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THE
CALCULUS
OF VARIATIONS

65 INTRODUCTION. SOME TYPICAL

PROBLEMS OF THE SUBJECT

The calculus of variations has been one of the major branches of analysis
for more than two centuries. It is a tool of great power that can be
applied to a wide variety of problems in pure mathematics. It can also be
used to express the basic principles of mathematical physics in forms of
the utmost simplicity and elegance.

The flavor of the subject is easy to grasp by considering a few of its
typical problems. Suppose that two points P and Q are given in a plane
(Fig. 92). There are infinitely many curves joining these points, and we
can ask which of these curves is the shortest. The intuitive answer is of
course a straight line. We can also ask which curve will generate the
surface of revolution of smallest area when revoived about the Xx-axis,
and in this case the answer is far from clear. If we think of a typical curve
as a frictionless wire in a vertical plane, then another nontrivial problem
is that of finding the curve down which a bead will slide from P to Q in
the shortest time. This is the famous brachistochrene problem of John
Bernoulli, which we discussed in Section 6. Intuitive answers to such
questions are quite rare, and the calculus of variations provides a uniform
analytical method for dealing with situations of this kind.
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Every student of elementary calculus is familiar with the problem of
finding points at which a function of a single variable has maximum or
minimum values. The above problems show that in the calculus of
variations we consider some quantity (arc length, surface area, time of
descent) that depends on an entire curve, and we seek the curve that
minimizes the quantity in question. The calculus of variations also deals
with minimum problems depending on surfaces. For example, if a
circular wire is bent in any manner and dipped into a soap solution, then
the soap film spanning the wire will assume the shape of the surface of
smallest area bounded by the wire. The mathematical problem is to find
the surface from this minimum property and the known shape of the
wire.

In addition, the calculus of variations has played an important role
as a unifying influence in mechanics and as a guide in the mathematical
interpretation of many physical phenomena. For instance, it has been
found that if the configuration of a system of moving particles is governed
by their mutual gravitational attractions, then their actual paths will be
minimizing curves for the integral, with respect to time, of the difference
between the kinetic and potential energies of the system. This far-
reaching statement of classical mechanics is known as Hamilton’s
principle after its discoverer. Also, in modern physics, Einstein made
extensive use of the calculus of variations in his work on general
relativity, and Schrédinger used it to discover his famous wave equation,
which is one of the cornerstones of quantum mechanics.

A few of the problems of the calculus of variations are very old, and
were considered and partly solved by the ancient Greeks. The invention
of ordinary calculus by Newton and Leibniz stimulated the study of a
number of variational problems, and some of these were solved by
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ingenious special methods. However, the subject was launched as a
coherent branch of analysis By Euler in 1744, with his discovery of the
basic differential equation for a minimizing curve.

We shall discuss Euler’s equation in the next section, but first we
observe that each of the problems described in the second paragraph of
this section is a special case of the following more general problem. Let P
and @ have coordinates (x;,y,) and (x,,y;), and consider the family of
functions

y =y() )

that satisfy the boundary conditions y(x;) = y, and y(x;) = y,—that is,
thfe grap.h of (1) must join P and Q. Then we wish to find the function in
this family that minimizes an integral of the form

1(y) = [ Tzf(x,y,y’) dr. @

To see that this problem indeed contains the others, we note that the
length of the curve (1) is

‘ [2 VI + (y') dx, (3)

and that the area of the surface of revolution obtained by revolving it
about the x-axis is

szZer'vl + (y')zdx (4)

In the. case of the curve of quickest descent, it is convenient to invert the
coordinate system and take the point P at the origin, as in Fig. 93. Since
the speed v = ds/dt is given by v = V2gy, the total time of descent is

(x.y)
Q== (x.)

¥y
FIGURE 93
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the integral of ds/v and the integral to be minimized is

IW i )
1 2gy

Accordingly, the function f(x,y,y’) occurring in (2) has the respective
forms V1 + ('), 27yV1 + (y')* and V1 + (y')*/V2gy in our three

problems.

It is necessary to be somewhat more precise in formulating the basic
problem of minimizing the integral (2). First, we will always assume that
the function f(x,y,y’) has continuous partial derivatives of the second
order with respect to x, y, and y’. The next question is, What types of
functions (1) are to be allowed? The integral (2) is a well-defined real
number whenever the integrand is continuous as a function of x, and for
this it suffices to assume that y'(x) is continuous. However, in order to
guarantee the validity of the operations we will want to perform, it is
convenient to restrict outselves once and for all to comsidering only
unknown functions y(x) that have continuous second derivatives and
satisfy the given boundary conditions y(x;) =y, and y(x;) = y..
Functions of this kind will be called admissible. We can imagine a
competition which only admissible functions are allowed to enter, and the
problem is to select from this family the function or functions that yield
the smallest value for 1.

In spite of these remarks, we will not be seriously concerned with
issues of mathematical rigor. Our point of view is deliberately naive, and
our sole purpose is to reach the interesting applications as quickly and
simply as possible. The reader who wishes to explore the very extensive
theory of the subject can readily do so in the systematic treatises.’

66 EULER’S DIFFERENTIAL EQUATION
FOR AN EXTREMAL

Assuming that there exists an admissible function y(x) that minimizes the
integral
= f fx,y,y') dx, @)
xy

how do we find this function? We shall obtain a differential equation for

! See, for example, I. M. Gelfand and S. V. Fomin, Caiculus of Variations, Prentice-Hall,
Englewood Cliffs, N.J., 1963; G. M. Ewing, Caleulus of Variations with Applications,
Norton, New York, 1969; or C. Carathéodory, Calculus of Variations and FPartial
Differential Equations of the First Order, Part II: Calculus of Variations, Holden-Day, San

Francisco, 1967.



y(x) by comparing the values of J that correspond to neighboring
admissible functions. The central idea is that since ¥(x} gives a minimum
value to I, I will increase if we “disturb” y(x) slightly. These disturbed
functions are constructed as follows.

Let n{x) be any function with the properties that 2"(x) is
continuous and

n{x1) = n(x;) = 0. 2
If @ is a small parameter, then
¥(x) = y(x) + an(x) (3)

represents a one-parameter family of admissible functions. The vertical
deviation of a curve in this family from the minimizing curve y(x) is
a7(x), as shown in Fig. 94.% The significance of (3) lies in the fact that for
each family of this type, that is, for each choice of the function n(x), the
minimizing function y(x) belongs to the family and corresponds to the
vaiue of the parameter o = 0.

