y, = Iy — Fy:

Cmin=Cmin—a2= 2L_
Y1 JH[ o+ 1 o

= (Io - fo)z[}?*_:%) - rx],

and this expression shows the effects of various choices of a, 8, T, and #(0) on

the .m%nim}xm cost of operation. Observe that it is independent of the sign of
the initial inventory deviation,

(¢) Minimal Area Problem

Qur ﬁng] example extends the methods of this chapter to a problem in higher
dlmensm‘ns, namely, that of Plateau, In the simplified version formulated in
§1.4(b), given a bounded domain D < R? and a prescribed smooth boundary

fupgtiqn ¥, we seek a function u € C!(D) which has these boundary values and
mimrmzes the surface area function

S(u) = J.j,/l +ul + u? dx dy.
D
Introducing 2 = {ue CYD) with ul,, = 7} and 2, = {ve C{(D) with
V[sp = 0}, we see that this is equivalent to finding a u € @ for which
S(u + v) — S(u) = 0, Vved,.

Now, the three-dimensional vector inequality used in establishing the

strong convexity of (y, z) = /1 + )7 + 22 (see Example 10 of §3.3), shows
that at each point in D:

1+ (u, + ) + Gy + o) — 1+ uk ol > el Yy ,
Vw4l

with equality iff v, = v, = 0. Hence, from the assumed continuity:

S(u + v) — S(u) > 6S(u; v) = ﬂ U X0 edy
/1 +ul +ul
(as in §2.4, Example 9) with cquality iff v = O (since v, = v, = 0in the domain
D=y = const. = p|,p = 0). Thus § is strictly convex on 2, and again we
would seek u € 2 for which 8S(u; v) vanishes,V v e 2. Such a u would provide
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the unique minimizing function for § on 2. It would, of course, suffice if we
could find a u which is even smoother; in particular, if we could find a
ue % r C*D) which has these properties.

For ue @ n C¥D), both

u d u
x and W Y

VU +u2 +ul JE+ul+u?
are in C'(D) so that the integrand of 4S(u; v) may be rewritten as Uo, + Wy,

= (Uv), + (Wv), — (U, + W,)u. Now, if we assume that Green’s theorem
holds for the domain D ([FI]), then

vy

{[twan + wo1axcay = [ oy - woyan
D D
and for v € @, the line integral vanishes. Thus for ve @,

IS(u; v) = — JI)(U,c + Wyv dx dy, (25)

and by Proposition 3.3 it is obvious that a minimum area would be given
uniquely byeach u € 2 n C*(D)which satisfies the partial differential equation

U.+W,=0 inD;

or upon substitution and simplification, which satisfies the second-order
partial differential equation

(1 + uduee = 2u w1ty + (1 + tdhuy, = 0. (26)

Equation (26) is called the minimal surface equation and it has been studied
extensively. Our uniqueness argument shows that this equation cannot have
more than one solution u in 2, but the existence of a solution depends
upon a geometric condition on D:

(3.15) A domain D is said to be convex when it contains the line segment
Joining each pair of its points. A disk is convex while an annulus is not. If the
domain D is not convex, it is known that (26) does not always have a solution
in the required set & n C%(D), and we can draw no additional conclusions -
from the analysis given here. However, it is also known that if D is convex, then
(26) has a solution in @ n C*(D) for arbitrary smooth y, which thus describes
uniquely the minimal surface; i.e., the surface of minimal area spanning the
contour described by the graph of the boundary function y, among all C*
surfaces ([Os]). (Actually it does so among all piecewise C! surfaces, those
described by the graph of a piecewise C! function #, which admit internal
“roof-shaped” sections. With appropriate definitions, the methods of
Chapter 7 can be extended to establish this fact.)

(Problems 3.20-3.26)
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§3.5. Minimization with Convex Constraints

Convexity may also be of advantage in establishing the minima of functions J
when constrained to the level sets of other functions G (as in the isoperimetric

problem). In the formulation suggested by Proposition 2.3, the next result is
apparent.

