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1 Motivation

e \We consider the ground state energy of neutral atoms of nu-
clear charge Z that are described by a Hamiltonian H»

EZ := inf (Y, H7\V)
I*][=1

in H = \%, L*R> : C9).
e |In the non-relativistic case
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the leading order of the ground state energy is given by the
infimum E%F = E1 Z7/3 of the Thomas-Fermi functional
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on a suitable set of electron densities.

e [he next order is called Scott correction and originates from
quantum effects close to the Coulomb singularity.
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where E"IFF ~ —0.7687[Hal].

e However, in reality, due to the high velocities of the electrons
near the nucleus relativistic effects have to be accounted for.

3 Relativistic Hydrogen

e The spectrum of D,s consists of the contin-
uous part (—oo,—1] U [l,00) and some eigen-
values in the gap (—1,1) accumulating at 1:
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Adding projections removes the negative continuous part of
the spectrum (no positrons) and shifts the eigenvalues.

e Only for ¢ = y = 0 the eigenvalues /lnD and eigenvec-

tors are explicitly known, e.g. the ground state energy is
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Fig. 1. /l(l))—l and the ground state energy of the Brown-Ravenhall operator

(DIRAC program) divided by ¥~ as a function of y. For the non-relativistic

Schrodinger operator A)%/y* = -1

2 Relativistic Operators

e [he simplest way to include relativity would be to replace the
i 2
— C ]

kinetic energy by \/czp2 +c
e More sophisticated models comprise suitably projected Dirac
operators, so called no-pair operators. We consider

Y
Dys=a-p+p X0,
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with a mean-field potential ¢ on subspaces of LR : C%):
Free picture (Brown & Ravenhall 1951)

90 := 1(0.00)(D)L*(R’ : C*)
Furry picture (Furry & Oppenheimer 1934)
Hy 1= 1(0.c0)(Dy) LA (R : CY
Intermediate or ” Fuzzy” picture (Mittleman 1981)
Dy 1= 1(0.00) Dy )L*(R> : CH.

with a possibly different mean-field potential y.

e Since D, 4 is only defined or y < 1 we have to consider the

simultaneous limit ¢ = o0 as Z — oo, such that y = % <1

2
(or y < )

in the Brown-Ravenhall case).
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4 Relativistic Scott correction

For the Furry picture and for a class of mean-field potentials in
the intermediate picture we show

Theorem 1. /n the limit Z,c — oo such that% — vy < 1, the
ground state energy of the quadratic form
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AZ_, Dy or N Dy, fulfills

on 5§Z 1=

I
E% = EL.Z15 - (2 | SD(y)) 7+ o(Z%),

(4D - A)R).

where sP(y) := #22021
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Fig. 2. The Scott function s(Z/c) for fixed ¢ = é compared to values from
the NIST database and numerical computations of the Brown-Ravenhall Scott
function.