Now, with n(x) fixed, we substitute ¥(x) = y(x) + an(x) and
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2 The difference Y — y = am is called the variation of the function y and is usually denoted
by dy. This notation can be developed into a useful formalism (which we do not discuss)
and is the source of the name calculus of variations.

e e -y

¥'(x) = y'(x) + an’(x) into the integral (1), and get a function of a,
X3
1@) = [ 5.5 dr
X1

= [y + ey + e elas @

When & = 0, formula (3) yields §(x) = y(x); and since y(x) minimizes
the integral, we know that /(@) must have a minimum when a = 0. By
elementary calculus, a necessary condition for this is the vanishing of the
derivative /'(«) when a = 0: I'(0) = 0. The derivative I'(a) can be
computed by differentiating (4) under the integral sign, that is,

r@) = [ fx,5,5) ©

By the chain rule for differentiating functions of several variables, we
have

8 -, of ox L 3f 9y  of oy’
o WEYY) = s e
aaf(x »¥) dxda 8y« M gy’ dar

3 3
= 210+ Lo,
$0 (5) can be written as
r@ = [[Lne) + Lww)a ©)
Now I'(0) = 0, so putting & = 0 in (6) yields
2 of of , _
|5+ Zrw]a=o ™

In this equation the derivative n'(x) appears along with the function
n(x). We can eliminate %’(x) by integrating the second term by parts,

which gives
s [ 2] - [ (2
[ e =[nw Z]" - ["ne L ) ds
I ) _‘i)
== [ g () a
by virtue of (2). We can therefore write (7) in the form
" of_4 (_ai ] -
L ne| 2 - 2 o) |4 =0 ®)
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Our reasoning up to this point is based on a fixed choice of the function
n(x). However, since the integral in (8) must vanish for every such
function, we at once conclude that the expression in brackets must also

vanish. This yields
d(of ) o _

which is Euler’s equation.’
It is important to have a clear understanding of the exact nature of

our conclusion: namely, if y(x) is an admissible function that minimizes
the integral (1), then y satisfies Euler’s equation. Suppose an admissible
function y can be found that satisfies this equation. Does this mean that ¥y
minimizes /? Not necessarily. The situdtion is similar to that in
elementary calculus, where a function g(x) whose derivative is zero at a
point x, may have a maximum, a minimum, or a point of inflection at Xo.
When no distinctions are made, these cases are often called stationary
values of g(x), and the points x, at which they occur are Stationary
points. In the same way, the condition I’(0) = 0 can perfectly well
indicate a maximum or point of inflection for /(«) at & = 0, instead of a
minimum. Thus it is customary to cail any admissible solution of Euler’s
equation a stationary function or stationary curve, and to refer to the
corresponding value of the integral (1) as a stationary value of this
integral—without committing ourselves as to which of the several
possibilities actually occurs. Furthermore, solutions of Euler’s equation
which are unrestricted by the boundary conditions are called extremals.

In calculus we use the second derivative to give sufficient conditions
distinguishing one type of stationary value from another. Similar
sufficient conditions are available in the calculus of variations, but since
these are quite complicated, we will not consider them here. In actual
practice, the geometry or physics of the problem under discussion often
makes it possible to determine whether a particular stationary function
maximizes or minimizes the integral (or neither). The reader who is
interested in sufficient conditions and other theoretical problems will find
adequate discussions in the books mentioned in Section 65.

As it stands, Euler’s equation (9) is not very illuminating. In order
to interpret it and convert it into a useful tool, we begin by emphasizing

*In more detail, the indirect argument leading to (9) is as follows. Assume that the
bracketed function in (8) is not zero (say, positive) at some point x = a in the interval.
Since this function is continuous, it will be positive throughout some subinterval about
x = a. Choose an n(x) that is positive inside the subinterval and zero outside. For this
n(x), the integral in (8) will be positive——which is a contradiction. When this argument is
formalized, the resulting statement is known as the fundamental lemma of the calculus of
variations. !
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that the partial derivatives 3f /3y and 3f/3y’ are computed by treatin_g X,
y, and y’ as independent variables. In general, however, 3f/3y’ is a
function of x explicitly, and also implicitly through y and y’, so the first
term in (9) can be written in the expanded form

a(af) a(af)dy 3 (af)dy'
— =+ =(=) =+ =)=
9x \ay’ Sy\ay'/dx 8y’ \3y'/ dx

Accordingly, Euler’s equation is

2
For 524 Fy 2k (e = ) = 0. 10)

This equation is of the second order unless f,.,. = 0, so in general the
extremals—its solutions——constitute a two-parameter family of curves;
and among these, the stationary functions are those in which the two
parameters are chosen to fit the given boundary conditions. A second
order nonlinear equation like (10) is usually impossible to solve, but
fortunately many applications lead to special cases that can be solved.

CASE A, If x and y are missing from the function f, then Euler’s equation
reduces to
d’y
fy'y' E = 0;
and if f,,» # 0, we have d’y/dx* = O and y = ¢;x + ¢;, so the extremals
are all straight lines.

CASE B. If y is missing from the function f, then Euler’s equation

becomes
()
dx \gy' !
and this can be integrated at once to yield the first order equation
F_,
9y

for the extremals.

CASE C. If x is missing from the function f, then Euler’s equation can be
integrated to

af , _
ay y f cl'
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This follows from the identity

Ly )=y [L(Z)- 2] 7
dx \3y"” Y1dx\ay') ~ 3yl "

since 3f/3x = 0 and the expression in brackets on the right is zero by
Euler’s equation,

We now apply this machinery to the three problems formulated in
Section 65.

Example 1. To find the shortest curve joining two points (x,,y,) and
(%2,y,)—which we know intuitively to be a straight line—we must minimize
the arc length integral

1=fkfr6?a

The variables x and y are missing from f(y') = VI + (y')%, so this
problem falls under Case A. Since
&f 1
vy =G === %0,
eyt UL+ (PR
Case A tells us that the extremals are the two-parameter family of straight
lines y = ¢,x + ¢;. The boundary conditions yield

my oI
y=n= 2l - ) (1)

as the stationary curve, and this is of course the straight line joining the two
points. It should be noted that this analysis shows only that if I has a
stationary value, then the corresponding stationary curve must be the
straight line (11). However, it is clear from the geomeiry that I has no
maximizing curve but does have a minimizing curve, so we conclude in this
way that (11) actually is the shortest curve joining our two points.

In this example we arrived at an obvious conclusion by analytical
means. A much more difficult and interesting problem is that of finding
the shortest curve joining two fixed points on a given surface and lying
entirely on that surface. These curves are called geodesics, and the study
of their properties is one of the focal points of the branch of mathematics
known as differential geometry.

Example 2. To find the curve joining the points (x1.3) and (x,,y,) that
yields a surface of revolution of minimum area when revolved about the x-
axis, we must minimize

I= f' 2 VIF P 12)
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The variable x is missing from f(y,y") = 2ayV1 + (y’)’, so Case C tells us
that Euler’s equation becomes

y(»') VITGY =,

ity
which simplifies to
ay = Vy' -l
On separating variables and integrating, we get

f dy ¢ log (y + Vy' - ¢}
r=c| =2 __ - DAL I A
1 ’_yz-cf 1 €

and solving for y gives

)+c2,

y = ¢, cosh (x CZ) (13)
€y

The extremals are therefore catenaries, and the required minimal surface—

if it exists—must be obtained by revolving a catenary. The next problem is

that of seeing whether the parameters ¢, and ¢, can indeed be chosen so

that the curve (13) joins the points (x,,»,} and (x,,¥,).