(3.16) Theorem. If D is a domain in R, such that for some constants A
J=1L2,...,N, f(x,y,2z) and 2;g{x, ¥, 2} are convex on [a, b] x D [and at
least one of these functions is strongly convex on this set], let

N
Then each solution y, of the differential equation
d
Ix L6 = flx)] on(a, b)
minimizes
b
FO) = [ D dx
[uniquely] on _
2 = {yeC'[a, b]: ¥(a) = yo(a), y(b) = ye(b); (M(x), ¥(x)) € D}
under the constraining relations
Gj(y)‘!—iffgj[y(x)] dx = G{y)) j=12...,N.

PROOF. By construction (and 3.11(1)) f(x, y, z) is [strongly] convex on
[a, b] x D, so that by Theorem 3.5, y, minimizes

b N
Fo) = j JDE1d = FO) + 3460

[uniquely] on 2. Now apply Proposition 2.3, O

(3.17) Remark. Theorem 3.16 offers a valid approach to minimization in the
presence of given isoperimetric constraints as we shall show by example.
However, if we introduce functions 2; = A(x)in its hypotheses, then as in 2.5

N ]
FO)= FO) + 3 f A0g, L)1 dx,

and we conclude that each solution y, € 2 of the differential equation for the
new f minimizes ¥ on % [uniquely] under the pointwise constraining

relations
g,[y(x)] = g,[yo(x)1,

j=12,....N,
of Lagrangian form. :

Ea

Althcugh, in general not even one such g,[yo(x)] may be specifiable a priori
(Why?), the vector valued version does permit minimization with given
Lagrangian constraints. (See Problem 3.35 et seq.)

Corresponding applications involving inequality constraints are con-
sidered in Problem 3.31 and in §7.4.

ExaMPLE 1. To minimize

1
F() = fo ()2 dx

on
2 = {yeC'[0,1]: W0) = 0, y(1) = 0},

when restricted to the set
1
{yeCl[O, 17: G(y)"é‘f Wx) dx = 1},
0

we observe that f(x, y, z) = z2 is strongly convex, while g(x, y, z) = y is
(only) convex,on R x R®. Hence, we set (x, y, z) = 22 + Ayand try to find A
for which Ag(x, y, z) remains convex while the differential equation

d
7 D1 = Ay

has a solution Yo€ 2 for which G(y,) = 1. Now since ¢ 18 linear in y (and z),
Ag(x, y, 2) = Ay is convex for each real A. Upon substitution for f, the differ-
ential equation becomes

d ., , A
HZOD =2 o yey =7,
which has the general solution
Ax?

Y(X) = c1x + ¢, +—4—§

the boundary conditions y(0) = 0 = ¢; and (1) = 0 = ¢; + 1/4 give
-2
Yolx) = e x(1 — x), whichisin @.

Theorem 3._16 assures us that yo(x) = (—4/4)x(1 — x) minimizes £ on

2 —even uniquely—under the constraint G(y) = G(y,). It remains to show

that we can choose A so that G(yo) = 1 (while Ag (x, y, z) remains convex).
Thus we want

-i ! —-A{1 1 —A
=1=_2 1 —X)dx =22 _2y_—4
GO0 = 1= = | x(1 —x)dv = = (2 3) -
or
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and since —24g(x, y, z) = — 24y remains convex, we have found the unique
solution to our problem.

(3.18) Remark. In this example we can find A to force Yo into any level set
of G we wish, since Ag(x, y, z) = Ay is always convex for each value of 2. This
1s not the case in general and this approach will work only for a restricted
class of level sets of G. (See Problem 3.29.)

The Hanging Cable

EXAMPLE 2 (The catenary problem). To determine the shape which a long
inextensible cable (or chain) will assume under its own weight when sus-
pended freely from its end-points at equal heights as shown in F igure 3.5,
we utilize the coordinate system shown, and invoke Bernoulli’s principie
that the shape assumed will minimize the potential energy of the system.
(See §8.3)

We suppose the cable to be of length L and weight per unit length W, and
that the supports are separated a distance H < L. Then utilizing the arclength
5 along the cable as the independent variable, a shape is specified by a function
ye# = C'[0, L] with y(0) = y(L) = 0, which has associated with it the
potential energy given within an additive reference constant by

L
FO) =W fo ¥(5) ds.