The choosing of these parameters turns out to be curiously compli-
cated. If the curve (13) is made to pass through the first point (x,,y,), then
onec parameter is left free. Two members of this one-parameter family are
shown in Fig. 95, It can be proved that all such curves are tangent to the
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dashed curve C, so no curve in the family crosses C. Thus, when the second
point (x;,y,} is below C, as in Fig. 95, there is no catenary through both
points and no stationary function exists. In this case it is found that smaller
and smaller surfaces are generated by curves that approach the dashed line
from (x,,y) to (x,,0) to (x5,0) to (x,,5,), so no admissible curve can
generate a minimal surface. When the second point lies above C, there are
two catenaries through the points, and hence two stationary functions, but
only the upper catenary generates a minimal surface. Finally, when the
second point is on C, there is only one stationary function but the surface it

generates is not minimal.*

Example 3. To find the curve of quickest descent in Fig, 93, we must

minimize
1= [PYLEOT,
n Vagy
Again the variable x is missing from the function f(y,y'} = V1 + (y')¥/
V2gy, so by Case C, Euler’s equation becomes
O M+
VWi W

YL+ ()] =c
which is precisely the differential equation 6-(4) arrived at in our earlier
discussion of this famous problem. Its solution is given in Section 6. The
resulting stationary curve is the cycloid

x = a(f — sin ) and y =a(l —cos#®) (14)

generated by a circle of radius @ rolling under the x axis, where a is chosen
so that the first inverted arch passes through the point (x,,y,) in Fig. 93. As
before, this argument shows only that if / has a minimum, then the
corresponding stationary curve must be the cycloid (14). However, it is
reasonably clear from physical considerations that / has no maximizing
curve but does have a minimizing curve, so this cycloid actually minimizes
the time of descent.

This reduces to

We conclude this section with an easy but important extension of
our treatment of the integral (1). This integral represents variational
problems of the simplest type because it involves only one unknown
function. However, some of the situations we will encounter below are
not quite so simple, for they lead to integrals depending on two or more
unknown functions.

A full discyssion of these statements, with proofs, can be found in Chapter IV of G. A.
Bliss’s book Calculus of Variations, Carus Monograph no. 1, Mathcmanca] Association of

America, 1925.
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For example, suppose we want to find conditions necessarily
satisfied by two functions y(x) and z(x) that give a stationary value to the
integral

I= f zf(x:ysz’y'»zl) dx, ‘ (15)

where the boundary values y(x;), z(x,) and y(x,), z(x,) are specified in
advance. Just as before, we introduce functions #,(x} and 7,(x) that have
continuous second derivatives and vanish at the endpoints. From these
we form the neighboring functions y(x) = y(x) + en(x} and z(x)=
z(x) + an,(x), and then consider the function of & defined by

Xy
I{a) = f f(xy + anyz + any,y’ + any,z’ + anz)de.  (16)
X1

Again, if y(x) and z(x) are stationary functions we must have I'(0) = 0,
so by computing the derivative of (16) and putting a = 0 we get

(L Lyae L+ Ly
o+ ZLpax =0,

or, if the terms involving 7n; and ni are integrated by parts,

ez -2 G ol 5 - 2 G0)])
— (= — (==} [tdx = 0. (17
[[{reols - & (5] + mo| 5 - 5 (o (7)
Finally, since (17) must hold for all choices of the functions #,(x) and
72(x), we are led at once to Euler’s equations

A __ 4 (if) _¥ .
dx (8y’) -0 w2l =0 (18)
Thus, to find the extremals of our problem, we must solve the system
(18). Needless to say, a system of intractable equations is harder to solve
than only one; but if (18) can be solved, then the stationary functions are
determined by fitting the resulting solutions to the given boundary
conditions. Similar considerations apply without any essential change to
integrals like (15) which involve more than two unknown functions.

PROBLEMS
1. Find the extremals for the integral (1) if the integrand is

(@) Vi J;(y')z;

(b} y* — (y")~
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2. Find the stationary function of
4
[ - o1

which is determined by the boundary conditions y(0) = 0 and y(4) =3
3. When the integrand in (1) is of the form

a(x)(y')* + 2b(x)yy’ + c(x)y?,

show that Euler’s equation is a second order linear differential equation.
4. If P and Q are two points in a plane, then in terms of polar coordinates, the
length of a curve from P to Q is
0 o
[[as= [ varvrag.
P P
Find the polar equation of a straight line by minimizing this integral
(a) with 6 as the independent variable;
(b) with r as the independent variable,

5. Consider two points P and @ on the surface of the sphere x + y? + zZ = 42
and coordinatize this surface by means of the spherical coordinates @ and ¢:
where x = asingcos 8, y = asin¢sing, and z = acos ¢. Let @ = F(¢) be
a curve lying on the surface and joining P and (. Show that the shortest such
curve (a geodesic) is an arc of a great circle, that is, that it lies on a plane
through the center. Hint: Express the length of the curve in the form

2] 2
fd;:f & ¥ &y + dz?
fid P

= af \/1+ (j—s)zsinqudqb,

solve the corresponding Euler equation for 6, and convert the result back into
rectangular coordinates.

6. Prove that any geodesic on the right circular cone 2> = a*(x? + ¥, z=0,
‘has the following property: If the cone is cut along a generator and Rattened
into a plane, then the geodesic becomes a straight line. Hint: Represent the
cone parametrically by means of the equations

y = Tcos (8V1 + a%) _ rsin(6V1 + a%) ar

Vita - YT T vite 0 T

show that the parameters r and # represent ordinary polar coordinates on the
flattened cone; and show that a geodesic r = r(@) is a straight line in these
polar coordinates.

If the curve y = g(2) is revolved about the z-axis, then the resulting surface of
revolution has x* + y* = g(z)* as its equation. A convenient parametric
representation of this surface is given by

7

x = g(z)cos B, y=g(z)sin8, - z =z
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where @ is the polar angle in the xy-plane. Show that a geodesic # = 8(z) on

this surface has
0= of YIECT
J g2V - ¢

dz + ¢,

as its equation.
8. If the surface of revolution in Problem 7 is a right circular cylinder, show that

every geodesic of the form 6 = 6(z) is a helix or a generator.

67 ISOPERIMETRIC PROBLEMS

The ancient Greeks proposed the problem of finding the closed plane
curve of given length that encloses the largest area. They called this the
isoperimetric problem, and were able to show in a more or less rigorous
manner that the obvious answer—a circle—is correct.” If the curve is
expressed parametrically by x = x(f) and y = y(t), and is traversed once
counterclockwise as ¢ increases from ¢; to f,, then the enclosed area is

known to be

12/ dy dx)

= = — —y—d, 1

2), (x gt 7 dr W

which is an integral depending on two unknown functions.® Since the
length of the curve is

)

the problem is to maximize (1) subject to the side condition that (2) must
have a constant value. The term isoperimetric problem is usually
extended to include the general case of finding extremals for one integral
subject to any constraint requiring a second integral to take on a

prescribed value.
We will also consider finite side conditions, which do not involve

integrals or derivatives. For example, if
G(x,y,2) =0 (3)
is a given surface, then a curve on this surface is determined parametri-

cally by three functions x = x(¢), y = y(¢), and z = z(¢) that satisfy
equation (3), and the problem of finding geodesics amounts to the

*See B. L. van der Waerden, Science Awakening, pp. 268-269, Oxford University Press,
London, 1961; also, G. Polya, Induction and Analogy in Mathematics, Chapter 10,
Princeton University Press, Princeton, N.J., 1954,

® Formula (1) is a special case of Green’s theorem. Also, see Problem 1.
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problem of minimizing the arc length integral

[VE @@« o

subject to the side condition (3).