However, in order to span the supports, the function ¥ must satisfly the
constraining relation

L L
G(y) = J;,/l — Y ds = de(s) = H,

where x(s) denotes the horizontal displacement of the point at a distance s
along the cable, since then as elementary geometry shows, x'(s)2 + y(s)? = 1.
Clearly |y'(s)] < 1 and if |y'(s,)] = 1, then the cable would have a cusp

ats,.
Now f(s, y, z) = Wy is (only) convex on [0, L] x R? while g(s, y, z) =

-1 — z%is by §3.3, Example 5, strongly convex on [0, L] x R x (-1 1.
y]t_ H

X

(s, y(sp

Thus by 3.11(1), the modified function f(s, y,2z) = Wy — A/T = 22 is
strongly convex when A > 0. Hence by 3.16, for A > 0 we should seck a
solution y for the differential equation

2D = F6) on 0. )

which is in
2 = {yeC'[0, L]: W(0) = (L) = 0, 1V(s)[ < 1,¥se(0, L)}

Upon substitution, the differential equation becomes

a (_ﬂs)_) =W
4 \/1=y%s)
or
W) @

where we have replaced the unspecified constant 4 by WA and introduced a

new constant c.
We know that each y € 2 which satisfies this equation for A > 0 must be

the unique shape sought. Hence we can make further simplifying assumptions
about y if they do not preclude solution. We could, for example, suppose y =
const., but it is seen that this could not solve (27). And we can supposcthat yis
symmetric about L/2, which accords with our physical intuition about the
shape assumed by the cable. If we set | = L2 it follows that y' () = 0, so that
from (27), ¢ = —1I; also, we need only determine y on [0, /], where we would
expect that ' < 0.
Thus from (27) we should have that

_n2
YO = gy onf0.1]

and so, with y(0) = 0, that
- ’
¥ fo = VET |

or
W)=+ -57 = J+P on[o1]. (28)

Now we can obviously suppose that 1 > 0; however, we must satisfy the
constraining relation

L
f 1 - y(s)?ds = H;
0
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or with our symmetry assumption, we require that
¢
H
1 — y(s)ds = =.
I :
Upon substitution from (28), this becomes

il v =~ = L
TRy -y 22 + (; )2 =7

or with the trigonometric substitution (/ — 5) = Atan 8, we require for
a = arctan l/A that

h(e) ¥ cot _rsec 8do = E = £(<1).

Now, h(a) = (log(sec a + tan a))/tan « is continuous and positive on (0, 7/2)
and has by L'Hopital’s rule as « . 0 and « .* /2, the same limits as does
sec a/sec? @ = cos «; viz.,, 1 and 0, respectively. Thus by the intermediate
value theorem (§A.1), h assumes each value on (0, 1) at least once on (0, =/2).
Hence 3 a € (0, n/2) for which h{x) = H/L and for this o, A = lcot & > 0 will
provide the y(s) sought.

The resulting curve is defined parametrically on [0, {] by

y(s) = \/Az + (l - S)z _\/22 + 12,
0 = [Ty = - asnr(
0

which corresponds to the well-known catenary (Problem 3.30(a)).

s) (29)

(3.19) Among all curves of length L joining the supports, the catenary of (29)
will have (uniquely) the minimum potential energy and should thus represent
the shape actually assumed by the cable.

Remark. This problem is usua]]y formulated with x as the independent
variable. However, this results in an energy function which is not convex

(Problem 3.30(b)).

Optimal Performance

ExaMpLE 3. (A simple optimal control problem). A rocket of mass m is to be
accelerated vertically upward from rest at the earth’s surface (assumed
stationary) to a height 4 in time T, by the thrust (mu) of its engine. If we
suppose h is so small that both m and g, the gravitational acceleration,

remain constant during flight, then we wish to control the thrust to minimize
the fuel consumption as measured by, say,

T
F(u) = J; u*(t) dt, (30)

for a given flight time T.