Lagrange multipliers. It is necessary to begin by considering some
problems in elementary calculus that are quite similar to isoperimetric
problems. For example, suppose we want to find the points (x,y) that
yield stationary values for a function z = f(x,y), where, however, the
variables x and y are not independent but are constrained by a side

condition
glx,y) = 0. (5)

The usual procedure is to arbitrarily designate one of the variables x and
y in (5) as independent, say x, and the other as dependent on it, so that

dy/dx can be computed from
%, Sgdy _
3x  dydx

We next use the fact that since z is now a function of x alone, dz/dx = 0
is a necessary condition for z to have a stationary value, so

0.

d_Z = if + ..(?Lf_.d_y =0
dx 3x dydx
or
3, of ag/a
of _ ofdeidx _ 0. (6)
ox Bydg/dy
On solving (5) and (6) simultaneously, we obtain the required points
().

One drawback to this approach is that the variables x and ¥ occur
symmetrically but are treated unsymmetrically. It is possible to solve the
same problem by a different and more elegant method that also has many
practical advantages. We form the function

Fx,y,4) = f(x.y) + Ag(x,y)

and investigate its unconstrained stationary values by means of the

" In very simple cases, of course, we can solve (5) for y as a function of x and insert this in
z = f(x,y}, which gives z as an explicit function of x: and all that remains is to compute
dz/dx, solve the equation dz/dx = 0, and find the corresponding y’s.
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necessary conditions

oF _of . .98 _

8x_8x+}"8x_0’

8F of . og .
ZoT a8, 7
-y @
oF .

gz—g(x,)’)‘“o'

If A is eliminated from the first two of these equations, then the system
clearly reduces to

g__ifai/%=0 and g(x;J’)=0s

and this is the system obtained in the above paragraph. It should be
observed that this technique (solving the system (7) for x and y) solves
the given problem in a way that has two major features important for
theoretical work: it does not disturb the symmetry of the problem by
making an arbitrary choice of the independent variable; and it removes
the side condition at the small expense of introducing A as another
variable. The parameter A is called a Lagrange multiplier, and this
method is known as the method of Lagrange muitipliers.® This discussion
extends in an obvious manner to problems involving functions of more
than two variables with several side conditions.

Integral side conditions. Here we want to find the differential equation
that must be satisfied by a function y(x) that gives a stationary value to

the integral
r= f flay.y')dx, ®)

where y is subject to the side condition

X2
7= ["gyyyar=c ©)
and assumes prescribed values y(x;)} = y; and y(x,) = y, at the end-
points. As before, we assume that y(x) is the actual stationary function
and disturb it slightly to find the desired analytic condition. However, this
problem cannot be attacked by our earlier method of considering
neighboring functions of the form j(x) = y(x) + an(x), for in general

8 A brief account of Lagrange is given in Appendix A.
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these will not maintain the second integral J at the constant value c.

Instead, we consider a two-parameter family of neighboring functions
Fx) = y(x) + aymlx) + azny(x), - (10)

where 1,(x) and 7,(x) have continuous second derivatives and vanish at
the endpoints. The parameters a, and &, are not independent, but are
related by the condition that

Hana) = [ gws5)ax = (1

Our problem is then reduced to that of finding necessary conditions for
the function
X2
Henar) = | f5,5) dx (12)
Xy
to have a stationary value at a; = @, = 0, where o, and &, satisfy (11).

This situation is made to order for the method of Lagrange multipliers.
We therefore introduce the function

K(a’l,a'z,;-) = I(a’l,a’z) + U(al,az)
X2
~ [ Fapyyar, 13)
X1

where
F=f+4ag

and investigate its unconstrained stationary value at @, = a, = 0 by
means of the necessary conditions

— == when &, = a, = 0. (14)

It we differentiate (13) under the integral sign and use (10), we get

= [[Enw+ Ly Jae gori=1,2
0 ), ay"" aJ,,,m(x) ori=1,2;

and setting a; = a, = 0 yields

f |50+ S i) ax = 0

Ay
by virtue of (14). After the second term is integrated by parts, this
becomes
*2 dF d (3F
[ nol5 -G -o 1)

Since 7,(x) and 5,(x} are both arbitrary, the two conditions embodied in
(15) amount to only one condition, and as usual we conclude that the
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stationary function y(x) must satisfy Euler’s equation

4 (f) - éf =0 1 (16)
dx \3y' 3y

The solutions of this equation (the extremals of our problem) involve
three undetermined parameters: two constants of integration, and the
Lagrange maltiplier A. The stationary function is then selected from these
extremals by imposing the two boundary conditions and giving the

integral J its prescribed value c.
In the case of integrals that depend on two or more functions, this

resulf can be extended in the same way as in the previous section. For
example, if

I =f flx,y,z,y',2" ) dx
X
has a stationary value subject to the side condition
X3
J =J glx,y,z,y,zdx = ¢,

then the stationary functions y(x) and z(x) must satisfy the system of
equations

d (3F\ 3F d (3F\ oF
“(zr) -5 =0 and Z)-5-0

dx \3y' dy dx
where F = f + Ag. The reasoning is similar to that already given, and we
omit the details,

Example 1. We shall find the curve of fixed length L that joins the points
(0,0) and (1,0), lies above the x-axis, and encloses the maximum area
between itself and the x-axis. This is a restricted version of the original
isoperimetric problem in which part of the curve surrounding the area to be
maximized is required to be a line segment of length 1. Our problem is to
maximize [y dx subject to the side condition

jﬂlmdxd

and the boundary conditions y(0) =0 and y(1) = 0. Here we have
F =y + AV1 + (¥")%, so Euler’s equation is

i— (%w) —1=0, (18)

or, after carrying out the differentiation,

»" 1
T o 2 (19)
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In this case no integration is necessary, since (19) tells us at once that the
curvature is constant and equals 1/A. It follows that the required maximiz-
ing curve is an arc of a circle (as might have been expected) with radius A.
As an alternate procedure, we can integrate (18) to get
y ___x-c
VI+(y)Y 4

On solving this for y' and integrating again, we obtain

(r—ec) +(y o) =4, (20)
which of course is the equation of a circle with radius A.

Example 2. In Example 1 it is clearly necessary to have L > 1. Also, if
L > x/2, the circular arc determined by (20) will not define y > 0 as a
single-valued function of x. We can avoid these artificial issues by
considering curves in parametric form x = x(#} and y = y(#) and by turning
our attention to the original isoperimetric problem of maximizing

1 (%

= f (xy — vx) de

21,
(where £ = dx/dr and y = dy/dt) with the side condition

L)
f ViZ + yide = L
Here we have "

F =205 + ) + AWE 7

so the Euler equations (17) are

E(_l +____“_)_l-_0
a\"2 TV T2 T
and
YO P
a2t T T2t T
These equations can be integrated directly, which yields
Ax Ay

-y + ——==—c¢ and x + = ¢,
If we solve for x — ¢; and y — ¢,, square, and add, then the result is
-+ (y—c) =4,
so the maximizing curve is a circle. This result can be expressed in the
following way: if L is the length of a closed plane curve that encloses an
area A, then 4 = L*/4x, with equality if and only if the curve is a circle. A
relation of this kind is called an isoperimetric inequality.®

*Students of physics may be interested in the ideas discussed in G. Polya and G. Szegd,
Isoperimetric Inequalities in Mathematical Physics, Princeton University Press, Princeton,

N.J., 1951.
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Finite side conditions. At the beginning of this section we formulated the
problem of finding geodesics on a given surface

G(x,y,z) = 0. (21)
We now consider the slightly more general problem of finding a-space

curve x = x(t), y = y(t), z = z(t) that gives a stationary value to an
integral of the form

[ " feg,2)d, @)

where the curve is requu‘ed to lie on the surface (21).

Our strategy is to eliminate the side condition (21), and to do this
we proceed as follows. There is no loss of generality in assuming that the
curve lies on a part of the surface where G, # 0. On this part of the
surface we can solve (21) for z, which gives z = g(x,y) and

-2, 3%, (23)

When (23) is inserted in (22), our problem is reduced to that of finding
unconstrained stationary functions for the integral

? .. 08, ag.)
J:f(-x,y, axx +8yy dr.

1

We know from the previous section that the Euler equations 66-(18) for
this problem are

i(_?,ffﬁ_f%)_éf?é_
t\8k  dzdx/ digx
and

LAEE L
de\ay " 3:3y)  azay

It follows from (23) that

8 d g) 9z _ d (ag)
ax (Bx and 3y 7, gy

50 the Euler equations can be written in the form
£ 2D-0 w 4D EAD-
dt Sx dt \oz dt ay Oy dt \oz
If we now define a function A{¢) by

%(g) = M1)G., | (24)



and use the relations 8g/6x = —G./G, and dg/dy = —G,/G,, then
Euler’s equations become

‘%(g) = MG, | (25)
and
% (g)l:) = MG, 26)

Thus a necessary condition for a stationary value is the existence of a
function A(¢) satisfying equations (24), (25), and (26). On eliminating
A(f), we obtain the symmetric equations

(d/dr)(8f/3%)  (d[dt)(3f/3y) _ {d/dr)(af/3z) -

G, G, G, ’ @7

which together with (21) determine the extremals of the problem. It is

worth remarking that equations (24), (25), and (26) can be regarded as

the Euler equations for the problem of finding unconstrained stationary
functions for the integral

[ F5,2) + MOG(x,y,2)] dr.

This is very similar to our conclusion for integral side conditions, except
that here the multiplier is an undetermined function of ¢ instead of an

undetermined constant.
When we specialize this result to the problem of finding geodesics

on the surface (21), we have
f=V&+y°+ 2
The equations (27) become

(d/d)GE/f) _ (d/d)@if) _ (d/de)E/f) 28
G, G, G (28)

and the problem is to extract information from this system.

Example 3. If we choose the surface (21) to be the sphere x* + Y+ 22 =
a®, then G(r,y,z) = x* + y* + 2% - a? and (28) is

- _f~yf fi-if

2xf? 2f? 2zf*

which can be rewritten in the form

xji—y.fc'_i'=y2'—zj'

Xy =yi f yi-azy

THE CALCULUS OF VARIATIONS 523

If we ignore the middle term, this is

(d/dt)(xy — yx) _ @/d)(yz - zy)
Xy — yx y:—zy )

One integration gives xy — y& = ¢,(yz — zy) or

E+cei y
r+cz oy

and a second yields x + ¢,z = ¢,y. This is the equation of a plane through
the origin, so the geodesics on a sphere are arcs of great circles. A different
method of arriving at this conclusion is given in Problem 66-5.

In this example we were able to solve equations (28) quite easily,
but in general this task is extremely difficult. The main significance of
these equations lies in their connection with the following very important
result in mathematical physics: if a particle glides along a surface, free
from the action of any external force, then its path is a geodesic. We shall
prove this dynamical theorem in Appendix B. For the purpose of this
argument it will be convenient to assume that the parameter ¢ is the arc
length s measured along the curve, so that f = 1 and equations (28)
become

d’x/ds® _ d%/ds* _ d?z/ds®

G. G, G, . @)

PROBLEMS

1. Convince yourself of the validity of formula (1) for a closed convex curve like
that shown in Fig. 96. Hinr: What is the geometric meaning of

o P
fydx+fydx,
r 2

where the first integral is taken from right to left along the upper part of the

curve and the second from left to right along the lower part?

2. Verify formula (1) for the circle whose parametric €quations are x = a ¢ost
andy = agsint, 0 = < 2n.
3. Solve the following problems by the method of Lagrange multipliers.

(a) Find the point on the plane ax + by + ¢z = d that is nearest the origin.
Hint: Minimize w = x* + y® + z° with the side condition ax + by +
cz—d=0.

(b) Show that the triangle with greatest area A for a given perimeter is
equilateral. Hint: If x, y, and z are the sides, then 4 =Vs(s—x)(s—y)(s—2)
where s = (x + y + z)/2.

(c) If the sum of n positive numbers x,, x,, . . . , x, has a fixed value s, prove
that their product x.x,---x, has s"/n" as its maximum value, and




]

A

FIGURE 9%

conclude from this that the geometric mean of n positive numbers can
never exceed their arithmetic mean:

x1+x2+---+x,,
Vo, x, = .

n

4. A curve in the first quadrant joins (0,0) and (1,0) and has a given area beneath
it. Show that the shortest such curve is an arc of a circle.

5. A uniform flexible chain of given length hangs between two points. Find its
shape if it hangs in such a way as to minimize its potential energy.

6. Solve the original isoperimetric problem (Example 2) by using polar coordin-
ates. Hint: Choose the origin to be any point on the curve and the polar axis to
be the tangent line at that point; then maximize

1",
> J; r'de
with the side condition that
7T d]‘ 2 5
J; '\f(d—é') + réde
must be constant.

7. Show that the geodesics on any cylinder of the form &(x,z) = 0 make a
constant angle with the y-axis.

APPENDIX A. LAGRANGE

Joseph Louis Lagrange (1736-1813) detested geometry but made out-
standing discoveries in the calculus of variations and analytical mechan-

LR ML R WL Y AL BN wrdwe?

ics. He also contributed to number theory and algebra, and fed the
stream of thought that later nourished Gauss and Abel. His mathematical
career can be viewed as a natural extension of the work of his older and
greater contemporary, Euler, which in many respects he carried forward
and refined. ‘

Lagrange was born in Turin of mixed French—Italian ancestry. As a
boy, his tastes were more classical than scientific; but his interest in
mathematics was kindled while he was still in school by reading a paper by
Edmund Halley on the uses of algebra in optics. He then began a course
of independent study, and progressed so rapidly that at the age of
nineteen he was appointed professor of mathematics at the Royal
Artillery School in Turin.*®

Lagrange’s contributions to the calculus of variations were among
his earliest and most important works. In 1755 he communicated to Euler
his method of multipliers for solving isoperimetric problems. These
problems had baffled Euler for years, since they lay beyond the reach of
his own semigeometrical techniques. Euler was immediately able to
answer many questions he had long contemplated; but he replied to
Lagrange with admirable kindness and generosity, and withheld his own
work from publication “‘so as not to deprive you of any part of the glory
which is your due.” Lagrange continued working for a number of years
on his analytic version of the calculus of variations, and both he and
Euler applied it to many new types of problems, especially in mechanics.