Although T will be permitted to vary later, consider first the problem in
which T is fixed. We invoke Newton’s second law of motion to infer that at
time ¢, the rocket at height y = y(t) should experience the net acceleration

y=u-—g, 31)

and impose the initial and terminal conditions
W0)=30)=0 and ¥T)=h.

Since y(0) = 0, then y(T) = {7 j(¢) dt, so that upon subsequently integrating
by parts we obtain

T
+ J‘O(T— 1) dt.

T
HT)= —(T — )p() .

From (31) and the remaining boundary conditions, there follows

2
h=WT) = OT(T — tu(t) dt — ig-

Hence

2

T T
G | (T - uwyde = h + QT =k say, 32)
[¢]

and we are to minimize F on
={ueC[0,T],u =0}
subject to the isoperimetric constraint (32).
According to Theorem 3.16, we introduce a constant 4 and observe that
the modified integrand
Ft,u,2) = + AT — Du

will be strongly convex for all 4, since the second term is linear in u. Moreover,
f: = 0. Thus, a u, € 2 which satisfies the equation f,[u()] = 0 = 2u(t) +
AT — t) and meets the constraint (32) will suffice.



3.30.

331

3.32%

on
2 = {ye C'[0, n]: W0) = y(m) = 0},

when further constrained to the set where

f PAx)dx = 1?
0
Catenary Problem. (See §3.5, Example 2.)

{a) Verify equation (29) and eliminate the parameter s to obtain the equation

—h
Jl=ﬂtcosh(x’1 )—,/}3+F,

for0 < x < 2h = H.(This is a more common represemtation for the catenary
Joining the given points.)

(b) Formulate the problem using x as the independent variable and conciude
that this results in an energy function U which is not COnvex on 2 =
{ye C'[0, H]: (0) = y(H) = 0}. (Hint: Use v = —ytoshowthat Uy + v) —
U(y) is not always greater than or equalto SU{y;v)fory, y + ve 2.)

(c)* Use the arc length 5, as a parameter to reformulate the problem of finding
the minimal surface of revolution (as in §1.4(a)) among all curves of fixed
length L joining the required points. (Take g =0and g, = 1 < by.)

(d) Conclude that the problem in {c) is identical to that of a hanging cable for an
appropriate W, and hence there can be at most one minimizing surface.
(See §3.5.)

Determine the (unique) positive function y € C[0, T] which maximizes

T
U(y) = f e Flog(l + pt) dt

0
subject to the constraint Ly} = j'g e" ") dr < I, where g, £, and [ are positive
constants, Hint: Problem 3.18, with 2.4, 3.17. (This may be given the interpreta-
tion of finding that consumption rate function y which maximizes a measure of
utility (or satisfaction) U subject to a savings-investment constraint L(y) < /.
See [Sm], p. 80.) ’

Dido’s Probiem.
Convexity may be used to provide partial substantiation of Dido’s conjecture
from Problem 1.5, in the reformulation suggested by Figure 3.8.

Verify her conjecture to the following extent:
(a) If b > l/n, prove that the function representing a circular arc (uniquely)
maximizes

A) = f_by(x) i

on
9 = {yeC'[—b,b): wb) = y(—b) = 0},

when further constrained to the / level set of L) = 2, /1 + y(xP dx.

333
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Figure 3.8

{b) Il b = I/n, show that the function representing the semicircle accomplishes
the same purpose for a suitably chosen 2* (see Problem 223.21).

(c}* In parts (a) and (b), compute the maximal areaasa funct}on of , the angle
subtended by the arc; show that this function increases with § on (O it].

{d) Why does this not answer the problem completely? Can you extend the

analysis to do so?
i i ! in i = dY=(.V1-""yd)5
Let I be an intervalin Rand D be a domain in R*. Forx € R, an
Z = (zy,..., 2s) e R? a function f(x, ¥, Z) is said to be [strongly] convex on
I xDiff, fy = (fy-. 1 fy) and fz = (f......, f, ) are defined and continuous
on this set and satisfy the inequality

~fx,YV.2Z)2 L LZY-V+ f5(x, Y, 2)- W,
SRz - I ) Jfr(}‘cd(x,Y,Z),(x,g’+V,Z-f-W)eI x D

. . — = 0]
[with equality at (x, ¥, Z)only if V¥ = @ or W
(a) Show thatif f(x, ¥, Z)is [strongly] convex on [a,b] x R4 then

b
F(Y) = f FIY()]dx = f 0, Y, Y(0) dx

is [strictly] convex on
P = {Ye(C'[a, b])*: Y(a) = A4, Y{b} = B},

where A4, B e R? are given.

() If f(x, Y. Z) is strongy convex on [a, b] % IB“, then prove that each Ye 2
which satisfies the vector differential equation (d/dx) fz[}’(x);l = f r[Y.(X)]
{ie.; (dfdx)f, [Y(x}] = ny[Y(x)], j=12,...,d) on (a b) is the unique
minimizing function for F on 2.

Use the resuits in Problem 3.33 to formulate and prove analog.olus vector valued
versions of; (a) Theorem 3.7, (b) Corollary 3.8, and (c) Proposition 3.9.

(a) Formulate and prove a vector valued version of' Theorem 3.1§. ‘
(b) Modify Theorem 3.16 to cover the case of a single Lagrangian constraint,

i int: iti ith 3.17,
and prove your version. Hint: Proposition 2.5'w1t . .
(c) Formulate a vector valued version of the modified problem in (b) with both

isoperimetric and Lagrangian constraints.
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TSP T T T W, USL Wb LULAL GLICLEY JULIKLMON ) = 1 + U 0 glve a
uniqueness result modelled after Proposition 8.4 as extended in Problem
8.17.

{g) Study the expression in (d) to obtain alternate sets of boundary conditions
which would lead to the same differential equation as in (e).

(h) When p = u = const. and p = 0, determine an ordinary differential equation
for ug = ug(x), if u(t, x) = uy(x) cos wt is to be a solution of (75).

(i) Can you find or guess a nontrivial solution uy of the equation in (h) which

will permit « to meet the cantilever conditions in (¢) at least for certain

values of w? Hint: See §6.6.

A

Transverse Motion of a Uniform Plate. If the membrane discussed in §8.9(b) is
replaced by a plate of uniform thickness and material, we may neglect the energy
of stretching in comparison with that of bending which is now given (approxi-
mately) by

U = E f [(u:%x + ui‘,) - 2(1 —_ T)(uxxuw — uxy)zj dX, (76)
2Jp

where, of course, u(t, X) denotes the vertical position of a center section at time z,

and g and t < 1 are positive material constants.

(a) Argue that for an appropriate constant density p, the kinetic energy of motion
at time ¢ should be approximately T = } [, pu? dX.

(b) Set A(u} = [§(T — U)dt, and, neglecting external loading, reason that for
some boundary conditions, stationarity of 4 at & in C* requires that v should
satisfy the equation

Py + pA%y =0, an
where
Au = AAu) = Mu,, + ).

(¢) Which equation is u, = ug(X) required to satisfy in order that u(t, X) =
ug(X) cos wt be a solution of (77)?

(d} For static equilibrium of the loaded plate with pressure p = p{X), when all
functions are time independent, use convexity of the integrand of

0%y — fpudX
D

to conclude that even for a nonplanar plate, only stable equilibrium is
possible, and it is uniquely characterized by a 1, which satisfies the equation:
pA*y = p.

- 2
Hint: The term u,,u,, — u2, = vy, —u ).

CHAPTER 9*
Sufficient Conditions for a Minimum

As we have noted repeatedly, the equations of Euler—Lagrax?ge are necessary
but not sufficient to characterize 2 minimum value for the integral function.

b y. ]
F(Y) = j fx, Y(), Y'(0) dx = f FIY ] dx

on a set such as
P = {YeC'([a,b])":Y(a) = A, Y(b) = B},

since they are only conditions for the stationarity oi.' F However, in t'he
presence of [strong] convexity of f(x, Y, Z) these conditions do charactquzc
[unique] minimization. [Cf. §3.2, Problem 3.33 et seq.] .N'ot .al.l such furgctmns
are convex, but we have also seen in §7.6 that a minimizing function ¥,
must necessarily satisfy the Weierstrass condition £(x, ¥p(x), Yo(x), W) = 0,