In 1766, when Euler left Berlin for St. Petersburg, he suggested to
Frederick the Great that Lagrange be invited to take his place. Lagrange
accepted and lived in Berlin for 20 years until Frederick’s death in 1786.
During this period he worked extensively in algebra and number theory
and wrote his masterpiece, the treatise Mécanique Analytigue (1788), in
which he unified general mechanics and made of it, as Hamilton later
said, “a kind of scientific poem.” Among the enduring legacies of this
work are Lagrange’s equations of motion, generalized coordinates,
and the concept of potential energy (which are all discussed in
Appendix B).!

Men of science found the atmosphere of the Prussian court rather
uncongenial after the death of Frederick, so Lagrange accepted an
invitation from Louis XVI to move to Paris, where he was given

1%See George Sarton's valuable essay, “Lagrange’s Personality,” Proc. Am. Phil. Soc., vol.
88, pp. 457-496 (1944),

" For some interesting views on Lagrangian mechanics (and many other subjects), see S.
Bochner, The Role of Mathematics in the Rise of Science, pp. 199-207, Princeton University
Press, Princeton, N.J., 1966.



apartments in the Louvre. Lagrange was extremely modest and undog-
matic for a man of his great gifts; and though he was a friend of
aristocrats—and indeed an aristocrat himself—he was respected and held
in affection by all parties throughout the turmoil of the French Revolu-
tion. His most important work during these years was his leading part in
establishing the metric system of weights and measures. In mathematics,
he tried to provide a satisfactory foundation for the basic processes of
analysis, but these efforts were largely abortive. Toward the end of his
life, Lagrange felt that mathematics had reached a dead end, and that
chemistry, physics, biology, and other sciences would attract the ablest
minds of the future. His pessimism might have been relieved if he had
been able to forsee the coming of Gauss and his successors, who made
the nineteenth century the richest in the long history of mathematics.

APPENDIX B. HAMILTON’S PRINCIPLE
AND ITS IMPLICATIONS

One purpose of the mathematicians of the eighteenth century was to
discover a general principle from which Newtonian mechanics could be
deduced. In searching for clues, they noted a number of curious facts in
elementary physics: for example, that a ray of light follows the quickest
path through an optical medium; that the equilibrium shape of a hanging
chain minimizes its potential energy; and that soap bubbles assume a
shape having the least surface area for a given volume. These facts and
others suggested to Euler that nature pursues its diverse ends by the most
efficient and economical means, and that hidden simplicities underlie the
apparent chaos of phenomena. It was this metaphysical idea that led him
to create the calculus of variations as a tool for investigating such
questions. Euler’s dream was realized almost a century later by

Hamilton.

Hamilton’s principle. Consider a particle of mass m moving through
space under the influence of a force

F = Fi+ Ej + Ek,

and assume that this force is conservative in the sense that the work it
does in moving the particle from one point to another is independent of
the path. It is easy to show that there exists a scalar function Ux,y,2)
such that 3U/3x = F, 3U/3y = F,, and 3U/3z = F,.."* The function
V = —U s called the potential energy of the particle, since the change in

In the language of vector analysis, F is the gradient of U. .
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its value from one point to another is the work done against F in moving
the particle from the first point to the second. Furthermore, if ) =
x(t)i + y(#)j + z(t)k is the position vector of the particle, so that

de, dy, dz \/(dx)z (dy)2 (a'z)z
= — —_ — d = — — —_—
v dtl+dt'l+dtk an v dt + dt * dt

are its velocity and speed, respectively, then T = mv?¥/2 is its kinetic

energy.
If the particle is at points P, and P, at times ¢, and ¢,, then we are
interested in the path it traverses in moving from P, to B,. The action (or

Hamilton’s integral) is defined as

A=f (T - V)dt,

and in general its value depends on the path along which the particle
moves in passing from P, to P,. We will show that the actual path of the
particle is one that yields a stationary value for the action A.
The function L = T — V is called the Lagrangian, and in the case
under consideration it is given by
1 dx\? dy\? dz\?
L= (@) + (@) + (G ] - vern
2" \ar dt at (:3,2)
The integrand of the action is therefore a function of the form
fx,y,z,dx/dt,dy/dt,dz/dt), and if the action has a stationary value, then
Euler’s equations must be satisfied. These equations are
mdzx N v d*y nld 0 d’z L
T— —_— = y m— _—= , m—: —
df = ox dar = dy a3z
and can be written in the form

d 2] o | 4
S A A

i

dr ox 3y 3z

This is precisely Newton’s second law of motion. Thus Newton’s law is a

necessary condition for the action of the particle to have a stationary

value. Since Newton’s law governs the motion of the particle, we have
the following conclusion.

=0J

Hamilton’s principle. If a particle moves from a point P, 1o a point P, in a
tme interval t, = t < t,, then the actual path it follows is one for which the
action assumes a stationary value.

It is quite easy to give simple examples in which the actual path of a
particle maximizes the action. However, if the time interval is sufficiently



short, then it can be shown that the action is necessarily a minimum. In
this form, Hamilton’s principle is sometimes called the principle of least
action, and can be loosely interpreted as saying that nature tends to
equalize the kinetic and potential energies throughout the motion.

In the above discussion we assumed Newton’s law and deduced
Hamilton’s principle as a consequence. The same argument shows that
Newton’s law follows from Hamilton’s principle, so these two approaches
to the dynamics of a particle—the vectorial and the variational—are
equivalent to one another. This result emphasizes the essential charac-
teristic of variational principles in physics: they express the pertinent
physical laws in terms of energy alone, without reference to any
coordinate system.

The argument we have given extends at once to a system of n
particles of masses m,, with position vectors r{#) = x ()i + y.()j+
z(t)k, which are moving under the influence of conservative forces
F;. = F,i + F,j + F;k. Here the potential energy of the system is a

function V{(x,,y1,21, ..., X,,¥,,2,) such that
v 14 v
—_— _— —F R —_— =
axi El; 3y, i2 az,-

the kinetic energy is

r3Eml(E) @+ (@)

i=1

L3,

and the action over a time interval t; <t <, is
[+
A= f (T - V).
3]

In just the same way as above, we see that Newton’s equations of motion

for the system,
dzl',‘

$ra

are a necessary condition for the action to have a stationary value.
Hamilton’s principle therefore hoids for any finite system of particles in
which the forces are conservative. It applies equally well to more general
dynamical systems involving constraints and rigid bodies, and also to
continuous media.

In addition, Hamilton’s principle can be made to yield the basic
laws of electricity and magnetism, quantum theory, and relativity. Its
influence is so profound and far-reaching that many scientists regard it as
the most powerful single principle in mathematical physics and place it at
the pinnacle of physical science. Max Planck, the founder of quantum
theory, expressed this view as follows: “The highest and most coveted

=F|"
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aim of physical science is to condense all natural phenomena which have
been observed and are still to be observed into one simple principle . . ..
Amid the more or less general laws which mark the achievements of
physical science during the course of the last centuries, the principle of
least action is perhaps that which, as regards form and content, may
claim to come nearest to this ideal final aim of theoretical research.”

Example 1. If a particle of mass m is constrained to move on a given
surface G(x,y,z) = 0, and if no force acts on it, then it glides along a
geodesic. To establish this, we begin by observing that since no force is
present we have V = (, so the Lagrangian L = T — V reduces to T where

r3n(E) )+ (@]

We now apply Hamilton’s principle, and require that the action

] ty
f Ldt= f Tdt
G f

be stationary subject to the side condition G{(x,y,z) = 0. By Section 67,
this is equivalent to requiring that the integral

f 1T + MGy )] de

be stationary with no side condition, where A(f) is an undetermined
function of . Euler’s equations for this unconstrained variational problem
are
d*x dy d'z
mF—AGx=0, mEE—AGy=0, MF—-AG;=O.