¥ We R x e [a, b], where
Ex, Y, Z W [, ,W) = f(x, ¥, 2Z) — fx, ¥, Z)- (W ~ Z), (1)

and this is recognized as a convexity statement for f(x, Y, Z) along a tra-
jectory in R?**?! defined by Y. _ _
This chapter is devoted to showing that conversely, when f(x, ¥, Z) is
[strictly] convex (§9.2) in the presence of an appropriate field, then. eac:'h
stationary Y, in 2 does minimize F on 2 [uniquely] (§9.3, §9.4) and this wgll
afford a solution for the brachistochrone problem.. The method extends in
principle to problems with variable end point conditions (§Sf.4) and to those
such as the classical isoperimetric problem on which constraints are imposed
(§9I5). . 0 I3 v
However, the field in question requires an entire family :of stationary
functions with special properties which may, or may not, exist. A central

o7



field will suffice (§9.6) and this provides further insight into the problem of
finding the minimal surface of revolution. In §9.7 we provide conditions which
assure that a given stationary trajectory I', may be considered as that of a
central ficld. We encounter a new criterion, that of Jacobi, but in §9.9 we
demonstrate that it, too, is almost essential for even local minimization. This
embedding of Iy together with the appropriate convexity of f supplies
sufficient conditions for the local minimization of integral functions F, both
in the weak and in the strong senses (§9.8).

To motivate the inquiry, we examine first in §9.1 the original method used

to attack such problems.

§9.1. The Weierstrass Method

In his lectures of 1879, Weierstrass presented the following approach to
prove that a given stationary function Y, € (C'{a, b])* minimizes

b b
F(Y) = f FIY @] d = j 1, Y@, Y dt

on
@ = {Y €(C'[a, b])*: Y(a) = Yo(a); Y(b) = Yo(B)}:
(where for simplicity we suppose that f € C'([a, b] x R*).
Let Y in @ be a competing function and assume that each x € (q, b]
determines a unique function ¥(-; x), stationary for f on (a, x) as in §6.7,
whose graph joins (a, Yo(a)) to (x, Y(x)) as shown in Figure 9.1.

Vi A
(%, ¥(x)) - f;
@. (b, Yo(d) -
— d— YO
/
e wa =T
b S
I/a /x ¢
Y1

Figure 9.1

Then, in particular, ‘P(t; b) = Yo(t), (Why?), and we consider the integral
function

x b
o) — [ JT¥G; 0] de - f STIY@] s, @
which interpolates between
]
otw) = - [ fLY@1dt = ~F(D)

and

b b
ob) = — J' FI¥G by dt = — f FTY(®)] dt = —F(Yo),

so that F(Y) — F(Y,) = o(b) — a(a). Were &'(x) = 0, it would follow by the
mean value theorem that F(Y) — F(Y,) = 0.Morecover, ifalsoo'is continuous
on [a, b], then equality holds iff ¢’ = 0. {8A.1,8A.2)

For example, when d = 1, consider the problem of minimizing the (non-
convex) function

b
Fo) = [ /07 - y0r1de
0
on
@ = {yeC[0,b]: y0) = yb) =0} forb<m
Here, the stationary functions y satisfy the Euler-Lagrange equation

Loy = -2 o WO+ =0,

with the well-known general solution
W(t) = cocost + ¢y sin L.
Since b < 7, the only solution in @ is y, = ¢, and for a given y in 2, it is
seen by inspection that for each x € (0, b):
sin ¢
v(e; %) = ylx) ——
is the unique function which is stationary for f and satisfies ¥(0; x) = 0 with

Yix; x) = Wx). (See Figure 9.2.)
Thus, for this example, equation (2) becomes

x b
o(x) = — f [Vt X)* — (s )] dt — j [y — W)*] de

A fx(cosz t — sin’ £) dt - Jb[y'(f)z -y’ dt,
0 x

sin? x
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Figure 9.2

so that after integration,
b
a(x) = — y*(x) cotan x — f Y (©O? — y (O] dt. 3)

Then by the fundamental theorem of calculus, for x € (0, b):
o'(x) = —2y(x)y'(x) cotan x + y*(x) cosec® x — y*(x) + y'(x)*
= (Mx) cotan x — y'(x))* = 0,

with equality iff y'(x) — y(x) cotan x = 0.

Now, an apparent difficulty occurs when x = 0 as a result of the multi-
plicity of stationary functions ¥ which pass through (0, 0); namely, that a(0)
is not defined by (3). However, by L’Hdpital’s rule,

lim Y0 _ i 2006 _

xno SIBX L COSX
for yin 2,so that 6(0+) = —F(y). Thus F(y) — F(ys) = o(b) — a(0+) > 0;
or F(y) > F(y,) = 0, with equality iff y'(x) = y(x) cotan x, ¥ x € (0, ). But
for y in 2, this implies that y'(b) = y(b) = 0 (since b < =), and hence that
Hx) =0 = yo(x).

Thus we have proven that for b < =, y, = @ is the unique minimizing
function for F on 2. When b = =, the method is still applicable, (and provides
a proof for Dido’s conjecture of Problem 1.5), but the minimizing function Yo
isno longer unique. However, when b > =, y, fails to minimize. (See Problem

9.1)

Having illustrated the effectiveness of the Weierstrass approach in a simple
case, we return to the general problem and equatian (2). As defined, ¥(t; x)

depends on two variables, and as above, we use the prime to denote ¢ dif-
ferentiation. Supposing that ¥ is C?, it follows that

(‘P,)x = lp!x = ‘le = (\Px)" (4)
Then, from Leibniz’ rule (A.14) applied to (2), we obtain
*

o) = LY = SL¥ 0] - [ o fT¥G 01 )

a
and the integrand is from the chain rule, (4), and stationarity, given by

(%f (& ¥ x), ¥ (e; X)) = [P0 )]¥A(5 x) + L9005 )L x)

- 'gi {f2L¥(; )] - W, (t; %)}

But ¥(x; x) = Y(x) by construction, so that ¥ (x; x) = Y'(x) - ¥(x; x)
(Why?); while ¥,(a; x) = 0, since W(a; x) = Y,(a), is constant. Hence, after
integration and substitution, (5) becomes
a'(x) = flx, Y(x), Y'(x)) ~ f(x, Y(x), ¥'(x; x))

— J2x, Y(x), ¥'(x; x)) - (Y'(x) — ¥'(x; x)),
or upon utilizing the definition (1),

o'(x) = &(x, Y(x), ¥(x; x), Y(x)). (6)
(For d = 1, the reader should verify each step of this derivation by purely
formal calculations.) Thus finally, we obtain Weierstrass’ formula:

F(Y) - F(Y,) = f i,cr’(.)c) dx = ré"(x, Y(x), ¥'(x; x), Y(x)ydx, (7

which proves that & > 0 will imply that F(Y) > F(Y,), provided that an
appropriate family of stationary functions W(:; -) having all of the assumed
properties is available. Unfortunately, it is quite difficult to prescribe con-
ditions which ensure the existence of such families (one for each competing
Y€ 2), and instead in §9.3 et seq. we shall concentrate on a less direct
approach of Hilbert, which yields Weierstrass’ result even for piecewise C*

functions ¥.
(Problems 9.1-9.2, 9.5-9.6)

§9.2. [Strict] Convexity of f(x, Y, Z)

The definition (1) of the Weierstrass excess function foragiven f = f(x, Y, Z);
viz,,

EVZW)=f(x, , W)= f(x, Y, Z) — fox, Y, 2)- (W — Z),
and our wish to consider & > 0, suggests in comparison with 3.4, the follow-
ing:
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(9.1) Definition. f(x, ¥, Z) is said to be [strictly] convex in a set § < R24+1
when f and f; are defined and continuous in S and satisfy the inequality
&(x, Y, Z, W) = 0, or equivalently,

[, W) = f(x, ¥, Z) 2 fox, Y, Z) - (W — 2), ®

when (x, Y, Z) € § and (x, Y, W) € S, [with equality at (x, Y}iff W = Z],
Usually, the set S will be of the form § = D x R for a domain D < Ri*1.
Smc'e the [strict] convexity of f(x, Y, Z) is identical with the [strong]
convexity of f(x, Y, Z) as defined in Chapter 3 (Problem 3.33), the usual

li.n_ear combinations of such functions remain [strictly] convex. See Propo-
sition 3.2 and Facts 3.11.