When m and A are eliminated, these equations become
dixjdr? _ d¥y/d’ _ d?z/dP?
G, G, G,
Now the total energy T + V = T of the particle is constant (we prove this
below), so its speed is also constant, and therefore s = k¢ for some constant
k if the arc length s is measured from a suitable point. This enables us to
write our equations in the form
d’x/ds® _ d%/ds* _ d’z/ds*
G. G G

These are precisely equations 67-(29), so the path of the particle is a
geodesic on the surface, as stated.

Lagrange’s equations. In classical mechanics, Hamilton’s principle can be
viewed as the source of Lagrange’s equations of motion, which occupy a
dominant position in this subject. In order to trace the connection, we
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must first understand what is meant by degrees of freedom and

generalized coordinates.
A single particle moving freely in three-dimensional space is said to

have three degrees of freedom, since its position can be specified by three
independent coordinates x, y, and z. By constraining it to move on a
surface G(x,y,z) = 0, we reduce its degrees of freedom to two, since one
of its coordinates can be expressed in terms of the other two. Similarly,
an unconstrained system of r particles has 3n degrees of freedom, and
the effect of introducing constraints is to reduce the number of
independent coordinates needed to describe the configurations of the
system. If the rectangular coordinates of the particles are x;, y;, and z
(i =1,2,...,n), and if the constraints are described by k consistent and

independent equations of the form
G{X1, Y1215 -+ - s Xns¥miZn) = 0, i=12,...,k,

then the number of degrees of freedom is m = 3n — k. In principle these
equations can be used to reduce the number of coordinates from 3n to m
by expressing the 3n numbers x;, y;, and z; i = 1,2, . . ., n) in terms of
m of these numbers. It is more convenient, however, to introduce
Lagrange’s generalized coordinates qi, q>, ..., ., Which are any m
independent coordinates whatever whose values determine the configura-
tions of the system. This allows us full freedom to choose any coordinate
system adapted to the problem at hand—rectangular, cylindrical, spheri-
cal, or any other—and renders our analysis independent of any particular
coordinate system. We now express the rectangular coordinates of the
particles in terms of these generalized coordinates and note that the
resulting formulas automatically include the constraints: x;=
x.'(‘h; vty ‘Im)' ¥i= yl'(qls ey qm)J and &= Zx(‘]l» cet qm)! where

i=12,...,n
If m; is the mass of the ith particle, then the kinetic energy of the

system is o o2 don?
2|5+ @)+ (@]
=z ql—) + =) +1=] b
T=3m [( dr dt dr
and in terms of the generalized coordinates this can be written as

im(E5a) + (E24) +(E50)
T=_2m - 4 Tl 4) + Z—q) M

2,-;1 j=1 8, " gl dq; * = 0g; "
where ¢; = dg;/dt. For later use, we point out that 7 is a homogeneous
function of degree 2 in the §;. The potential energy V of the system is
assumed to be a function of the g, alone, so the Lagrangian L = T — V
is & function of the form

L = L(Ql:qb LR ] q»uq.lerjZ, LR qm)'

Hamilton’s principle tells us that the motion proceeds in such a way that
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the action j':f L dt is stationary over any interval of time ¢, = ¢ < {,, s0
Euler’s equations must be satisfied. In this case these are
d (aL) oL
og;

- 0, =42 ..., m, (2)

og;
which are called Lagrange’s equations. They constitute a system of m
second order differential equations whose solution yields the q; as
functions of ¢.

We shall draw only one general deduction from Lagrange’s equa-
tions, namely, the law of conservation of energy.

The first step in the reasoning is to note the following identity,
which holds for any function L of the variables ¢, q1,

qz:-‘~:4m;é'1aq2:---:q.m:
d["’_aL ] o [d(aL aL aL
418430 1] $ 4420 k] 2t
di Eq’ 34, 2 Ua\sg) " ag) T a @)

Since the Lagrangian L of our system satisfies equations (2) and does not
explicitly depend on ¢, the right side of (3) vanishes and we have

24z--L=E (4)

for some constant E. We next observe that 8V/34, = 0, so 3L/3q; =
8T/8g;. As we have already remarked, formula (1) shows that T is a
homogeneous function of degree 2 in the ¢;, so

by Eulers theorem on homogeneous functions.'> With this result,
equation (4) becomes 2T — L = Eor 2T - (T — V) = E, so

T+ V=E,

which states that during the motion, the sum of the kinetic and potential
energies is constant.

*Recall that a function f(x.y) is homogeneous of degree n in x and y if f(kx, ky) =
k"f(x,y). If both sides of this are differentiated with respect to & and then k& is set equal to
1, we obtain

a a
L4y = apen,

which is Euler's theorem for this function. The same result holds for a homogeneous
function of more than two variables.
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In the following example we illustrate the way in which Lagrange’s
equations can be used in specific dynamical problems.

Example 2. If a particle of mass m moves in a plane under the influence of
a gravitational force of magnitude Am/r* directed toward the origin, then
it is natural to choose polar coordinates as the generallzed coordinates:
g, =r and g, = 6. It is easy to see that T = (m/2)(* + r*#) and V =

—km/r, so the Lagrangian is
L=T—V=§(f2+r292)+k—’"
,

and Lagrange’s equations are

E(a_L)_E'—O 5
AT R )
d 8Ly oL

a(ﬁ)'ﬁ—"- ()

Since L does not depend expliéitly on B, equation (6) shows that
8L/38 = mr*@ is constant, s0

d6
=h 7

L (M
for some constant A assumed to be positive. We next observe that (5) can
easily be written in the form
d’r (d9)2 k
— — | = -
dr dt r
This is precisely equation 21-(12), which we solved in Section 21 to obtain
the conclusion that the path of the particle is a conic section.

Variational problems for double integrals. Our general method of finding
necessary conditions for an integral to be stationary can be applied
equally well to multiple integrals. For example, consider a region R in the
xy-plane bounded by a closed curve C (Fig. 97). Let z = z(x,y) be a
function that is defined in R and assumes prescribed boundary values on
C, but is otherwise arbitrary (except for the usual differentiability
conditions). This function can be thought of as defining a variable surface
fixed along its boundary in space. An integral of the form

16) = [ f0y.2.205) dxdy ®
R

will have values that depend on the choice of 2, and we can pose the
problem of finding a function z (a statlonary function) that gives a
stationary value to this integral.
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Our reasoning follows a familiar pattern, Assume that z(x,y) is the
desired stationary function and form the varied function Z(x,y) =
z(x,y) + an(x,y), where n(x,y) vanishes on C. When 7 is substituted
into the integral (8), we obtain a function I(a) of the parameter «, and
just as before, the necessary condition I'(0) = 0 yields

ff( 'I aa:ﬂy)dxdy*o 9)

To simplify the task of eliminating 7, and »n,, we now assume that the
curve C has the property that each line in the xy-plane parallel to an axis
intersects C in at most two points.'* Then, regarding the double integral
of the second term in parentheses in (9) as a repeated integral (see Fig.

97), we get
of x2(y) af
Snacs= [
J;J’ az,n Y e Jxi(y) Sz Thdxdy,

" This restriction is unnecessary, and can be avoided if we are willing to use Green’s
theorem.
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and since

=g - [5G
— = r— —_ _ dx
J; azx nx dx 77 azx x . n ax a zx

1 X

__[® _E"_(if)
- L "ax oz, dx

because n vanishes on C, it follows that

([ = -{[r2(Z) s

The term containing 7, can be transformed by a similar procedure, and

{9) becomes
[Js-5E) -5 @)ae=-0c w

We now conclude from the arbitrary nature of n that the bracketed
expression in (10) must vanish, so

3 d a
EYEAPCAE AT an
dx \dz, Ay \dz, oz

is Euler’s equation for an extremal in this case. As before, a stationary
function (if one exists) is an extremal that satisfies the given boundary
conditions.

Example 3. In its simplest form, the problem of minimal surfaces was
first proposed by Euler as follows: to find the surface of smallest area
bounded by a given closed curve in space. If we assume that this curve
projects down to a closed curve C surrounding a region R in the xy-plane,
and also that the surface is expressible in the form z = z(x,y), then the
problem is to minimize the surface area integral

ffv1+zf+z§dxdy

R

subject to the boundary condition that z(x,y) must assume prescribed
values on C. Euler’s equation (11) for this integral is

E(__ZH__) +i(_i__) =0,

M \V1 +zi+z) Sy \Wl+zl+ 22
which can be written in the form

2.1 +2)) — 22,2z, + 2,(1+ 22 = 0, (12)
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This partial differential equation was discovered by Lagrange. Euler
showed that every minimal sutface not part of a plane must be saddle-
shaped, and also that its mean curvature must be zero at every point.'* The
mathematical problem of proving that minimal surfaces exist, i.e., that (12)
has a solution satisfying suitable boundary conditions, is extremely difficult.
A complete solution was attained only in 1930 and 1931 by the independent
work of T. Rad6 (Hungarian, 1895-1965) and J. Douglas (American,
1897-1965). An experimental method of finding minimal surfaces was
devised by the blind Belgian physicist J. Plateau (1801-1883), who
described it in his 1873 treatise on molecular forces in liquids. The essence
of the matter is that if a piece of wire is bent into a closed curve and dipped
in a soap solution, then the resulting soap film spanning the wire will
asseme the shape of a minimal surface in order to minimize the potential
energy due to surface tension. Plateau performed many striking experi-
ments of this kind, and since his time the probiem of minimal surfaces has

been known as Plateau’s problem, '

Example 4. In Section 40 we obtained the one-dimensional wave equation
from Newton'’s second law of motion. In this example we deduce it from
Hamilton’s principle with the aid of equation (11). Assume the following: a
string of constant linear mass density m is stretched with a tension T and
fastened to the x-axis at the points x = 0 and x = x; it is plucked and
allowed to vibrate in the xy-plane; and its displacements y(x,¢) are
relatively small, so that the tension remains essentially constant and powers
of the slope higher than the second can be neglected. When the string is
displaced, an element of length dx is stretched to a length ds, where

1
ds = V1 +y§dx§(1+5yi)dx.

This approximation results from expanding V1 + y2 = (1 + y2)"? in the
binomial series 1 + y2/2 + -+ - and discarding all powers of y, higher than

the second. The work done on the element is T(ds — dx) = :Ty2 dx, so the
potential energy of the whole string is

1 T
V== 2 dx.
zT,L ¥e

The element has mass m dx and velocity y,, so its kinetic energy is imy?dx,

Y The mean curvature of a surface at a point is defined as follows. Consider the normal line
to the surface at the point, and a plane containing this normal line. As this plane rotates
about the line, the curvature of the curve in which it intersects the surface varies, and the
mean curvature is one-half the sum of its maximum and minimum values.

®The standard mathematical work on this subject is R. Courant, Dirichler’s Principle,
Conformal Mapping, and Minimal Surfaces, Interscience-Wiley, New York, 1950,
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and for the whole string we have

B
= szu y; dx
The Lagrangian is therefore
1
L=T- V———f (my? — Ty) dx,
and the action, which must be stationary by Hamilton’s principle, is
1 £ & 2 2
5 (my? = Ty;) dx dt.
20 b

In this case equation (11) becomes

T

—Yex T Y
m XX iy

which we recognize as the wave equation 40-(8).

NOTE ON HAMILTON. The Irish mathematician and mathematical physicist
Wiliiam Rowan Hamilton (1805-1865) was a classic child prodigy. He was
educated by an eccentric but learned clerical uncle. At the age of three he could
read English; at four he began Greek, Latin, and Hebrew; at cight he added
Italian and French; at ten he learned Sanskrit and Arabic; and at thirteen he is
said to have mastered one language for each year he had lived. This forced
flowering of linguistic futility was broken off at the age of fourteen, when he
turned to mathematics, astronomy, and optics. At eighteen he published a paper
correcting a mistake in Laplace's Mécanique Céleste; and while still an under-
graduate at Trinity College in Dublin, he was appointed professor of astronomy
at that institution and automatically became Astronomer Royal of Ireland.

His first important work was in geometrical optics. He became famous at
twenty-seven as a result of his mathematical prediction of conical refraction. Even
more significant was his demonstration that all optical problems can be soived by
a single method that includes Fermat’s principle of least time as a special case. He
then extended this method to problems in mechanics, and by the age of thirty had
arrived at a single principle (now called Hamilton’s principle) that exhibits optics
and mechanics as merely two aspects of the calculus of variations.

In 1835 he turned his attention to algebra, and constructed a rigorous
theory of complex numbers based on the idea that a complex number is an
ordered pair of real numbers. This work was done independently of Gauss, who
had already published the same ideas in 1831, but with emphasis on the
interpretation of complex numbers as points in the complex plane. Hamilton
subsequently tried to extend the algebraic structure of the complex numbers,
which can be thought of as vectors in a plane, to vecters in three-dimensional
space. This project failed, but in 1843 his efforts led him to the discovery of
quaternions. These are four-dimensional vectors that include the complex
numbers as a subsystem; in modern terminology, they constitute the simplest
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noncommautative linear algebra in which division is possible."” The remainder of
Hamilton's life was devoted to the detailed elaboration of the t.hec.:ry fmd
applications of quaternions, and to the production of. massive indigestible
treatises on the subject. This work had little effect on physics and geometry, and
was supplanted by the more practical vector analysis of Willard Gibbs and the
multilinear algebra of Grassmann and E. Cartan. The significant residue of
Hamilton’s labors on quaternions was the demonstrated existence of a consistent
number system in which the commutative law of multiplication does not hold. -
This liberated algebra from some of the preconceptions that had parglyzed it, a'nd
encouraged other mathematicians of the late nineteenth and twentieth centuries
to undertake broad investigations of linear algebras of all types.

Hamilton was also a bad poet and friend of Wordsworth and Coleridge,
with whom he corresponded voluminously on science, literature, and philosophy.

17 Fortunately Hamilton never learned that Gauss had discovered quaternions in 1819 but
kept his ideas to himself. See Gauss, Werke, vol. VIII, pp. 357-362.