ExampLE 1. f(.;, Y,Z)= —|Y|* +|Z)? is not convex, but f(x, Y. Z) is
strictly convex in R?¢* ! since f,(x, Y, Z) = 2Z so that

JORY, W)= f(x, Y, Z)= W~ |ZP = (W + Z) - (W - Z)
=|W-Z?+2Z.(W-2)
2 folx, Y, Z)- (W —~ Z),
with equality at (x, Y) iff |[W — Z|* =Qor W = Z.
ExampLE 2. For d = 1, the brachistochrone function
1+ 22
¥
is not convex, but f(x, ¥ 2) is strictly convex for the half space
{x, . 2)eR%:y > 0}
since f,,(x, y, z) > 0. (See Proposition 3.10 and the next example.)
ExaMPLE 3. Ford = 2, when Y = (x, y), the function f(t, ¥, Z) = /y|Z|? is
[strictly] convex on the half-space \/E |
{tx. 3, Z)eR®: y 2 0}, [{(t, x, y, Z) € R: y > 0}].
For, by the computation of Example 1,
SO W) = f(6 Y, 2) = \/y(W - ZP + 22 - (W - Z))
z [t Y, Z)- (W - Z),
{with equality for y > 0 if W = Z].
ExampLE4. For d = 1, the function f(x, y,z) = — /(1 - z%)/y is strictly

convexontheset § = {(x, y,2) € R*: y > 0, |z[ < 1}.(See Example 5 of §3.3,
and Example 2 above.)

(of §1.2(a))

Sy 2=

From §0.13, there is the following generalization of Proposition 3.10:

(9.2) Proposition. If f = f(x, Y, Z) together with its partials f, and f ;. i, ] =
1,2,...,d is continuous in a Z-convex set S < R***? (one which contains the
segment joining each pair of its points (x, Y, Z,), (x, Y, Z,)) and the matrix
Sz is positive semidefinite [positive definite] in S, then f(x, ¥, Z) is [strictly]

convex in §.
ProOF. For(x, Y, Z,)and (x, ¥, Z,) in S and t € [0, 1], the point
Z,¥0 - 0Z, +1Z,

lies on a segment contained in S by hypothesis. Integrating by parts, we get
1
S0 Y. 2) - V.20 = [ 2G5 V20 e

1
- (2, - Zy)- f o Y, Z) dt — 1)
t= ]

=(Zy = Zp)-(t — D) falx, ¥, Z,)

t=0

1 d
+ J‘ (1 - t)( z j;‘,_‘(x, Y; Z:)v!vj) dt,
0 i =1

where V = Z, — Z,. The last term is nonnegative when Z, # Z; as a
consequence of the assumed semidefiniteness of f;; [and with positive

definiteness of f,,, it vanishes iff V = ¢]. Hence
Y 2Z,) - f(x, ¥, Zy) 2 fz(x, X, Zo) (2, — Zy)
[with equality iff Z, = Z,].

A (spherical) neighborhood of a point (x4, ¥;, Z,) is Z-convex. If D is a
domain in R®*?, then § = D x R?is Z-convex.

a

§9.3. Fields

The Weierstrass construction in §9.1, when possible, results in a family of
stationary trajectories (the graphs of the functions W(- ; x)) which is consistent
in that one and only one member of the family passes through a given point
{(x, Y(x)). Suppose more generally, that for a given f we have a single family
of stationary functions whose trajectories cover a domain D < R**! con-
sistently in that through each point (x, Y) € D passes one and only one
trajectory of the family, say that represented by ¥(:; (x, Y)) € (C*[a, b])".
Then the direction of the tangent line to the trajectory at (x, Y) given by

O(x, ¥) & ¥(x; (x, ¥))

determines a vector valued function in D (and one, moreover, whose values
are required for Weierstrass’ formula (7) along each competing trajectory).
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